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Abstract—We focus on the problem of streaming over a
blockage channel with long feedback delay, as arises in real-
time satellite communication from a comm-on-the-move (COTM)
terminal. For this problem, we introduce a definition of delay that
captures the real-time nature of the problem, which we show
grows at least as fast asO(log(k)) for memoryless channels,
where k corresponds to the number of packets in the transmis-
sion. Moreover, we show that a tradeoff exists between this delay
and a natural notion of throughput that captures the bandwidth
requirements of the communication. We develop and analyze an
efficient “multi-burst” transmission (MBT) protocol for ac hieving
good delay-throughput tradeoffs within this framework, which
we show to be robust and near-optimal within the class of
retransmission protocols with fixed schedules. The MBT protocol
can be augmented with coding for additional performance gains.
Simulations validate the new protocols, as well as when are
bandwidth and delay constraints.

Index Terms—real-time communication; communications-on-
the-move (COTM); ARQ; incremental redundancy; scheduling;
packet-loss channel

I. I NTRODUCTION

I N recent years, military satellite communication capabil-
ities are being extended to communications-on-the-move

(COTM) terminals at the tactical edge. One challenge for
on-the-move communication is channel blockage caused by
foliage or buildings as terminals traverse rural or urban en-
vironments. These channels can be modeled as packet era-
sure channels with certain channel statistics. In additionto
blockage, satellite communication suffers from long round-
trip time (RTT). Hence, after a packet is transmitted, the
transmitter has to wait a significant fraction of a second before
an acknowledgment (ACK) is received indicating that the
transmission was successful.

For non-real-time traffic such as bulk data transfers, forward
error correction (FEC) provides a natural solution. Moreover,
rateless schemes allow optimality even when there is no
statistical model for the channel. Indeed, examples such as
digital fountain codes [1], [2] and Raptor codes [3] are able
to achieve near-optimal delay and throughput simultaneously.
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In particular, an arbitrarily long sequence of coded bits is
sent through the erasure channel until sufficiently many bits
are received to enable decoding. The number of bits required
for decoding is only slightly greater than the number of data
bits, so that the code operates close to capacity. With such
protocols, a single bit of feedback suffices to terminate the
transmission. Moreover, provided the message size is large,
the inefficiency due to feedback delay is small.

For real-time traffic consisting of a stream of (ordered)
packets that are both generated and consumed in real time—
such as arises when watching a real-time surveillance video
or having a voice conversation—ARQ methods can be used.
The retransmission protocol ensures reliable delivery of the
ordered packets. However, existing ARQ methods typically
do not work well for severely-blocked, long-delay channels,
nor when very low delay is required.

Basic types of ARQ protocols include stop-and-wait ARQ,
go-back-N ARQ, and selective repeat (SR) ARQ, with the
SR-ARQ generally considered the most efficient of these.
In all three variants, a packet is retransmitted only if the
transmitter knows that the previous transmission is lost. This
avoids any unnecessary retransmissions. However, when the
channel loss rate is high, there is a non-negligible probability
that it would take several retransmissions for a packet to get
through. For example, for a channel that is blocked half of
the time, with probability1/4 a packet would suffer two
failed retransmissions and would thus take at least two RTT
to be received. Furthermore, when ordered packet delivery is
required, one packet that is not received delays all packetsthat
come after. For a long stream, the probability of at least one
packet requiring many retransmissions, which implies a large
delay for the whole stream, is high.

Hybrid ARQ (HARQ) schemes that utilize FEC reduce the
number of retransmissions by lowering the effective channel
loss rate [4]–[6]. However, existing HARQ schemes do not
perform well when the blockage probability is not low: in [7],
a HARQ technique was applied to interactive voice over a
moderately blocked satellite channel as a COTM terminal was
driven in a city environment, resulting in poor user experience.
In order to be effective in more severe conditions, the kindsof
FEC traditionally used would have to span many independent
channel realizations lasting many RTT, and inducing large
delays. For some real-time applications, it may be desirable
to achieve shorter delays (on the order of a few RTT). In
the extreme, a user may require the minimum delay that the
channel allows, correpsonding to every packet being delivered
as soon as the physical channel becomes unblocked after the
packet is generated—despite any cost in throughput this would
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incur. This kind of tradeoff is not offered by traditional ARQ.
In this paper, we explicitly consider the above tradeoff and

propose a class of multi-burst transmission (MBT) schemes
that achieve lower delay at the expense of throughput by
allowing preemptive retransmission, the amount of which
can be adjusted between two extremes. One extreme has no
preemptive retransmission, corresponding to ARQ. The other
extreme uses as much preemptive retransmission as is neces-
sary to achieve the minimum delay allowed by the physical
channel. Between the two extremes our MBT schemes achieve
an efficient throughput-delay tradeoff. Given a target delay,
MBT starts with relatively little preemptive retransmission,
then increases the amount as a packet’s delivery deadline
approaches, corresponding to changing the strategy from one
extreme to the other in time. This allows more efficient
bandwidth utilization when there is a low risk of missing the
target delay.

This paper builds on our initial results in [8], [9], further
developing, analyzing and optimizing the scheme. Among
other results, we show that such schemes can be designed to
be robust to mismatch in the channel model, and that the MBT
delay-throughput tradeoff achieved is nearly optimal within a
rather natural class of retransmission strategies, even when
practical considerations are taken into account. To develop
the key insights, our analysis in this paper largely focuses
on memoryless channels; a more detailed development of the
case of channels with memory is contained in [10].

There have been a variety of other delay-focused investi-
gations, under different feedback assumptions. For example,
in [11], [12], an efficient approach is described for achieving
the minimum possible delay at maximum possible throughput
in such streaming scenarios, when no feedback is available.
Additional examples of work beyond individual links include
[13], which studies methods for achieving low delay via
network coding and immediate feedback with zero delay.

An outline of the paper is as follows. Section II introduces
the system model of interest and defines natural throughput
and delay performance metrics. Section III discusses some
key baseline retransmission protocols: two extreme strategies
and a conceptual genie-assisted system for lower bounding
delay in our analysis. Section IV develops the MBT schemes,
analyzing and optimizing their delay and throughput per-
formance, and Section V, introduces coded extensions of
MBT, the performance benefits of which are developed via
simulations. Section VI investigates practical considerations,
including the impact of peak bandwidth constraints, maximum
delay constraints, and having both simultaneously. Finally,
Section VII contains some concluding remarks.

II. SYSTEM MODEL AND PERFORMANCEMETRICS

The model of interest is depicted in Fig. 1. A source
generates a stream of mutually independent packetsp1, p2, . . .
of fixed sizeR at the rate of 1 packet per time unit (TU)
starting at time 1, such that thekth packetpk is generated
at time k. A transmitter sends channel messagesck at time
k, which are a causal function of the source packets, i.e.,ck
is only a function ofp1, . . . , pk. The channel hasdynamic

data bandwidth, allowing messagesck to have variable size
Rk = NkR, whereNk > 0 is arbitrary, though in this work
we will generally restrictNk to integer values.

Traditionally, a streaming session would be allocated afixed
amount of data bandwidth enough to support the flow and the
expected retransmissions. However, this fixed allocation has
inefficiencies when the channel is dynamic. During periods
when the channel happens to be blocked less than average,
some data bandwidth are wasted; when the channel happens
to be blocked more often, there may not be enough data
bandwidth to perform all the retransmissions needed, thus
incurring additional delay. Incorporating dynamic data band-
width in the model allows for the possibility of adapting to
channel variations in real time. This is possible when the flow
of interest shares a physical channel (fixed bandwidth) with
many other traffic flows from the same transmitter, and it
has relatively lower rate but higher priority, so that it can
transmit at higher instantaneous rates when needed. While
our analytical study puts no limit onNk for simplicity, in
practical systems, there would be a limit. This is addressedin
Section VI-A.

The blockage channel is governed by a state sequencesk,
where the messageck is either received after a fixed delay
dc if sk = 1, or blocked ifsk = 0. The transmitter learns the
channel state through an error-free packet acknowledgmentfed
back after a further delay ofdc, so the transmitter function is
given byck = g(p1, . . . , pk, s1, . . . , sk−2dc−1).

When the receiver is able to determine a source packet,
it forwards it to a playback buffer. The playback buffer can
only playback one packet per time unit, all later packets are
buffered. Due to the real-time nature of the transmission, the
receiver is required to reproduce packets at the output in
sequential order—if packetpk is not received, all later packets
pj , j > k, must wait. For analysis, we assume an infinite
buffer. In practice, users would stop waiting for a packet that
is delayed excessively. This is addressed in Section VI-B.

For such real-time streaming systems, a natural definition
of the delay experienced by packetpk is

Dk , Mk − k, (1)

whereMk denotes the timepk is played back andk is the time
pk is generated.Dk is nondecreasing as there is no mechanism
to “catch up.”

Consider an example withdc = 3. Packetp1 is generated
at time1 and transmitted right away. Assumes1 = 1 (channel
open), thenp1 is received at timedc+1 = 4 and played back
at timeM1 = dc + 2 = 5, so D1 = M1 − 1 = dc + 1 = 4.
If s1 = 0 (blocked), then the transmitter finds out about it at
time 2dc + 1 = 7. If it choosesc8 to be the concatenation of
p1 andp8 (thusN8 = 2), ands8 = 1, thenp1 is received at
time 11 and played back at time12, thusD1 = 11.

We would like to keep the delay low, while also keeping the
number of channel uses (utilized bandwidth) small. However,
there is tension between these two goals: while the transmitter
still does not know if a message was blocked or not, for
the sake of minimizing delay it should assume that it was
blocked, thus repeat whatever information it contained until it
is acknowledged. For low throughput the opposite holds: the
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Fig. 1. Streaming system block diagram.

transmitter should assume that the message was received, thus
avoid the danger of unnecessarily repeating information.

Equipped with a statistical model for the state sequencesk,
we can quantify this tradeoff achieved by a specific scheme
using particular delay and throughput figures of merit. Specifi-
cally, we consider an independent identically-distributed (i.i.d.)
sequence withPr{sk = 1} = ρ in our analysis.

The throughput metricTM, which reflects the inefficiencies
in channel utilization, is the ratio between the expected volume
of data that was admitted by the channel, and the amount
of data that the source emitted, averaged over time, i.e.,
TM = limk→∞ TMk where1

TMk ,

∑
∞

j=1 E{sjRj}
∑k

j=1 R
=

1

k

∞∑

j=1

E{sjNj}. (2)

Note thatTM reflects the number ofreceivedretransmissions,
rather than the sent ones, thus it does not reflect the full
bandwidth utilization. However, for an i.i.d. channel model,
the expected number of retransmissions performed is simply
TM/ρ, thus minimizingTM indeed optimizes the usage of
transmit bandwidth. Our choice of definition is such that,
regardless of the channel parameterρ, 1/TM is the excess
bandwidth factor of the scheme, relative to that of a genie-
assisted system that knows the entire state sequencesk in
advance (see Section III-A).

We define thedelay metricDM as the delay in excess of
the best delayDmin

k achievable when the channel realization
is known in advance (which is a fundamental limit of the
channel), i.e.,DM = limk→∞ DMk where

DMk , E
[
Dk −Dmin

k

]
. (3)

III. S IMPLE RETRANSMISSIONPROTOCOLS

This section analyzes three relatively simple retransmission
(pure repetition) protocols. In such protocols, the transmitted
packetck is the concatenation of the source packetpk with
Nk − 1 previously transmitted source packets. With such
protocols, the throughput metricTM is the expected number
of times that each source packet is received.

A. Ideal Genie-Assisted System Performance

As a performance bound on delay and throughput, we first
examine a genie-assisted system in which the channel state is
revealed in advance to the transmitter.2 We later use the same

1Note that after the transmitter is sure that the receiver hasdecoded all the
information, transmission stops and from that moment onRj = Nj = 0, so
that the sum in the numerator of (2) is typically finite.

2Equivalently, one may assume that the state become known to the trans-
mitter immediately after each message is sent, corresponding to instantaneous
feedback.
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Fig. 2. Example of genie-assisted system operation withdc = 3.

framework to derive an achievable delay-throughput tradeoff
in the presence of feedback delay.

Given channel knowledge, the optimal strategy (even with-
out the restriction to simple repetition protocols) is to transmit
each source packetpk exactly once at the first instantt ≥ k the
channel is open. This achieves the minimum delay possible, so
DM = 0. Each packet is received exactly once, soTM = 1.
No scheme can achieve lower values for these metrics.

Fig. 2 gives an example. Packetp1 is sent and played
back immediately. Packetp2 is not sent at times2 and 3
due to channel blockages. However,p2, p3, p4 are successfully
transmitted together at time4. Packet p2 is played back
immediately, butp3 andp4 are buffered.

Examining the delay experienced by each packet, note that
Dk depends on the longest burst of zeros experienced so
far. Each time the longest burst of zeros lengthens, playback
is interrupted and the delay for all subsequent packets is
increased, such as at times6 and 7, and again at time12.
These interruptions will generally happen with decreasing
frequency. This is because, as we show next, the longest stretch
of blockage, as well as the delay experienced by the genie-
assisted scheme, grows likeO(log(k)).

Denoting byBk the longest stretch of continuous blockage
that startsat a time up tok, we have

Dmin
k = dc + 1 +Bk.
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In the example of Fig. 2,Bk = 3 for 6 ≤ k ≤ 12. Defining

P̄Bk
(b) , Pr{Bk ≥ b}, (4)

we have

E[Dmin
k ] =

∞∑

t=1

Pr{Dmin
k ≥ t} = dc + 1 +

∞∑

b=1

P̄Bk
(b), (5)

where the sum is due to computing expected values from
cumulative density functions for nonnegative integer random
variables. We now develop an upper bound on this sum for the
i.i.d. channel model, which is tight in the logarithmic sense.

Proposition 1: For an i.i.d. blockage channel sequence with
Pr{sk = 1} = ρ, we haveP̄Bk

(b) ≤ min(1, (1− ρ)bk).
Proof: The first term in the minimization,1, is trivial.

For the second term, in order to haveb consecutive zeros, the
channel sequence must take the form

∗ · · · ∗
︸ ︷︷ ︸

i

0 · · · 0
︸ ︷︷ ︸

b

∗ · · · ∗, for i = 0, 1, · · · , k − 1.

For each i, the probability of having a particular pattern
of this form is (1 − ρ)b. The probability of the union of
i = 0, 1, · · · , k − 1 is at most(1 − ρ)bk.

Although this method double counts some channel patterns
with multiple bursts of zeros, together with the upper bound
of 1, it provides an upper bound sufficient for our analysis. It
shows thatP̄Bk

(b) decays exponentially inb for a fixedk.3

Using Proposition 1 in (5), we obtain the upper bound

E[Dmin
k ] ≤ dc + 1 +

∞∑

b=1

min(1, (1− ρ)bk) (6)

≤ dc + 1 + log 1

1−ρ
k +

1− ρ

ρ
. (7)

Eq. (7) is obtained by breaking the summation to two parts,
the portion corresponding tob ≤ log1/(1−ρ) k in which the
summand is 1, and the remaining values ofb for which the
summand decays as(1 − ρ). To improve the bound, care is
taken in handling the fractional part oflog1/(1−ρ) k. 4 It is
easy to check that (7) holds with equality whenlog1/(1−ρ) k
is integer.

The bound (7) is tight up to a constant with respect tok.
Specifically, first using numerical evaluation, and then using
the inequality in (7), we obtain

E[Dmin
k ] ≥ dc + 1 + log 1

1−ρ
k +

1− ρ

ρ
−∆(ρ) (8)

≥ dc + 1 +

∞∑

b=1

min(1, (1− ρ)bk)−∆(ρ), (9)

where the constant∆(ρ) represents the slack in the bound.
It generally decreases withρ, and has the values shown in
Table I.

As we will see, the logarithmic behavior inDk holds not
only in this genie-assisted case, but in our general case of
interest involving delayed feedback of state information.

3For other channel types of interest,̄PBk
(b) likely also decays exponen-

tially in b for sufficiently largeb.
4Let 0 ≤ q < 1 be the fractional part oflog1/(1−ρ) k. The second part of

the summation in (6) sums to(1 − ρ)1−qρ−1. 0 < ρ ≤ 1 ⇒ (1 − ρ)−1 >
1 ⇒ (1− ρ)−q is convex. So(1 − ρ)−q ≤ 1 + ρ(1− ρ)−1q.

TABLE I
SLACK IN DELAY BOUND , ∆(ρ), EVALUATED NUMERICALLY

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
∆(ρ) 25.88 9.126 4.591 2.664 1.668 1.095 0.746 0.534 0.425

B. Optimizing Throughput

In a traditional ARQ protocol, after the transmitter sends a
packet, it waits for a full RTT, and only retransmits the packet
when it is certain that the previous transmission was lost, so
no packet can be received twice. Such a scheme achieves the
minimal TM of 1, but suffers a large delay due to the long
wait time between the retransmissions.

We consider an ideal selective-repeat ARQ scheme with
unlimited transmit and receive window size. A packetpk that is
blockedb times, i.e., at timesk, k+RTT, · · · , k+(b−1)·RTT,
suffers a delay of at leastdc+1+b·RTT instead ofdc+1+b as
in the genie-assisted case. The factor ofRTT leads toE[DK ]
growing asRTT · log1/(1−ρ) k, [cf. (7)], whenceDM = ∞.

C. Optimizing Delay: Send-Until-ACK (SUA)

As an alternative to ARQ, the send-until-ACK (SUA) pro-
tocol minimizes delay without regard to the cost in throughput
by repeatedly transmitting all packets generated so far at
every time unit until each such packet is acknowledged. SUA
achieves the lowest possible delay, as each source packetpk
is successfully transmitted at the first instant channelt opens
up on or after timek, which is the same as in the genie-
assisted case, soDM = 0. However, SUA is very wasteful
of bandwidth. The average number of times each packet is
received isTM = 1 + 2dcρ. There are always2dc additional
transmissions after the first successful one due to the feedback
delay; among those, on average2dcρ are received.

IV. EFFICIENT TRADEOFFS: MULTI -BURST

TRANSMISSION (MBT)

We now propose a multi-burst transmission (MBT) protocol
as a balance between the extremes of ARQ and SUA. It differs
from ARQ as follows. First, instead of transmitting a packet
only once and waiting a full RTT, a packet is repeatedly
transmitted one or more times in a burst of consecutive time
units. After each burst, the transmitter waits a full RTT to
see whether any of the transmissions made it through. Each
burst should be no longer than a full RTT. If not successful,
additional bursts are attempted, up to a total ofNTB, where
NTB is a design parameter. If all the bursts fail, the transmitter
goes into SUA mode, i.e., repeatedly transmitting that packet
until it is acknowledged. The motivation is to prevent overly
long delays. Since the overall delay is determined by the
fate of the most unfortunate packet, once a packet suffers
repeated blockages, extra resources are spent to expedite its
delivery. This incurs minimal degradation inTM, however,
since relatively few packets enter SUA mode.

Each MBT scheme is fully characterized by the vector of
burst lengthsv = [v1, v2, · · · , vNTB

]. For example,v = [2, 4]
anddc = 10 means packetpk is transmitted at timesk, k+1 in
the first burst. If both are lost, then a fullRTT = 2dc+1 = 21
later,pk is transmitted atk+22, k+23, k+24, k+25. If all four
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are lost, thenpk is transmitted continuously starting at time
k+46 until an ACK is received. This retransmission schedule
is carried out for all packets independently and simultaneously.
For example, at time26, p1, p2, p3, p4, p25, p26 may all be
(re)transmitted.

To evaluate the delay, see that in the above example, after
the first transmission is lost, it delays the reception ofpk by
1. After the second transmission is lost, however, it incursa
delay of a full RTT, i.e., 21. We definewb as the time between
the bth and(b+1)st transmission. In the above example, with
w denoting the vector of such inter-transmission times, we
havew = [1, 21, 1, 1, 1, 21, 1, 1, · · · ]. (For SUA,wb ≡ 1; for
ARQ, wb ≡ RTT.) Using techniques similar to those used to
obtain (6), the average delay can be bounded by

E[Dk] ≤ dc + 1 +

∞∑

b=1

min(1, (1− ρ)bk) · wb, (10)

wheremin(1, (1−ρ)bk) is the union bound on the probability
thatanyone of thek packets hasall of its first b transmissions
blocked. Subtracting (9) from (10), we have

DMk ≤
∞∑

b=1

min(1, (1− ρ)bk) · (wb − 1) + ∆(ρ)

≤
∞∑

b=1

(wb − 1) + ∆(ρ). (11)

Similar to the genie-aided case, numerical evidence suggests
that the inaccuracy in the union bound approximation is small
and (11) is close to holding with equality. This provides an
important intuition:DM is approximately the total amount of
non-transmission times.

For MBT, only NTB elements ofw are larger than1, and
they all equalRTT = 2dc + 1. Therefore, we have

DM ≈ 2dcNTB. (12)

We now turn to the problem of designing the burst length
vectorv to minimizeTM given a targetDM. From the anal-
ysis above, given a targetDM, a total ofNTB ≈ DM/(2dc)
bursts are required. We optimize theNTB elements ofv by
induction. To this end, we defineτ(v) to be theTM associated
with an MBT scheme with burst length vectorv. It can be
shown that

τ(v) = ρv1 + (1− ρ)v1 · τ(vend
2 ), (13)

wherev1 is the first burst length, andvend
2 denotes the vector

of remaining entries inv. The intuition is that the first burst of
v1 transmissions always happen; among those,ρv1 many will
be received on average. The probability of allv1 transmissions
being blocked is(1 − ρ)v1 ; conditioned on this,τ(vend2 )
transmissions are expected to be received. This induction takes
advantage of the full RTT wait time between bursts, so after
a burst completely fails, there is a “clean restart.” The initial
condition of the induction isτ(∅) = 1+ 2dcρ, corresponding
to doing SUA alone. The elements ofv can be optimized one

at a time starting fromvNTB
working backwards:

vn = argmin
vn

τ(vend
n )

= argmin
vn

ρvn + (1− ρ)vn · τ(vend
n+1)

= ⌊log1/(1−ρ) τ(v
end
n+1)⌋+ 1. (14)

In the case ofdc = 10 and 0.44 ≤ ρ ≤ 0.56, the optimal
burst lengths arevNTB

= 4, vNTB−1 = 2, andvNTB−2 = · · · =
v1 = 1. This solution suggests that when the allowableDM
is sufficiently large, we should first do ARQ. AfterNTB − 2
transmissions, we get close to the allowable delay, we should
then do a longer burst of2 and then an even longer burst of
4. Should all those fail, we send continuously until ACK is
received. When channel blockage is less frequent, i.e., larger
ρ, the optimal MBT burst lengths are shorter, i.e., more “ARQ-
like.” For example, when0.62 ≤ ρ ≤ 0.75, the optimal burst
lengths arevNTB

= 3, andvb = 1 for b < NTB.
From (12) we see that it is straightforward to achieve

DM values that are integer multiples of2dc. To achieve
intermediateDM values, we shrink the wait time between the
last burst and the SUA region byα time units,0 ≤ α ≤ RTT,
down toRTT−α. All earlier wait times between bursts are still
fixed atRTT. With this generalization,DM ≈ 2dcNTB − α,
capable of taking any non-negative integer value. For TM,
the induction in (13) remains the same except at the end
when there is only one burst left. Letτ(vNTB

;α) be theTM
associated with doing a single burst of lengthvNTB

, wait for
RTT− α, and then doing SUA. It can be shown that

τ(vNTB
;α) =ρ ·max(vNTB

, α) + (1− ρ)max(vNTB
,α)−α

+ (1− ρ)vNTB (2dc − α)ρ. (15)

Eq. (15) suggests that the optimalvNTB
should be at leastα

so that the third term is minimized without affecting the first
two terms. WithvNTB

≥ α,

τ(vNTB
;α) = ρvNTB

+(1−ρ)vNTB

(
(1 − ρ)−α − αρ+ 2dcρ

)
.

(16)
Similar to (14), the optimalvNTB

can be computed using
⌊log1/(1−ρ) ((1− ρ)−α − αρ+ 2dcρ)⌋ + 1. After computing
the resulting minimalτ(vNTB

;α) and using it in place of
τ(vNTB

), vNTB−1, . . . , v1 may be obtained via the induction
using (14).

The delay-throughput performance of the optimized MBT
protocol is shown by the lower curve in Fig. 3. It shows a
steep initial decline inTM: allowing a little excess delay
(small DM) leads to dramatic bandwidth savings. But addi-
tional delays provide diminishing returns. The upper curvein
Fig. 3 corresponds to the(DM,TM) pairs achievable using
a truncated ARQ scheme that simply switches from ARQ to
SUA after a prescribed time, which is essentially a special
case of the MBT scheme with all burst lengths equal to1.
Earlier switching leads to lowerDM and higherTM. The gap
between the two curves shows that there is a significant benefit
to doing bursts rather than doing single retransmissions. The
genie-assisted and SUA cases are also shown for comparison.

A fundamental property of the MBT protocol is that when a
packet delivery gets close to its “deadline”, more resources are
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Fig. 3. The delay-throughput tradeoff for optimized MBT andtruncated
ARQ, compared to the genie-assisted bound and to the SUA scheme. ARQ
performance is not shown, since it yieldsDM = ∞. The channel is i.i.d.
with ρ = 0.5 anddc = 10.

spent to improve the chance of packet delivery, in particular,
channel bandwidth resources. This approach could have more
general application. In other systems, it is possible that other
resources or mechanisms could be used to improve the chance
of packet delivery, such as increasing power, reducing rate, etc.

A. Robustness of the MBT Solution

The optimization of the MBT burst-length vectorv pre-
sented above requires the knowledge of the channel parameters
ρ and dc. In certain situations, these parameters may not be
known exactly. Therefore, it is desirable to identify solutions
that would achieve near-optimal performance for a wide range
of channel parameter values.

We first show that simply knowing whether the channel
is lightly, moderately, or severely blocked would allow us
to choose a burst-length vector that is near-optimal for that
operating environment. Fig.4(a) shows theTM achieved as a
function of ρ for three 2-burst MBT schemes whendc = 10.
All 2-burst MBT schemes achieve about the sameDM of 4dc,
so the lower theTM the better. The black dashed curve at
the bottom is the lowestTM achievable whenv is optimized
for each ρ assuming it is known exactly. The three burst-
length choices,v = [1, 2] (blue +), v = [2, 4] (green◦),
and v = [4, 8] (red ×), are optimal forρ = 0.8, 0.5, and
0.2, respectively, representing lightly, moderately, and severely
blocked conditions. Fig.4(a) shows that each of the solutions
is near-optimal over the broader (colored) range ofρ values
for which it is intended. The worst case gap to the optimal
TM is only 0.13.

Alternatively, if the operator expectsρ to be within a
particular range,v may be optimized in a minimax sense,
guaranteeing a worst-case performance. For example, ifρ is
between 0.5 and 0.8,v = [1, 4] yields a sub-optimality inTM
of no more than0.19 in this range.

If a single solution were desired for allρ from 0 to 1, for
the case ofdc = 10, v = [2, 7] achievesTM ≤ 2 for all
ρ, with TM = 2 at ρ = 1. While this solution has a wide
range of applicability, it is highly suboptimal whenρ is close
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Fig. 4. Throughput metric (TM) achieved using three 2-burstMBT schemes
intended for severe (red), moderate (green), and light (blue) blockage condi-
tions for ρ from 0.01 to 0.99 anddc being (a)10 (b) 5 and20.

to 1. It is possible that when no prior information onρ is
available, a system may start operating with such a solution
and then dynamically switch to a better choice ofv based on
the measured erasure probability.

The optimalv generally depends on the channel delaydc.
Fig. 4(b) shows the performance of the three solutions when
the channel delay changes from10 to either5 or 20. When
the channel delay is smaller, lowerTM can be achieved, as
the τ(∅) = 1 + 2dcρ term associated with the SUA region
is smaller. Whendc = 5, the same three solutions still work
rather well, achieving a maximum gap to the optimalTM of
0.07; although a slightly smaller gap of 0.05 is possible with
shorter bursts ofv = [1, 2], [2, 3], and [3, 5]. Whendc = 20,
the maximum gap increased to nearly0.5 aroundρ = 0.1. A
much smaller gap of0.33 is achievable with longer bursts of
v = [1, 3], [2, 5], and [5, 10]. We see, then, that the solutions
are more robust todc that is lower than expected than to one
that is higher. Therefore, when optimizingv, the designer may
want to assumedc that is on the large side.

When there is uncertainly in bothρ and dc, v may be
optimized in a minimax sense with respect to both variables.

B. Optimality of the MBT Solution

Besides the multi-burst transmission scheme, there are many
other ways of scheduling retransmissions. For example, one
may choose to retransmit every three time units for 10 times
and then switch to SUA. In this section, we show that the
MBT solution is near-optimal in terms of delay-throughput
tradeoff in the class of all retransmission schemes with afixed
schedule, i.e., the same retransmission schedule is used for all
packets.

Every retransmission scheme with a fixed retransmission
schedule is characterized by a retransmission time vec-
tor x = [x1, x2, x3, · · · , xNx

], with Nx non-negative strictly-
increasing integer entries. Each packetpk is first transmitted
at timek+x1, then retransmitted at timesk+x2, k+x3, · · · ,
k + xNx−1, and finally enters the SUA mode starting at time
k + xNx

. Retransmission stops when the acknowledgment is
received. For the MBT example withv = [2, 4] anddc = 10,
we havex = [0, 1, 22, 23, 24, 25, 46].

To lower bound theTM achieved by any schedule, we
consider a hypotheticalbatch-feedbackmodel. We divide all
transmissions into consecutive batches, each beingRTT =
2dc + 1 long, until the SUA region. For packetpk, the n-th
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batch is all its transmissions from timek + (n− 1) ·RTT to
time k+n ·RTT−1, for n ≤ ⌈xNx

/RTT⌉. Let un denote the
size of then-th batch and letu denote the batch length vector
u = [u1, u2, u3, · · · , uNu

] with lengthNu = ⌈xNx
/RTT⌉. In

the above example,u = [2, 4, 17].
In the batch-feedback model, the feedback corresponding

to all un transmission in then-th batch become available at
the transmitter at the end of then-th RTT, k + n · RTT− 1.
If any of the un transmissions is successful, the(n + 1)-th
batch does not need to take place; ifall un transmissions are
blocked, the entire(n+1)-th batch must be transmitted. Since
the batch-feedback model advances some of the feedback,
allowing retransmissions to terminate earlier, it provides a
lower bound to the throughput metric.

TheTM achieved with batch-feedback can be evaluated in
a manner similar to that used to obtain (13). Letγ(u) be the
TM associated withu using the batch-feedback model, we
have

γ(u) = ρu1 + (1− ρ)u1 · γ(uend
2 ), (17)

with γ(∅) = 1+ 2dcρ corresponding to the SUA region after
the last batch.

TheDM achieved can be approximated using the conclusion
from (11), i.e.,DM is approximately the total amount of non-
transmission times, we have,

DM ≈

Nu∑

n=1

RTT− un = NuRTT−
∑

u. (18)

Note that with the batch-feedback model, for bothTM and
DM, the exact locations of theun transmissions in thenth
batch do not matter, only the number of transmissions matters.

To obtain the lower bound on theTM achievable at a partic-
ularDM by any retransmission scheme with a fixed schedule,
we need to minimizeγ(u) subject toNuRTT−

∑
u = DM.

The minimization is overNu, the number of elements inu,
and all elements ofu, each being an integer between0 and
RTT, inclusive.

This search space can be reduced. First of all, the optimal
u should not have any zero elements. Removal of any zero
element inu reducesDM by RTT while TM remains the
same. Consequently, each element of an optimalu must be at
least1, andNu ≤ DM.

To further limit the search space, we note that to reduceTM
the elements of an optimalu must be nondecreasing, i.e., the
batches should not shrink. More specifically, if there are two
neighboring elements whereui > ui+1 > 0, then swapping
them strictly reducesTM while maintainingDM. This can be
shown by combining two levels of the induction in (17) and
then showing(1 − (1− ρ)u)/u decreases foru > 0

We perform the minimization ofγ(u) via exhaustive search
for each value ofDM. In Fig. 5(a), the resulting inner-bound in
delay-throughput tradeoff (red∗) is compared with the tradeoff
achieved by the MBT scheme (green◦), for the case ofρ = 0.5
anddc = 10. As the figure shows, the MBT scheme is at least
near-optimal for the given channel parameters.5

5In this example, we observed that the optimal MBT solutionv often
matches the optimal batch-feedback solutionu; it appears that for most values
of DM, the MBT solution is indeed optimal, the gap is due to the batch-
feedback model being overly-optimistic in computingTM.
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Fig. 5. The delay-throughput tradeoff achieved by the MBT scheme
compared to the batch-feedback inner bound achievable by any retransmission
scheme with a fixed schedule. The channel is i.i.d. withρ = 0.5 anddc = 10.

For other channel parameter values, the gap between the
MBT scheme and the batch-feedback inner bound increases
with decreasingρ and decreasingdc. When the channel
blockage is more severe, longer bursts are needed to improve
the probability of a successful burst. When the burst length
becomes comparable to the round trip time, the batch-feedback
model deviates substantially from the true model. Fig. 5(b)
shows the results for theρ = 0.2 and dc = 5 case. The
gap is significantly wider. Furthermore, we identified specific
instances where the MBT solution is indeed not optimal,
although the suboptimality inTM is very small.6

V. CODED PROTOCOLS

In this section we suggest simple coded enhancements to the
preceding retransmission protocols. The schemes we consider
utilize the idea of encoding by computing random linear
combinations of packets (similar to what is done in at least
some implementations of network coding; see, e.g., [14]). In
particular, at its simplest, any basic repetition protocol(see
sections III and IV) can be augmented with coding, as follows.

At each time where the scheme calls for transmission of
packetpk, it is replaced by a linear combinationyk of all pack-
etspj , j ≤ k (which has sizeR, same aspk). Assume that we
draw the combination coefficients in an i.i.d. manner for each
transmission (thus also independent between replacementsof
the samepk). We take the coefficient alphabet to be large with
respect to the number of participating packets. This number,
in turn, does not have to be as large as the stream durationk:
packets that the transmitter knows that were already decoded
may be excluded without affecting performance, thus the
number of packets that should be considered grows at most as
Dk, which we know that can be made to grow logarithmically.
Under these assumptions, a packetk can be decoded as soon as
for somek′ ≥ k, k′ independent linear combinations that are
function of packets up tok′ arrive. The random combinations
can be replaced by a structured code, see [11].

The performance of any such coded scheme is always at
least as good as that of its base retransmission protocol, since
by our definition of delay a packet must wait for all previous
packets, thus the linear combination can always be undone.
The gain provided by coding is that ifpk has been decoded

6For the case ofρ = 0.2, dc = 5, targetDM = 15, the MBT solution,
burst 4 - wait 10 - burst 7 - wait 5 - SUA, achievesTM = 1.790; an alternative
solution, burst 4 - wait 9 - burst 7 - wait 6 - SUA, achievesTM = 1.788.
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Fig. 6. The delay and throughput performance achieved by a two-burst MBT
protocol withv = [2, 4], as a function of the packet indexk, with and without
coding. The channel is i.i.d. withρ = 0.5 anddc = 10.

already,yk may be used to contribute towards decoding one
of the earlier packets.

While the analysis of this coding gain is difficult, the gains
can be quantified by simulation. To that end, we compare
a particular scheme and its coded version under an i.i.d.
channel withρ = 0.5 and dc = 10. We choose the two-
burst MBT protocol described in Section IV withv = [2, 4].
For each scenario, simulations were performed usingk up
to 105 packets and 500 Monte Carlo trials to obtain suitable
statistical averaging. For each run,Dk was recorded. Using
the same channel sequence, the genie-assisted delayDmin

k

was also evaluated. The difference,Dk − Dmin
k , was then

computed. Averaging over all runs leads to an estimate of
E[Dk], E[Dmin

k ], and DMk. TM is obtained by counting
packets received.

Fig. 6(a) showsE[Dk] and DMk. The dotted line at the
bottom is the delayE[Dmin

k ] achieved by the genie-assisted
system. The dashed curves representE[Dk] achieved by the
uncoded and coded schemes. They both have the same limiting
slope as the dotted curve. The solid curves are delay metrics,
which are the differences betweenE[Dk] andE[Dmin

k ]. They
both become flat and reach a final value (ask → ∞). The
red (×) curves are noticeably lower than the blue(+) ones,
indicating the advantage of coding at all values ofk.

Fig. 6(a) also shows how delay behaves at finitek. Though
both E[Dk] and E[Dmin

k ] grow to infinity as k → ∞,
their finite difference,DMk, is significant for finitek values
of interest. For example, when1TU = 20ms, k = 105

corresponds to33 minutes. At this point,E[Dmin
k ] is 0.54

sec (best possible), andE[Dk] achieved by the uncoded and
coded two-burst MBT are1.36 sec and1.21 sec, respectively.
The differences are noticeable to end users.

Fig. 6(b) plotsTMk as a function ofk together with the
one standard deviation spread (dotted curves). It showsTM
is indeed constant ink in the uncoded case (top curve). With
coding, for largek, TM improves significantly, from1.67 to
1.45, closing about a third of the gap to the minimumTM of
1. Whenk is smaller, there is less gain. Whenk = 1, there is
no coding gain, as there is no coding to perform.

Table II shows theDM and TM achieved by a range of
MBT retransmission protocols and their coded counterparts.
The worst-case one-standard deviation of theDM and TM
values are 0.13 and0.0005, respectively. The simulation values

TABLE II
DM AND TM ACHIEVED FOR MEMORYLESS CHANNEL WITHρ = 0.5

Retransmission Retransmission Coded
Analytical Simulation Simulation

v DM TM DM TM DM TM
[4] 20 2.6875 20.51 2.6868 13.93 2.1563

[2,4] 40 1.6719 40.88 1.6718 33.80 1.4505
[1,2,4] 60 1.3359 60.88 1.3358 55.89 1.2422

[1,1,2,4] 80 1.1680 80.87 1.1680 77.68 1.1309
[1,1,1,2,4] 100 1.0840 100.95 1.0841 98.76 1.0709

are evaluated atk = 105 as an approximation tok → ∞.
The simulation results for the uncoded retransmission schemes
closely match the analytical values. In particular,TM matches
to three decimal places; theDM simulation values are within
the range of∆(0.5) = 1.67 above the analytical values.

Comparing the coded schemes to their uncoded counter-
parts, coding improves bothDM and TM. Also, there is a
greater improvement for schemes with fewer bursts (smaller
DM). This is because whenNTB is large, MBT generally
starts with an ARQ phase of single transmissions. Since the
form of coding we consider does not help with ARQ, typically
MBT schemes do not benefit from coding whenDM is large.

VI. PRACTICAL CONSIDERATIONS

We now consider some variations of the idealized model and
metrics defined in Section II, in order to account for some
issues encountered in practice. Specifically, we concentrate
on cases where the instantaneous bandwidth is constrained,
the delay is constrained (thus packet dropping is allowed),or
both. The MBT approach has good performance under these
conditions as well, as we verify empirically.

A. MBT with Limited Peak Bandwidth

As mentioned earlier, MBT consumes data bandwidth in a
dynamic way, sending more retransmissions when the channel
is blocked more frequently and less when the channel is
better. In the baseline version of the scheme discussed so far,
while we aim to reduce the average bandwidth consumption,
there is no peak bandwidth constraint. However, in reality,
a transmitter can only transmit a certain maximum number
of packets each time unit. In this section, we first show the
distribution of the number of packets being transmitted at each
time unit in the baseline MBT, then we modify the protocol
to work with the peak bandwidth constraint and evaluate its
performance.

Fig. 7(a) shows the histogram of the number of packets
sent each time unit for the baseline MBT withv = [2, 4],
dc = 10 and ρ = 0.5, using about106 samples. The mean
of the empirical distribution is 3.34, in agreement with the
theoretical valueTM/ρ = 1.67/0.5, the expected number
of times each packet is transmitted. Since every packet is
always first transmitted twice, the minimum number of packets
transmitted each time unit is at least 2. We see that 2 and 3
are common, and beyond that the histogram decays quickly.
The probability for sending over4 packets at a time is less
than1/6, and that for sending over8 is only 0.005. The low
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Fig. 7. Histogram of the number of packets sent each time unitfor MBT
with v = [2, 4]. The channel is i.i.d. withρ = 0.5 anddc = 10.

probability at high instantaneous load motivates the following
simple limited-bandwidth modification to the baseline MBT.

First, all packet transmissions are scheduled according tothe
baseline MBT. Suppose onlyNmax packets can be transmitted
each time unit. When the baseline MBT calls for more than
Nmax packets to be transmitted at a certain time, only the
Nmax oldest packets (with the smallest packet IDs) are trans-
mitted. The remaining relatively newer packets are postponed
to the next time unit. A packet can be postponed as many times
as needed until transmission can be performed or the packet
is acknowledged. When postponing a particular packet, we
must postpone all the future scheduled transmissions of that
packet. This ensures that the wait time between transmissions
is long enough. For example, forv = [2, 4], dc = 10, p100 is
scheduled to be transmitted at times100, 101, 122, 123, 124,
etc.. Suppose after the initial transmission, the retransmission
at 101 cannot take place, then the new future retransmission
schedule forp100 becomes102, 123, 124, 125, etc.

In order to evaluate the performance of this modified MBT
protocol for limited peak bandwidth, we perform simulation
for MBT with v = [2, 4], dc = 10 and ρ = 0.5, with
Nmax = 8 and4. The resulting histogram for the limit-8 case
is nearly identical to the unconstrained case except without
the tail beyond8 and a slightly increased value at8. The
limit-4 histogram is shown in Fig 7(b), the probability of
using the maximum load is0.6, i.e., the bandwidth constraint
is significant. In both cases, the mean of the distribution
remain as in the unconstrained case, as almost all postponed
transmissions are eventually performed.

Fig. 8 compares the delay performance of various scenarios.
The three dashed curves correspond to scenarios with no band-
width limit, which confirm our earlier results. In particular,
the genie/SUA and MBT cases (bottom two) have slopes of
approximately1 per factor of1/(1− ρ) = 2 as shown in (7),
while the slope in the ARQ case (uppermost curve) is around
RTT as discussed in Section III-B. The two solid curves show
the impact of bandwidth limit. While the limit-8 case is only
slightly worse than the unconstrained case, the limit-4 delay
starts to deviate aroundk = 200 and shows an empirical slope
around8. Although the degradation is significant, the delay
is still much less than the ARQ case. We observed that one
significant contribution to the increased delay is that when,
for example,5 packets enter the SUA stage, but only4 can
be transmitted simultaneously, so the fifth packet has to be
postponed nearly a RTT.
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Fig. 8. Expected delay as a function of packet number, k, for ARQ and MBT
with various bandwidth limits, as well as the optimal genie/SUA performance.
The channel is i.i.d. withρ = 0.5 and dc = 10. Slopes are measured from
k = 103 to k = 105.

B. MBT with Maximum Delay

The MBT scheme discussed so far attempts to deliver
all packets, where a single packet that is not received may
delay the playback indefinitely. In practice, for real-time
applications, after a packet has been delayed beyond a certain
threshold, it is no longer useful and should be considered lost.

In this section, we propose a variation on the MBT protocol
that achieves a required maximum delayµ while maintaining
a packet loss rateǫ. This maximum delay requirement differs
from DM in that it is the maximum rather than the expected
delay, so users have guaranteed performance. Also, the delay
requirement does not grow with the message length, as the
expected delay achieved by the genie-assisted scheme does.

The variation we suggest is “truncated MBT”, i.e., retrans-
mission of a packet stops after a pre-determined number of
bursts. Accordingly, truncated MBT is characterized, similar
to the original MBT scheme, by the burst length vector
v = [v1, v2, · · · , vNTB

], except the bursts arenot followed
by an SUA period. Since each packet may be transmitted up
to Sv ,

∑i=NTB

i=1 vi times, the packet loss rate achieved is
ǫa = (1 − ρ)Sv . Since the last retransmission ofpk occurs
at k + Sv + 2dc(NTB − 1) − 1, the maximum packet delay
achieved isµa = Sv+2dc(NTB−1)+dc. The receiver would
wait for packetpk up to timek + µa and declare it lost.

Therefore, given a pair of requiredµ andǫ, we can set the
sum and length ofv as follows:

Sv =
⌈
log1−ρ ǫ

⌉
, (19)

NTB =

⌊
µ+ dc − Sv

2dc

⌋

. (20)

Of all such vectorsv, the one that leads to minimum
TM is desired. The computation ofTM for a givenv can
be performed using the recursion (13), with initialization
τ(∅) = 0 (reflecting no SUA region). However, due to the
additional constraint on the sum ofv, the optimization is more
complicated than that in Section IV. Nevertheless, a numerical
search may be performed whenNTB is sufficiently small.

Consider the channel withdc = 10 and ρ = 0.5, used in
earlier examples. Suppose the requirements areµ = 40 ≈
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2RTT and ǫ = 0.02. Using (19) and (20), we obtainSv =
6 and NTB = 2. Numerical optimization yieldsv = [2, 4],
and the resultingTM is 1.5. This truncated MBT can achieve
µa = 36 < 40 and ǫa = 0.56 = 0.016. We thus see that in
this channel, which is too severe for ARQ schemes to handle,
the MBT scheme is able to achieve a reasonable set of delay,
packet loss rate, and average bandwidth consumption.

C. MBT with Limited Peak Bandwidth and Maximum Delay

The case where there are both limited peak bandwidth and
maximum delay constraints can be treated by implement-
ing both techniques presented in the previous two sections
must be implemented, i.e., transmit-older postpone-newerand
truncated-MBT. Due to the combination it is possible that
some retransmissions for packetpk may be postponed beyond
k + µa so that the receiver would not wait for it. To save
bandwidth, the transmitter does not repeatpk after time
k + µa − dc − 1. As some packets may have fewer thanSv

chances to go through the channel, the resulting packet loss
rateµa may increase. Ifµa no longer meets the requirement,
the designer may choose to perform a combination of 1)
increase the maximum delayµa to allow some transmissions to
be postponed a few times before declared lost, 2) increase the
peak bandwidth constraintNmax so fewer transmissions need
to be postponed, or 3) increaseSv (andTM) so each packet
may be transmitted more times. Essentially, the designer’stask
is to jointly minimizeµa, ǫa, Nmax andTM.

Continuing with the example in the last section, Fig. 9
shows the expected delay and packet loss rate as functions of
the message lengthk. The solid curve shows that without peak
bandwidth constraint,µa = 36 and ǫa = 0.016 are achieved
as calculated in Section VI-B. Since the average bandwidth
requirement isTM/ρ = 1.5/0.5 = 3, the designer may choose
a peak bandwidth constraint ofNmax = 4. The dotted curve
shows that withNmax = 4 and µa = 36, the packet loss
rate rose toǫa = 0.028, which is higher than the requirement
of 0.02. Noticing that theµa is still less than the required
40, the designer chooses option 1) and increasesµa to 40 to
allow some packets to be postponed up to four times and get
Sv chances. The dashed curve shows that withNmax = 4 and
µa = 40, ǫa is reduced to0.018, which meets the requirement.

Of course, the strategy presented here is not the only way for
the receiver to decide to drop a packet (and for the transmitter
to stop retransmitting). Nevertheless, it is one of the simplest.

VII. C ONCLUDING REMARKS

We studied the problem of real-time streaming over block-
age channel with long feedback delay. We showed that a
practical multi-burst transmission scheme, blending ARQ and
SUA, achieves anO(log(k)) delay that is only an additive
factor worse than a genie-assisted system. The MBT scheme
achieves a particular delay-throughput tradeoff by varying its
design parameters, from which we see that relaxing delay
requirements even slightly can significantly reduce bandwidth
requirements. We showed that the MBT solution is robust to
channel parameter knowledge inaccuracy and that it is also
near optimal in terms of delay-throughput tradeoff in the class
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v = [2, 4].

of fixed-schedule retransmission schemes. The framework was
also used to evaluate the benefit of coding via simulations.
Coding improves both delay and throughput, especially in
the low delay regime. We also show that the proposed MBT
schemes may be modified to work with limited bandwidth
and maximum delay constraints. While this study focused on
the i.i.d. channel case, our initial results on the channel with
memory case is reported in [10].
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