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Abstract

We consider the issue of network routing subject to explicit fairness conditions. The
optimization of fairness criteria interacts in a complex fashion with the optimization of
network utilization and throughput; in this work, we undertake an investigation of this
relationship through the framework of approximation algorithms.

In a range of settings including both high-speed networks and Internet applications,
max-min fairness has emerged as a widely accepted formulation of the notion of fairness.
Informally, we say that an allocation of bandwidth is max-min fair if there is no way to
give more bandwidth to any connection without decreasing the allocation to a connection
of lesser or equal bandwidth. Given a collection of transmission routes, this criterion
imposes a certain equilibrium condition on the bandwidth allocation, and some simple
flow control mechanisms converge quickly to this equilibrium state. Indeed, the vast
majority of previous work on max-min fairness has focused on this issue of associating
rates with connections that are specified by a fixed set of paths. Very little work has been
devoted to understanding the relationship between the way in which one selects paths
for routing, and the amount of throughput one obtains from the resulting max-min fair
allocation on these paths.

In this work we consider the problem of selecting paths for routing so as to provide a
bandwidth allocation that is as fair as possible (in the max-min sense). We obtain the first
approximation algorithms for this basic optimization problem, for single-source unsplit-
table routings in an arbitrary directed graph. Special cases of our model include several
fundamental load balancing problems, endowing them with a natural fairness criterion to
which our approach can be applied. Our results form an interesting counterpart to earlier
work of Megiddo, who considered max-min fairness for single-source fractional flow. The
optimization problems in our setting become NP-complete, and require the development of
new techniques for relating fractional relaxations of routing to the equilibrium constraints
imposed by the fairness criterion.
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1 Introduction

Fairness in routing. A basic problem in network optimization is the efficient routing of
traffic between pairs of terminal nodes that wish to communicate. One of the fundamental
notions that arises in such a setting is that of fairness; we want to allocate bandwidth to the
connections in a way that does not unnecessarily “starve” any of them. Although it is an
intuitively natural concept, finding a concrete definition of fairness that captures the goals of
efficient routing is a subtle issue — we wish to prevent starvation of individual connections in
a way that allows all connections the opportunity to receive as large a bandwidth allocation as
possible.

An elegant framework that has gained wide acceptance in the networking community is the
notion of max-min fairness [2, 5] — it forms the basis for bandwidth allocation in both high-
speed networks and a range of Internet applications. It is defined via a type of equilibrium:
An allocation of bandwidths, or rates, to a set of connections is said to be max-min fair if it is
not possible to increase the allotted rate of any connection while decreasing only the rates of
connections which have larger rates. In other words, no connection can increase its bandwidth
at the expense of connections which are better off than it is. This turns out to be equivalent to
another natural definition of fairness — that the list of allotted rates, when sorted in increasing
order, is lexicographically as great as possible. This lexicographic definition allows one to
directly compare different bandwidth allocations, and speak of the fairest allocation.

The vast majority of work on max-min fairness has focused on the setting in which connec-
tions are specified by a fixed set of paths, and one wants to associate rates with these paths. It
is easy to show that the max-min fair allocation for a fixed set of paths is unique, and a number
of simple, efficient algorithms have been developed to compute this allocation (e.g. [1, 2, 5]).
A wide range of network routing protocols employ such algorithms to enforce max-min fair-
ness (or a close approximation) on the paths used for routing connections. Note that all of
this takes place, however, after the paths themselves have been chosen; very little work has
been devoted to understanding the relationship between the way in which one selects paths for
routing, and the amount of throughput one obtains from the resulting fair allocation on these
paths. Suppose we want to select paths for routing so as to provide a bandwidth allocation that
is as fair as possible (in the max-min sense); how should we go about doing this? Megiddo [12]
addressed this problem in the setting of single-source fractional flow, in which flow must be
sent fractionally to a collection of terminals from a common source, and provided an elegant
polynomial-time algorithm.

In this work, we consider the setting in which each connection must be routed on a single
path — i.e. we seek an unsplittable flow. The single-source case here presents qualitatively
new issues from those encountered in Megiddo’s setting, for we can show that the fundamental
analogue of his problem is now NP-complete. A number of basic load balancing problems
arise naturally as special cases of this single-source unsplittable flow model. We obtain the
first approximation algorithms for the problem of optimizing over path selection to provide the
fairest possible routing. The issues that arise in this framework turn out to involve a number
of interesting and very basic trade-offs between the throughput and the type of equilibrium
constraints imposed by max-min fairness.

We now provide a concrete formulation of these optimization problems, and then summarize
our results in more detail.
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Formulating the problem: Max-min fairness and approximation guarantees. We
seek routings from a common source node to a collection of terminals in a network. A routing,
in the present framework, consists of two components — the choice of paths that the traffic
will use, and the allocation of available bandwidth on these paths to the different connections.
Thus, let G = (V, E) be a directed graph with a capacity ce ≥ 0 on each edge. We designate a
source s ∈ V and a set of terminals t1, . . . , tk ∈ V . A routing of the terminals consists of a set of
paths {P1, . . . , Pk} — with Pi a path from s to ti — and an allocation vector r = (r1, r2, . . . , rk).
We view the s-ti connection as being assigned path Pi, with bandwidth allocation, or rate, ri.
We say that this routing is feasible if, for all edges e, the total bandwidth allocated for paths
using e is at most ce; that is, the sum of ri over all Pi containing e is at most ce.

One can derive max-min fairness from the following intuitive approach to finding the
“fairest” allocation: One should first make sure that the minimum bandwidth given to any
connection is as large as possible; then, ignoring this “minimum” connection, one should make
sure that the minimum bandwidth given to any of the connections that can still get additional
bandwidth is as large as possible; and so on. More formally, given two k-tuples of numbers
z = (z1, . . . , zk) and z′ = (z′1, . . . , z

′
k), each in non-decreasing order, we say that z lexicographi-

cally dominates z′ if z = z′, or there is some index j for which zj > z′j and zi = z′i for all i < j.
Given two allocation vectors r and r′, we say that r is as fair as r′ (written r′ � r) if the sorted
order of the coordinates of r lexicographically dominates the sorted order of the coordinates in
r′. We will say that r and r′ are equivalent if both r′ � r and r � r′. This relation defines a
total order on the equivalence classes of allocation vectors; the vectors in the unique maximal
equivalence class under � are thus the fairest allocations.

One can also use the following equivalent definition of a routing with allocation vector r being
“fairest” in the max-min sense: There is no way to increase any entry ri without decreasing
some other entry rj such that rj ≤ ri.

As we discussed above, max-min fairness in the networking community has been applied
primarily to the setting in which one is given not only a set of connections in a network, but also
the paths {Pi} that they are to use. Thus the only issue is to determine the allocation vector,
which is unique in this case; and this can be accomplished by a variety of efficient algorithms
(see e.g. [1, 2, 5]). Network protocols that employ max-min fairness thus enforce the following
max-min equilibrium condition:

(†) For any routing with paths {Pi} and allocation vector r, r must be a fairest
allocation given the paths Pi.

The crucial issue raised in the discussion above is then the following. We wish to choose paths
for routing a set of connections, with the bandwidth allocation vector then uniquely determined
by the equilibrium condition (†). The amount of bandwidth utilization in a fairest allocation
depends heavily on the set of paths {Pi} that one chooses; some choices of paths allow for much
greater fair utilization of the network than others. The fundamental question we seek to address
is that of determining the fairest routing, optimizing over all possible choices of paths, with the
allocation vector determined by (†). For example, does the fairest routing achieve the maximum
possible throughput of any routing? This was the precise problem considered by Megiddo [12]
in the context of the single-source fractional flow problem, in which all connections share a
common endpoint, but one can divide the flow for a single connection fractionally over many
paths. In addition to providing a polynomial-time algorithm for computing a fairest routing,
he showed that the fairest flow is a maximum flow — with fractional flow, one does not sacrifice
throughput by imposing fairness.
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In this work, we focus on the analogous problem, computing a fairest routing, in the setting
of single-source unsplittable flow [3, 8, 9]. Once we move to unsplittable flow, the basic problem
becomes NP-complete, even in the unit-capacity case with all ce equal to 1. More precisely, we
can prove that the following decision problem is NP-complete in the unit-capacity case: given
G, s, the terminals {ti}, and a vector r∗, is there a routing of the terminals for which the
allocation vector r satisfies r∗ � r? Additionally, we can show that the fairest flow need not be
a maximum unsplittable flow.

In view of this NP-completeness result, we focus on obtaining both general approximation
algorithms and exact algorithms for polynomial-time special cases. The optimization problems
here are over the ordering on allocation vectors defined by fairness — hence, since there is no
single numerical measure, we must be careful in how we define our notion of approximation to
the optimum. We propose the following two natural definitions of approximation. First, we say
that r is a coordinate-wise c-approximation to r∗ if for each j, the jth smallest entry in r is at
least 1/c times the value of the jth smallest entry in r∗. As a weaker notion, we say that r is a
prefix-sum c-approximation to r∗ if for each j, the sum of the j smallest entries in r is at least
1/c times the sum of the j smallest entries in r∗. In other words, a prefix-sum approximation
ensures that the subsets of terminals with the smallest allocations receive sufficient bandwidth.

When we move to approximate solutions, it is very important that we can keep in mind
that the equilibrium condition (†), or a relaxed version of (†), serves as an additional feasibility
requirement on the solutions we can produce: in effect, we are able to choose only the paths Pi,
for then the network uses (†) to enforce the unique equilibrium allocation vector r. (Of course,
in the fairest routing, the allocation r will necessarily be in equilibrium.) This requirement
rules out, for example, the following simple approach based on the Dinitz-Garg-Goemans un-
splittable flow approximation algorithm [3]: compute the fairest fractional flow using Megiddo’s
algorithm, scale all resulting allocations down by a factor of 2, and route them as unsplittable
demands. The problem is that these scaled demands are generally very far from equilibrium
for the paths used. For example, if the fairest fractional flow has allocations of widely varying
magnitude, it is easy to find examples in which the Dinitz-Garg-Goemans algorithm produces
a routing where flow paths with both small and large allocation share edges, and the allocation
vector is arbitrarily far from satisfying the equilibrium condition (†). All previous single-source
unsplittable flow algorithms [8, 9] exhibit the same problem.

Summary of results: Routing. For the single-source unsplittable flow problem on an
arbitrary directed graph with unit capacities, we indicated above that finding a fairest allocation
vector is NP-complete. We develop a general approximation algorithm for this problem by
relaxing both the optimality and the equilibrium requirements. First, what do we mean by
relaxing the equilibrium requirements? For a constant c, we say that an allocation vector r
is in a state of c-approximate equilibrium if it is not possible to raise the value of an entry ri

without decreasing some other entry rj such that rj ≤ cri. Thus, 1-approximate equilibrium
indeed corresponds to max-min equilibrium; we believe that approximate relaxations of these
natural equilibrium notions raise a number of interesting issues in their own right.

We give an algorithm that produces a routing whose allocation is in 2-approximate equi-
librium, and is a coordinate-wise 2-approximation to the allocation of the fairest fractional
routing.

We develop the algorithm by computing a fairest flow for the following “discretized” version
of the fairest routing problem. Suppose we only consider routings whose allocation vectors
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have entries that are all inverse powers of two; we will call such routings and allocation vectors
binary. Then we can restrict our fairness ordering � to binary allocation vectors, and seek a
fairest allocation of this type. We show how to find a fairest binary routing in polynomial time,
for the single-source unsplittable flow problem on an arbitrary unit-capacity directed graph
G. It is not difficult to show that the fairest binary routing we obtain is both a coordinate-
wise 2-approximation to the unrestricted fractional optimum, and in a state of 2-approximate
equilibrium.

The fairest binary routing has a number of other desirable properties. Specifically, recall
from the discussion above that the fairest unsplittable flow need not be a maximum unsplittable
flow. However, as a direct consequence of our construction of fairest binary flows, we find that
there is a fairest binary flow whose total throughput is equal to that of the maximum fractional
flow. Thus, by optimizing over binary routings rather than arbitrary unsplittable routings, we
do not sacrifice throughput when we impose the fairness condition.

We find the existence of a polynomial-time algorithm for fairest binary routings somewhat
surprising, given that the same problem for unrestricted routings is NP-complete. As a basic
building block in the algorithm, we first establish the special case that if all terminals can be
routed with at most two paths on any edge, then the fairest unrestricted routing (which will
be binary) can be computed in polynomial time. We then apply this result over increasingly
large cuts in the graph G to piece together an optimal binary flow.

A natural problem is to provide a good approximation to the fairest unsplittable routing in
an arbitrary directed graph without relaxing the equilibrium condition (†); we leave this as an
open question.

Summary of results: Load Balancing. The setting of single-source unsplittable flow con-
tains a range of load balancing problems. We begin by providing algorithms for two of the most
natural of these without relaxing the equilibrium condition (†).

• First, the single-source unsplittable flow problem on a two-level unit-capacity graph is
equivalent to the following load balancing problem: we have a set of jobs J = {J1, . . . , Jk},
and a set of machines M = {M1, . . . ,Mn}; for each job Ji, there is a set Si ⊂ M on which
Ji can be run. Each machine has the same “processing power.” We wish to assign each
job to a machine, and our fair allocation vector r = (r1, . . . , rk) specifies the fraction
of processing power each job Ji receives on its assigned machine. We will call this the
uniform load balancing problem.

• More generally, each job Ji can have an upper bound ui on the amount of processing
power it wants. In this setting, we will only consider allocation vectors r for which ri ≤ ui

for each i. We will call this the non-uniform load balancing problem; this problem too
can be encoded in the single-source unsplittable flow problem, with the upper bounds ui

appearing as capacities.

We first show that a fairest allocation vector for the uniform load balancing problem can be
computed in polynomial time. This can be viewed as a natural analogue of Megiddo’s result to
a setting with unsplittable assignments; the tractability of the problem comes essentially from
its connection with bipartite matching, although it is important to note that the allocations in
the optimal fractional and integer flows are not the same.

Finding a fairest allocation for the non-uniform load balancing problem is NP-complete;
indeed, even determining whether every job can achieve its upper bound ui is an NP-complete
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problem considered by Lenstra, Shmoys, and Tardos [10]. We give a polynomial-time algo-
rithm that produces a prefix-sum 2-approximation to the fairest allocation. The approximate
allocation we produce is (following our discussion above) in max-min equilibrium. We begin
from a fairest fractional allocation of jobs to machines — here the allocation of one job Ji can
be spread over several machines in its set Si — computed via Megiddo’s algorithm. We then
build on the fractional rounding algorithm in [10] to obtain the approximation. Our prefix-
sum approximation in fact shows a type of integrality gap in this multi-coordinate setting; it
is a prefix-sum 2-approximation to the optimal fractional allocation. We will describe simple
examples in which there cannot be a coordinate-wise O(1)-approximation to this fractional
optimum.

Organization. The remaining three sections of the paper can be read independently. Sec-
tion 2 develops the algorithms for the load balancing problem without relaxing the equilibrium
condition (†). In Section 3 we consider the single-source fair unsplittable flow problem on an
arbitrary unit capacity directed graph. We develop a general approximation algorithm for this
problem by relaxing both the optimality and the equilibrium requirements. Finally, Section 4
shows that the single-source unsplittable fair flow problem is NP-complete on unit capacity
directed graphs.

2 Fair Load Balancing Algorithms

The fair load balancing problem is concerned with assigning jobs to machines. Assume that we
have a set of jobs J = {1, . . . , k}, and a set of machines M = {M1, . . . ,Mn}; and for each job
j, there is a set Sj ⊂ M on which job j can be run. An assignment is a function F : J → M so
that F assigns each job j to a machine in Sj. First we consider the special case of the uniform
load balancing problem, and show that an optimum fair solution can be found in this case.
Then we consider extensions to problems where the jobs have different needs.

Uniform Load Balancing

The uniform fair load balancing problem can be restated as follows. We want to assign jobs to
machines, and choose a load `j for each job j so that the following two conditions hold. First, if
A(i) denotes the set of jobs assigned to machine Mi, we must have that

∑
j∈A(i) `j ≤ 1. Second,

the set of allocated loads sorted from smaller to larger should be lexicographically maximal.
If we are given an assignment of jobs to machines the corresponding fair loads are very easy

to compute:

Lemma 2.1 Given an assignment of jobs to machines, the fairest allocation load is to assign
load `j = 1

di
to job j, where job j has been assigned to a machine Mi with di = |A(i)|.

This lemma simply represents the constraint imposed by the equilibrium condition (†). Our
goal is now to optimize over all assignments of jobs to machines. Based on Lemma 2.1, our
primary objective is to minimize dmax = maxi |A(i)|, the maximum number of jobs that go on
the same machine. Our secondary objective function is to have as few jobs as possible assigned
to such highly loaded machines, and so on. We obtain the following equivalent formulation of
the load balancing problem. In an assignment F let di denote the number of jobs assigned to
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machine Mi; corresponding to the standard view of assignment problems in terms of bipartite
graphs, we will also refer to di as the degree of Mi.

Lemma 2.2 The uniform fair load balancing problem is equivalent to finding an assignment
F so that the sequence of degrees di for i = 1, . . . ,m when sorted from large to small is lexico-
graphically as small as possible.

We will use F more generally to denote a possibly partial assignment of jobs to machines; we
write |F| to denote the number of jobs assigned by F . We say that F is a (partial) assignment
of maximum degree d if the maximum number of jobs assigned to a machine is d, and F is a
maximum assignment of degree at most d if the number of unassigned jobs is the least possible
among all assignments of degree at most d. Given any assignment F of jobs to machines of
degree at most d, we can use augmenting paths to find a maximum assignment F ′ of degree at
most d. We will refer to this process as Augment(F , d). Our load balancing algorithm starts
with F0 = ∅, and defines Fd=Augment(Fd−1, d) iteratively for d = 1, 2, . . . until all jobs get
assigned. The assignment at termination is then returned; we denote this assignment F∗.

The assignment found by F ′=Augment(F , d) has the following properties. First, all jobs
assigned in F are also assigned in F ′. Second, if di and d′i denotes the degree of machine Mi

in assignments F and F ′ then di ≤ d′i. Both of these properties follow from the augmenting
path algorithm: augmenting paths never use the backwards edges leaving the sink or entering
the source.

These two properties imply that the final assignment F∗ in a sense contains an optimum
assignment for all degrees d. Let di be the number of jobs assigned to machine Mi by the final
assignment F∗. Then we have the following.

Lemma 2.3 For all integers d we have that |Fd| =
∑

i min(di, d). Further, if the degree of a
machine i is less than d in assignment Fd, then the degree will not change throughout the rest
of the algorithm.

Proof. The first statement will follow from the monotonicity of the degrees during the aug-
mentations. Consider assignment Fd. The augmentations done after this assignment will not
decrease the degrees due to the monotonicity property. Hence |Fd| ≤

∑
i min(di, d). The right

hand side is the size of the assignment of maximum degree d obtained by deleting edges from
F∗ entering nodes of degree more than d. The matching Fd is a maximum such matching,
so we also have the opposite inequality |Fd| ≥

∑
i min(di, d). The second statement follows

immediately from the first one and the monotonicity of the degrees.

The essence of why this algorithm is optimal is contained in the following lemma. Let
rd = k − |Fd| denote the number of unassigned jobs in the maximum assignment of degree d.

Lemma 2.4 Let F∗ be the assignment found the algorithm, and F ′ some other assignment. For
any degree d let fd and f ′d denote the number of machines of degree d in F∗ and F ′ respectively;
let rd denote the minimum possible number of unassigned jobs in an assignment of maximum
degree d. We have that

rd ≤ f ′d+1 + 2f ′d+2 + 3f ′d+3 + . . . ,

rd = fd+1 + 2fd+2 + 3fd+3 + . . . .
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Proof. To see the first statement, we can delete edges out of F ′ to create a matching of maximum
degree d. We need to delete i edges from each machine with degree d+ i, so the right hand side
is the number of unassigned jobs at the end of this process. This is at least rd by the definition
of rd.

To see the second statement we use the lemma above. Deleting i edges from each machine
of degree d + i, we recreate the degree sequence of Fd, hence the number of jobs unmatched at
the end of this process is exactly rd = k − |Fd|.

The lemma immediately implies that the assignment M is optimum.

Theorem 2.5 The algorithm above finds the optimum assignment of jobs to machines for the
load balancing problem.

Non-Uniform Load Balancing

Next we consider a more general version of the fair load balancing problem on machines. We
will still assume that machines are uniform, in that the maximum possible load of each machine
is the same. However, jobs will no longer be uniform.

Assume that we have an upper bound uj for the amount of processing power a job j can use.
Now an assignment of jobs to machines, and loads `j for each job j, must satisfy the following.

(i) `j ≤ uj.
(ii) If A(i) denotes the set of jobs assigned to machine i, we must have that

∑
j∈A(i) `j ≤ 1.

(iii) The allocation of loads to jobs satisfies the max-min equilibrium condition (†): we
cannot increase the load of one job j with `j < uj without decreasing the load of some other
job j′ that has `j′ ≤ `j.

We can think of this assignment problem as a flow problem in the following three-layer
graph. We have a source s connected to nodes representing each of the machines Mi with an
edge of capacity 1. There is an edge of infinite capacity from machine node i to job node j if
Mi belongs to Sj. Finally there is an edge from each job node j to a corresponding terminal tj
with capacity uj.

A fairest fractional flow [12] in this network corresponds to a fairest fractional assignment of
job loads to machines. Let f denote this fairest fractional assignment, and let `j denote the load
of job j in f . We say that a job j is integrally assigned to machine Mi is the entire allocation of
job j is to machine i; otherwise, we say that it is partially assigned to those machines on which
it receives a strictly positive allocation. An assignment F of jobs to machines is integral if all
jobs are integrally assigned by F . At various points, we will use the notation A(i) to refer to
the set of jobs assigned to a machine Mi.

For an integral assignment of jobs to machines, the fairest allocation of loads can be com-
puted on each machine independently, and it has a very simple form that follows from the
definition of max-min equilibrium. For a real number x ∈ [0, 1], let B(x) be the allocation of
loads to jobs in a set A(i) defined by allocating min(uj, x) to each job j ∈ A(i); the total load
allocated by B(x) is the sum

∑
j∈A(i) min(uj, x). Then we have

Lemma 2.6 The fairest allocation of load to A(i) is B(x∗), where x∗ is the maximum x ∈ [0, 1]
for which the total load of B(x) is ≤ 1.

The parameter x∗ can thus be viewed as a critical load that caps the allocation to jobs
whose upper bound uj is too large. We can formulate this notion in a way that also extends to
fractional assignments of jobs to machines, as follows.
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Lemma 2.7 In a (possibly fractional) assignment of jobs to machines, the fairest allocation
of loads to the set A(i) has the following property. The machine Mi has an associated critical
load mi; and the load of any job j ∈ A(i) is `j = min(mi, uj). For each machine, either the
machine is fully loaded, or mi = max(uj) over all j ∈ A(i). Further, if some job j ∈ A(i) does
not achieve its upper bound uj, then

mi = min
j∈A(i):`j<uj

`j.

That is, mi is the minimum load among jobs on Mi that are not able to achieve their upper
bounds.

In our algorithm, we will construct an integral assignment of jobs to machines, and then use
the fairest allocation of load given by Lemma 2.6. Notice that finding the fairest assignment is
NP-hard, as deciding if there is an assignment in which all jobs can be assigned their maximum
load `j = uj is a standard NP-hard scheduling problem [10].

Our goal will be to make the resulting loads closely approximate the load sequence of the
fractional assignment. Instead of a coordinate-wise approximation of loads, we will give a
prefix-sum 2-approximation. We observe that it might not be possible to approximate the
vector of fairest fractional loads `1, `2, . . . with a fair integer assignment. Consider, for example,
a problem in which we have n machines M1, . . . ,Mn. Assume that the first job can be assigned
to any machine, and has u1 = 1. In addition to this job, for each machine Mi, there are n − 1
jobs with uj = 1/n that can only be assigned to Mi. Now fractionally, we can assign each job
its maximum load `j = uj by spreading the load of job 1 across all machines. However, in any
integer assignment, the fair load for that assignment will have `1 = 1/n; i.e., there is no way to
approximate the optimal fractional fair load of job 1 in an integer assignment.

We use Megiddo’s algorithm [12] to obtain a fairest fractional flow f . We then use the
rounding algorithm of Lenstra, Shmoys and Tardos [10] to create an integral assignment F∗

from f . Let A(i) be the set of jobs assigned to machine Mi by F∗, and let `A
j denote the fair

load of this assignment.

Theorem 2.8 ([10]) Assume f is a fractional assignment of jobs to machines assigning load
`j to job node j. The approximation algorithm of [10] constructs an integral assignment F∗ so
that for each machine Mi, A(i) consists of all the jobs that were integrally assigned to Mi by f ,
plus at most one additional job that was partially assigned to Mi. Since f did not assign more
than 1 unit of load to any machine, we consequently have

∑
j∈A(i) `j ≤ 1 + maxj∈A(i) `j.

First we analyze the fair loads of the set of jobs A(i) for a single machine Mi. Let ji denote
the job with maximum load `j in A(i),

Lemma 2.9 The fair load of all jobs j ∈ A(i) with the possible exception of job ji have `j ≤ 2`A
j .

Proof. We say that Mi is saturated by f if some job j that was integrally assigned to Mi by f
has a load `j < uj. Let mi denote the critical load (in the sense of Lemma 2.7) of machine Mi

in the fairest fractional assignment f . We define m′
i to be mi if Mi is saturated by f ; otherwise,

we define m′
i to be the maximum of uj over all jobs j that were integrally assigned to Mi by f .

In the analysis, we consider the allocation B(m′
i/2) and show that it has total load ≤ 1. It

then follows that any job that was integrally assigned to Mi has integral fair load at worst a
factor of two smaller than its allocation in the fractional solution. Moreover, if j′ ∈ A(i) is the
unique job that was partially assigned to Mi by f , and its load decreases by more than a factor
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of two, then we must have `j′ > m′
i, whence j′ is the job of maximum load, and constitutes the

exceptional job in the statement of the lemma.
Thus it remains only to prove that B(m′

i/2) has total load at most 1. To see this, we
consider two cases, depending on whether or not Mi is saturated by f . If Mi is saturated, then
some job that was integrally assigned to Mi is given load mi by f ; in B(m′

i/2) this job’s load
decreases by m′

i/2 and creates enough room for one extra job with load at most m′
i/2. If Mi

is not saturated, then m′
i = uj for some integrally assigned job j; again, in B(m′

i/2) this job’s
load decreases by m′

i/2, creating room for an extra job with load at most m′
i/2.

Theorem 2.10 Let `A
j denote the load of job j in the assignment created by our algorithm.

For each h the sum of the h smallest loads of `A
j is at least a half of the sum of the smallest h

loads in the fairest fractional assignment f .

Proof. Sort the jobs by increasing order of their load `A
j . On each machine Mi the job ji has

the maximum fractional load. This job will have maximum fair load `A among those assigned
to Mi by F∗, and hence we can assume that ji is the last among all jobs in A(i). Assume for
this proof that the jobs are indexed in this order, i.e. `A

1 ≤ `A
2 ≤ · · · ≤ `A

ji
.

Consider the prefix sum tAh =
∑

j≤h `A
j for each h. We will show that these values 2-

approximate the corresponding optimum values. In particular we will show that for each h we
have

∑
j≤h `j ≤ 2tAh . This implies the theorem: The value tAh , the sum of the smallest h loads in

the algorithm’s assignment, needs to be compared to the smallest h values in loads `j, whereas
here we compare it to a set of h values that may not be the smallest.

Consider the subset of the jobs j that are assigned to machine Mi. We now show that∑
j≤h,j∈A(i)

`j ≤ 2
∑

j≤h,j∈A(i)

`A
j .

To see this consider two cases. Let ji be the index of the job in A(i) with maximum load
`ji

. If ji > h then the inequality is true term by term due to Lemma 2.9. If ji ≤ h then our
assumption that ji is ordered last in A(i) implies that all jobs in A(i) participate in the sum.
Now the statement follows from Lemma 2.8 as the sum of the loads in the fractional assignment
is bounded by ∑

j≤h,j∈A(i)

`j ≤ 1 + max
j∈A(i)

`j ≤ 2.

Summing over all machines Mi we get the desired bound.

3 Single-Source Fair Routing in Graphs

In this section we give a 2-approximation to the fairest unsplittable routing for the single-
source fair flow problem in arbitrary unit-capacity directed graphs. The problem is specified by
a directed graph G = (V, E), a source s ∈ V , and terminals t1, t2, . . . , tk ∈ V (all edge capacities
are 1). We first show that the fairest binary unsplittable flow, i.e., the most fair unsplittable
flow whose allocation vector consists only of inverse powers of 2, can be found in polynomial
time. Then we show that this binary fair flow is in 2-approximate equilibrium, and is also a
coordinate-wise 2-approximation to the fairest fractional flow.
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Fair Routings of Congestion Two

As a basic building block in the algorithm, we first establish the special case that if all terminals
can be routed with at most two paths on any edge, then the fairest unrestricted allocation
(which will be binary) can be computed in polynomial time. We will say that a set of paths
has congestion two if at most two paths use any edge.

The assumption that all terminals can be routed with paths of congestion two implies that
there is an unsplittable flow sending .5 from s to each of the terminals.

Lemma 3.1 If .5 units of flow can be routed to all terminals then the fairest unsplittable flow
is a flow that routes either .5 or 1 to each terminal, sending 1 to as many terminals as possible.

Our goal in this special case can be rephrased as follows. We wish to create paths from the
source to each of the terminals so that the following conditions hold.

(i) The set of paths has congestion two.
(ii) The number of paths that are involved in shared edges is as small as possible.
Given such a routing we can send a flow of value 1 on the paths that do not go through

shared edges, and a flow of value .5 on all other paths. The main theorem of this subsection
gives a way to find such paths in polynomial time, and also shows that there is such a routing
in which the corresponding unsplittable flow is a maximum flow from s to the terminals.

Theorem 3.2 Assume there are paths from s to the terminals with congestion two. Then there
is a set of paths to the terminals with congestion at most two, where the number of paths that
do not share edges with other paths is maximum subject to this condition, and the corresponding
flow is a maximum flow from s to the terminals. This set of paths can be found in polynomial
time.

Proof. Let m denote the maximum number of disjoint paths from s to the terminals. Let f
denote a maximum integer flow that sends at most 1 unit of flow to any terminal. For notational
simplicity assume that the flow is sent to terminals t1, . . . , tm, and let P1, . . . , Pm denote the
paths used by this flow, so that Pi is a path from s to ti.

Let f ′ be the flow that corresponds to the paths to the terminals with congestion two. The
flow f ′ sends .5 units of flow to each terminal. We plan to combine the flows f ′ and f to
obtain the desired paths. Consider the flow f ′ − f in the residual graph of G with respect to
f . A path decomposition of this flow contains half-integral flow paths Qm+1, . . . , Qk where for
j = m + 1, . . . , k, Qj ends at terminal tj, and starts at one of the first m terminals (a different
one for each path; notice that by our assumptions, m ≥ k/2).

The paths P1, . . . , Pm and Qm+1, . . . , Qk satisfy the following.
(i) The paths Pi are disjoint.
(ii) The paths Qj do not use edges of the Pi paths forwards, but may use them backwards.
(iii) The paths Qj have congestion at most two.
Any set of paths Qm+1, . . . , Qk that satisfies the last two properties can be used to augment

flow along the Pi paths. By sending .5 units of flow along each path Qi we get a maximum
flow (of value m) that sends at least .5 units of flow to each terminal. However, this is not an
unsplittable flow as the augmentation might cause one unit of flow from s to ti, for some i ≤ m,
use two paths.

If there is a set S of 2m−k of the paths Pi with the property that the Qj don’t use backward
edges from any Pi ∈ S, and don’t start at the terminal associated with any Pi ∈ S, then we can
use each of the Qj paths to augment the flow f by .5 without affecting the one unit of flow sent
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along those Pi that belong to S. This means that we get the desired maximum unsplittable
flow f ′′, and a path decomposition of this flow gives the paths claimed by the theorem.

Our goal is thus to modify the paths Qj for j = m+1, . . . , k so as to satisfy the assumption
above:

• If a path Qj uses one of the edges in the paths Pi backwards (i.e., uses the residual edge),
then the corresponding terminal ti is an endpoint of a (possibly different) path Qj′ .

Once we have such paths we can use the argument above to obtain the theorem.
We will modify the paths using a process that is similar to the Gale-Shapley stable marriage

algorithm [4]. (Indeed, we can carry out the remainder of the proof through a reduction to
the stable marriage problem; however, we feel it is simpler here to provide a direct argument.)
We say that paths Pi and Qj meet if Qj has the terminal ti as an endpoint, or if a contiguous
segment of Qj consists of backward edges from Pi. Note that there may be many such meetings,
in this sense, between the same pair of paths Pi and Qj. Suppose a path Pi meets a path Qj,
but ti is not an endpoint of any path Qj′ . If there are many paths that meet Pi, then let Qj be
the path that meets Pi at an edge e closest to its terminal ti. We change Qj so that it begins
from this terminal ti, and continues along the backward edges of Pi until the meeting point e;
it then continues as before. This re-routing of a path Qj leads to an alternate set of paths that
also satisfies the above properties, and hence can also be used for augmentation.

We repeat this process until there are no pairs of paths Pi and Qj that satisfy the condition
above. We now want to argue that this process terminates; for when it does, we have the
set of augmenting paths needed to find the flow f ′′. To show termination, note that each re-
routing decreases the number of distinct meetings between a path in {P1, . . . , Pm} and a path
in {Qm+1, . . . , Qk}: before the re-routing, path Qj met some other path Pi′ before meeting Pi,
and this meeting is now eliminated.

For the next subsection we will need a version of this theorem that routes flows in smaller
units. For some integer γ > 0 let vγ denote the maximum value of a flow that sends at most
1/γ flow to each terminal. By considering each edge as a set of γ parallel edges we get the
following.

Corollary 3.3 Assume there is a flow that routes 1/(2γ) units of flow from s to each of the
terminals, then there is an unsplittable flow that routes 1/(2γ) or 1/γ units of flow to each
terminal and has value vγ.

Constructing a Binary Allocation

In this subsection we show how to construct the fairest binary flow in polynomial time, using
the algorithm of Corollary 3.3. Let 2−c be the maximum power of two such that there is a
flow of value 2−c from s to all of the terminals ti. The lexicographic definition of the fairest
binary flow implies that we must send at least 2−c units of flow to each terminal. We use the
Corollary 3.3 with γ = 2c−1 to find flow paths from the source to each of the terminals. Let Sc

denote the s-side of a minimum cut of value vγ. If there are many such min-cuts, let Sc be the
inclusion-wise minimal. (We will frequently identify cuts with their s-sides, hence referring to
Sc as a cut.) From the paths obtained above we keep only the parts after leaving the cut Sc,
and will recursively find beginning parts that match up with these paths.

There are two facts that we need about the inclusion-wise minimal min-cut Sc. First, any
maximum flow saturates the edges leaving Sc. Second, no terminal that received only 2−c flow
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in the routing above is contained in Sc. This latter statement follows as the minimum cut Sc

consists of nodes reachable in the residual graph from s, and if a terminal with only 2−c flow
were reachable, then its flow could be increased.

The first observation allows us to define the following smaller problem that we solve recur-
sively. Let the graph G′ be obtained from G by considering the subgraph on Sc and adding
to this graph all the edges leaving Sc. We keep all terminals in Sc, and replace the terminals
outside of Sc by 2c−1 new terminals at the end of each of the edges leaving Sc. The second
property of Sc implies that in the new problem there is a flow that sends 2−c+1 units of flow
from s to each of the terminals in G′. Each edge leaving Sc has 2c−1 new terminals, and so if
each of these terminals receive 2−c+1 flow then the cut Sc has to be saturated.

Recursively we obtain a fairest binary flow f ′ on the subproblem on G′. We obtain the
solution to the original problem by taking the flow paths of the flow f ′ to the terminals in Sc.
The flow paths to the new terminals at the end of the edges leaving Sc are combined with the
segments of the paths obtained in the first iteration to obtain the desired paths and flow.

It is not hard to show by induction on c that the flow created this way is the fairest binary
flow.

Theorem 3.4 The algorithm given above constructs a fairest binary flow.

A simple corollary of the construction is the following.

Corollary 3.5 There are nested cuts Sc for c = 1, 2, . . ., such that Sc ⊆ Sc+1 for all values of
c, Sc = V for a sufficiently large value of c, and the following property holds. In a fairest binary
flow, all terminals in S1 receive 1 unit of flow, and all terminals in Sc+1 −Sc receive either 2−c

or 2−c+1 units of flow.

The Overall Approximation Guarantee

Now consider the problem of finding an approximate fair flow. Our algorithm finds the fairest
binary flow. We claim here that this flow satisfies our approximation guarantee.

Theorem 3.6 The fairest binary flow is in 2-approximate equilibrium.

Proof. We use Corollary 3.5 for the proof. Suppose a terminal ti receives 2−c units of flow. We
need to prove that we cannot increase the flow to ti without decreasing the flow to some other
terminal tj that receives at most 2−c+1 units of flow. Consider the cut Sc in the Corollary. The
terminal ti is on the sink side of Sc. The cut Sc is saturated, so we cannot increase the flow
to ti without decreasing some other flow across the cut Sc. However, all terminals on the sink
side of Sc receive at most 2−c+1 units of flow.

It is easy to see that the fairest binary flow is a prefix-sum 2-approximation of the fractional
fair flow. This fact follows essentially as the fairest binary flow saturates the cuts Sc of Corol-
lary 3.5. We need to use more about Megiddo’s optimal fractional flow algorithm to see that
the binary flow is in fact a coordinate-wise 2-approximation of the fairest fractional flow.

Theorem 3.7 The fairest binary flow is a coordinate-wise 2-approximation to the fairest frac-
tional flow.
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Proof. Consider the fairest fractional flow f ′. For any value α let Tα denote the set of terminals
that receive at least α flow. Megiddo proved the fairest fractional flow is a maximum flow from
s to each of the sets Tα simultaneously. This implies the following analogue of Lemma 2.3.
For a value α let vα denote the maximum value of a flow from s to the terminals, where each
terminal receives at most α units of flow. If for each terminal ti that receives some di > α flow
we delete from f ′ di − α units of flow from s to ti, then we obtain a flow f ′α of value vα.

Let {Sc} denote the cuts of Corollary 3.5. We get the claimed coordinate-wise 2-approximation
if we show that the fairest fractional flow f ′ must send at most 2−c+1 units of flow to every
terminal outside of Sc. We prove this by contradiction. Let c be such that some terminal ti
outside of Sc received some di > 2−c+1 units of flow in f ′. Let α = 2−c+1, and consider the flow
f ′α. By our assumption f ′α does not saturate the cut Sc. The fairest binary flow shows that
the maximum flow value vα is equal to the capacity of the cut Sc plus α times the number of
terminals in Sc. However, f ′α does not saturate the cut Sc, and hence has smaller value than vα.
This contradiction proves that f ′ must have sent at most 2−c+1 units of flow to each terminal
outside of Sc.

4 The NP-Completeness of Fairest Allocation

We formulate here a decision problem associated with computing a fairest routing, and show
that it is NP-complete. The reduction is somewhat complicated for the following reason: We are
dealing with a single-source flow problem with unit capacities, and to obtain an NP-complete
problem here, one typically needs to introduce terminals with different (unsplittable) demand
values. Lacking a notion of demand in our problem, we must simulate such demands using the
constraints imposed by the equlibrium condition (†).

Theorem 4.1 The following problem is NP-complete: given a single-source routing problem
with a unit-capacity directed graph G, source s, terminals {ti}, and an allocation vector r∗, is
there a routing of the terminals whose equilibrium allocation vector r satisfies r∗ � r? (I.e. r
is at least as fair as r∗.)

Proof. The problem is in NP since we can exhibit the paths in such a routing, and in polynomial
time compute its equilibrium allocation vector in order to compare it to r∗.

To show NP-hardness, we reduce from a special case of the non-uniform load balancing prob-
lem considered by Lenstra, Shmoys, and Tardos [10]. We have a set of jobs J = {J1, . . . , Jk},
and a set of machines M = {M1, . . . ,Mn}; for each job Ji, there is a set Si ⊂ M on which Ji can
be run. Each job Ji has a requirement ri with the property that each ri is equal to either 1

2
or 1;

we wish to assign each job Ji to a machine in Si so that the sum of the requirements assigned
to each machine is at most 1. Moreover, our instance has the property that

∑
i ri = n — that

is, the total of the requirement values is equal to the number of machines. So the feasibility
condition indeed requires that each machine receives either a single job of requirement 1 or two
jobs of requirement 1

2
. Let J ′ ⊆ J denote the jobs of requirement 1, and let J ′′ ⊆ J denote

the jobs of requirement 1
2
; we write k′ = |J ′| and k′′ = |J ′′|, and observe that our condition∑

i ri = n can be expressed as k′ + k′′/2 = n.
We construct the following single-source fair routing problem to encode this decision prob-

lem. We refer the reader to Figure 1 for the overall layout of the construction. For simplicity
of presentation, we will describe certain nodes as containing several terminals; if we wish each
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source s

job j of req 1/2

job i of req 1 uj

u′j

four terminals tj,1, . . . , tj,4

term. t′j term. t′′jmachine m ∈ Sj

vm

subgraph Hj

k terminals w1, . . . , wk

qj

q′j q′′j

tj

Figure 1: The NP-completeness reduction

terminal to be identified with a distinct node, we can attach each of them via a new degree-one
node.

For each job Jj, we create nodes uj and u′j, with edges (s, uj) and (uj, u
′
j). For each machine

Mm, we create a node vm, and edges (u′j, vm) for each pair (j, m) such that machine Mm belongs
to the set Sj. We also create a single node w that will hold k terminals w1, . . . , wk, and add
edges (vm, w) for each k.

This defines the “core” of the construction, through which we encode the condition that job
Jj can only be assigned to a machine in Sj. Moreover, if we view this portion of the graph in
isolation, we can observe the following: Since there are only n edges entering w, and k terminals
at w, we know that the fairest allocation for these terminals would have k′ entries equal to 1 and
k′′ entries equal to 1

2
, as we want. However, we have not yet controlled which “job nodes” get

the value 1
2
, and which get 1. This is what we accomplish in the remainder of the construction.

For each job Jj with a requirement of 1
2
, we attach a subgraph Hj containing a total of six

terminals t′j, t
′′
j , tj,1 . . . , tj,4 as shown in Figure 1. We do not create anything additional for the

jobs with requirement 1. Thus the complete set of terminals is the set {wi}, together with the
six terminals from each of the subgraphs Hj.
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The subgraph Hj is designed to achieve the following effect. The four terminals at tj will
each get an allocation of 1/4; if one path bound for tj passes through each of q′j and q′′j , then
each of t′j and t′′j will get an allocation of 3/4. Finally, two paths bound for tj can pass through
the edge (uj, u

′
j), leaving room for a path bound for a terminal at w to receive an allocation

of 1/2. Thus, overall, the fairest allocation will allow a single path to w to get a value of 1/2.
Note that for edges (uj, u

′
j) with no subgraph Hj attached, on the other hand, we can have a

single path to w with an allocation of 1.
We now make this precise. Define r∗ to be a vector consisting of 4k′′ entries equal to 1/4,

k′′ entries equal to 1/2, 2k′′ entries equal to 3/4, and k′ entries equal to 1. If there is a feasible
allocation of jobs to machines in the original load balancing problem, then it is easy to construct
a routing whose equilibrium allocation r satisfies r∗ � r. We have a path 〈s, uj, u

′
j, vm, w〉 for

each job Jj assigned to machine Mm, with an amount of flow equal to the requirement of job
Jj. We have two paths 〈s, uj, u

′
j, qj, tj〉, carrying flow 1/4 each, for each job Jj with requirement

1/2; these serve to saturate the edge (uj, u
′
j). The other two terminals on tj will have paths

through q′j and q′′j respectively, carrying 1/4 units of flow; and the terminals t′j and t′′j can then
receive 3/4 units of flow each on their unique paths from s.

Conversely, suppose there is a routing whose equilibrium allocation r satisfies r∗ � r. The
vector r can only contain at most 4k′′ entries equal to 1/4, so these must be associated with all
the terminals of the form tj,i. Also, r can only contain at most k′′ entries equal to 1/2, so these
must be associated with paths that pass through k′′/2 of the edges into w. All the remaining
terminals must get a flow value of at least 3/4 — this therefore consists of of terminals of the
form t′j, t

′′
j , as well as k′ of the terminals at w.

Each terminal of the form t′j, t
′′
j must get at least a flow of 3/4, so at most one path bound

for tj can pass through each of q′j and q′′j . Hence at least two of these paths must pass through
the edge (uj, u

′
j). We claim that in fact exactly two of these paths pass through each such edge

(uj, u
′
j) (and hence exactly one passes through each of q′j and q′′j ). For suppose that at least

three passed through (uj, u
′
j). Then no terminal bound for w could use (uj, u

′
j), and so some

edge (u`, u
′
`) would carry two paths bound for w, each with a flow of 1/2; therefore, it would

follow that no terminal from t` could make use of the edge (u`, u
′
`), and this would force more

than one path bound for t` to pass through one of q′` or q′′` , a contradiction.
Thus, k′ of the terminals at w get a flow value equal to 1, so we observe that at least k′ of

the edges of the form (uj, u
′
j) must carry a single path only. We will call these pure edges, and

the other edges of the form (uj, u
′
j) mixed.

We have therefore established the following two properties of our routing with allocation at
least as fair as r∗:

• There are k′′ mixed edges of the form (uj, u
′
j); these are associated with indices j for which

Jj has requirement 1/2, and on each one, there is a single path bound for w with a flow of 1/2.
• There are k − k′′ = k′ pure edges of the form (uj, u

′
j); these are associated with indices

j for which Jj has requirement 1, and on each one, there is a single path bound for w with a
flow of 1.

Hence for each edge (u′j, vm) that carries positive flow, we can assign job Jj to machine Mm;
this will be a feasible assignment of jobs to machines in the original load balancing problem.
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