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Abstract

In many circumstances the limitation for use of video
cameras is energy. The energy needed for compression and
transmission of video is substantial, and is linear with the
number of transmitted frames. Time-lapse photography, a
drastic reduction of transmitted frame rate, is an obvious
solution, say by transmitting one frame every several min-
utes. The temporal resolution of the video is lost.

Can we reduce the number of transmitted frames but still
keep some information in the original frame rate? In this
work we examine a new paradigm for static cameras, the
Histogram Camera. Frames are examined (but not coded
or transmitted!) at video frame rate, and for each pixel a
temporal histogram of the intensity values is maintained.
These temporal histograms, one per pixel, are transmitted
at the reduced frame rates.

It is shown that objects that change status from mov-
ing to stationary or vice versa can be extracted from the
pixel-wise temporal histograms at high temporal accuracy.
A storyboard summary of the video between frame transmis-
sions can be generated. In addition, objects extracted from
temporal histograms enable both background reconstruc-
tion, and matching across cameras with very different view-
points. These benefits suggests that the Histogram Camera
may be an important part of future very low frame rate cam-
eras.

1. Introduction
Energy and bandwidth requirements are often a great ob-

stacle in the deployment of video cameras. Most of the en-

ergy and bandwidth costs are spent compressing and trans-

mitting the captured frames, and these costs scale linearly

with the number of transmitted frames. When system con-

straints are particularly severe, drastic reductions of the

frame transmission rates are often employed, for example

transmitting a frame only every few minutes. As sampling

the sensor does not demand much energy, frames can still

be sampled at a high frame rate while only the transmission

rate is reduced. In this paper we address the case of static

cameras, such as security and surveillance cameras, which

account for most video produced today. We assume that re-

gardless of the transmission rate, each frame is sampled at

the normal (very short) exposure time to give sharp images

even for moving objects.

Transmitting at a very low frame rate may make it neces-

sary to select which frame to transmit. This selection should

be done in a computationally efficient and robust way. Sev-

eral simple solutions include:

• Time-lapse photography [2]: Sampling and transmit-

ting single frames at the desired transmission intervals.

• Low pass before sampling: Averaging all frames

between transmissions, and transmitting the average

frame.

• Selection of the most representative frame in the inter-

val [1], and transmitting only this frame.

• Transmitting the background image once, and the dif-

ference between the background and each frame. This

approach is ineffective in the presence of noise or dy-

namic background.

Unlike the common approach of transmitting frames, we

propose the transmission of a temporal histogram for each

pixel. In the Histogram Camera, a new paradigm for static

cameras, a histogram is kept for every pixel storing the in-

tensity values observed at the pixel over the time period be-

tween transmissions. The process includes two steps: 1)

Frames are sampled at video frame rate, and temporal inten-

sity histograms are computed at all pixels using all frames

between transmissions. 2) At each transmission time, say

once every 10,000 frames, the pixel-wise histograms are

compressed and transmitted.

Reconstructing information from pixel-wise temporal in-

tensity histograms presents a significant challenge, as tem-

poral order is not preserved in histograms, nor is the infor-

mation of co-occurrence of intensity values between differ-

ent pixels. We present an algorithm for restoration of infor-

mation from temporal histograms, recovering an efficient

and robust storyboard representation of the video. In addi-

tion to the storyboard, we find that object-extraction from
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pixel-wise temporal histograms enables both background

reconstruction and generation of correspondences between

wide-baseline stereo pairs.

Work was done by Jacobs and Pless [11], to reconstruct

a video by keeping several moving averages for each pixel

(with different time constants). Their approach is fast and

simple, and is shown to be effective for left object detec-

tion. It is however biased towards the present time, objects

appearing for a short while at the beginning of the video

are unlikely to be reconstructed well (in constrast to objects

appearing recently).

The most closely related work is presented by Levin et

al. [14, 13] and Gai et al. [7], which reconstruct several

images from their weighted sum. Although their results are

impressive, methods analyzing sum of frames cannot be ex-

tended to more than a few frames. Analysis of many frames

is possible though, from temporal histograms at all pixels.

2. The Information in a Temporal Histogram
Given a video clip taken by a static camera, a tempo-

ral intensity histogram is computed for each pixel using all

frames in the clip (say 10,000 frames). For each such clip,

only a histogram is compressed and transmitted per pixel -

we call it the ”Histogram Image” (Fig. 2). What is the in-

formation that can be recovered about the video clip when

only the pixel-wise temporal histograms are available?

Why do we even think that information about the video

can be recovered without examining any frames, having

only a temporal histogram of each pixel? Let’s examine

the following example, where the histogram of each pixel

(x, y) has a value of zero for all intensity bins except for a

duration of N for some bin b(x, y) (Fig. 1.a). In this case

only one sequence is possible: A sequence of N identical

frames where each pixel (x, y) has intensity b(x, y).
Assume an example where all pixel-wise histograms

have two peaks, one peak of duration p ·N and the other

of duration (1−p) ·N (Fig. 1.b), where 0 < p < 1. For

piecewise static scenes, peaks with similar durations (i.e.

similar heights) most likely correspond to the same object.

It is therefore likely that the camera recorded some static

background for 100·p% of the time, and then turned to view

another direction. Furthermore, using the intensity values

of the histogram peaks we can deduce the intensities of all

pixels in the two backgrounds.

Let us consider another sequence of length N consisting

of a static background and a parked car pulling off during

frame number p ·N . For simplicity we will examine only

a single row of pixels, in which the static background is at

pixels 1-16, and the parked car at pixels 17-32. The pixel-

wise histograms (Fig. 1.c) would have a single strong peak

at pixels 1-16 corresponding to the background intensity. In

pixels 17-32, however, there will be two peaks, one corre-

sponding to the car with duration p ·N and an additional

Figure 1: An example of 32 bin histograms for a single im-

age row in three synthetic scenarios. x axis corresponds

to the x image location, y axis corresponds to the pixel in-

tensity, and the intensity in figure denotes bin count, where

black=0.

a) A static background gives one histogram peak at each

pixel.

b) Two static backgrounds of durations 60% and 40% give

two histogram peaks at each pixel.

c) Pixels 1-16 contain a static background, pixels 17-32

contain an object for 30% of the time and a static back-

ground for 70% of the time.
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Figure 2: A video clip is represented by a Histogram Im-

age (pixel-wise temporal histograms), illustrated for 10*10

pixels and 8 gray levels. Empty bins denote zero counts.

peak with duration (1−p)·N at the intensity corresponding

to the background. By matching bins of similar durations in

different pixels, we are able to reconstruct the static back-

ground (intensities of bins of duration N ), the car (intensi-

ties of bins of duration p·N ) and the background behind the

car (intensities of bins of duration (1−p)·N ). Complete ob-

jects can be recovered by matching histogram bins having

similar counts across different pixels.

In the above discussion we have neglected noise, which

would smear the histogram bins. So instead of looking at an

individual intensity bin, we locate the dominant histogram

peaks. After finding the dominant peaks in each histogram,

peaks are matched across pixels based on their duration.

Details of the proposed method to compute temporally co-

occurring layers from given pixel-wise histograms are de-

scribed in the following section.
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3. From Histograms to Objects

Let a static Histogram Camera observe a scene for T
frames. At each frame t = 1..T each pixel p = 1..NP

(where NP is the the total number of pixels in a frame) has

the intensity It(p). The intensities for each pixel are aggre-

gated through time in pixel-wise histograms {Hp}p=1..NP
,

Hp(I) indicating the number of times intensity I was ob-

served at pixel p. Each histogram therefore corresponds to

the intensities of objects passing through a pixel’s field of

view over the time period 1..T .

Our task is to label each histogram bin Hp(I) with a la-

bel indicating the frame-level object of intensity I observed

by the pixel p (examples of objects are Car1, Background1,

Bike3 etc.). In the following we assume the counts at each

histogram bin come from a single object.

As the counts in individual histogram binsHp(I) are too

noisy and ambiguous for cross pixel comparison, reduction

of the number of different intensities is done by finding the

dominant peaks in each histogram. This helps since a pixel

observing an object will observe slightly different intensi-

ties at different times due to noise. A peak will likely con-

tain an interval of intensity bins at pixel p coming from the

same object. Note that at this point we do not know the

frame-level object contributing to each peak.

The rest of the section details algorithms for performing

the following steps:

1. For each pixel p we find the peaks in its histogramHp.

Each computed peak has an intensity value (peak cen-

ter) and duration (peak height).

2. For the entire Histogram Image, we join together peaks

across different pixels that have similar durations.

3.1. Finding Histogram Peaks

Let us consider a single pixel in the sequence of frames.

As the camera is static, the pixel records a stream of inten-

sities corresponding to various objects that were visible by

it during the video. As we keep only a histogram for each

pixel, we do not know the order of the intensities, but only

the number of frames of each intensity value. It is important

to appreciate that a typical video is quite noisy, and there-

fore the histogram corresponding to the recording of a given

surface value contains a wide peak (for example Fig. 3). In

order to reconstruct the objects, we need to determine from

the histogram the number of distinct objects and their inten-

sities (although we still cannot know when they occurred).

We propose to group the bins of the temporal histograms

in every pixel into dominant histogram peaks. Only large

intensity-peaks can be detected reliably, corresponding to

objects that spend a significant period of time at the same

location.

Figure 3: For each pixel’s histogram, we find the domi-

nant peaks of the histogram using median shift (denoted by

squares).

Of the many methods that were proposed for peak find-

ing in histograms [3, 6, 19], we use Median Shift mode-

finding [19]. We found Median Shift to be well suited for

histograms, having only one parameter (D0), and being fast

and robust. The parameterD0 denotes the size of the region

used to compute the median and can be determined either

experimentally or by estimating the noise. We use D0 = 10
in all examples. A typical histogram and the peaks found in

it are shown in Fig. 3

Median-shift mode-finding is an iterative algorithm

which is applied independently for each pixel location

(x, y). We will therefore ignore the location in the descrip-

tion of the algorithm. The initial stage is the original tem-

poral histogram H0. In each iteration until convergence the

count for bin I is transferred to the count of the median in-

tensity in bins [I − D0, I + D0] around I . Detailed steps

are as follows:

1. To remove noise, the count of all small bins whose

count is less than ν0 is set to zero. We used ν0 = 0.2%
for gray-level images with histograms having 256 bins.

2. Create a new empty histogram Ht.

3. For each non-empty bin Ht−1(I):

i. Compute the medianM(I) on binsHt−1(I−D0)
to Ht−1(I +D0).

ii. Ht(M(I))← Ht−1(M(I)) +Ht−1(I)

4. t← t+ 1

5. Repeat steps 2-4 until convergence.

6. Remove peaks with duration less than ν1, where we

have used ν1 = 1%.
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Figure 4: A table showing a list of peaks in a group of pix-

els. For example the peaks from the histogram in Fig. 3 are

shown in pixel (1,3)

The removal of both bins with very low counts, and very

small peaks, both indicating very short durations, eliminates

noise and is helpful for peak-finding performance.

The result of this process is a set of histogram peaks for

each pixel, each peak having an intensity value and dura-

tion. Each peak ideally belongs to a distinct object but can

also correspond to noise or a sudden change in lighting.

Most pixels in a video usually show a single background

object, and therefore have a single peak whose duration is

the duration of the video clip.

3.2. Joining peaks into objects

Given the peaks obtained in the previous subsection, our

task is to decide which peaks, across different pixels, belong

together in the same object. The discriminative features are

the peak locations and durations. We assume that peaks be-

longing to the same object have similar durations at all pix-

els where the object is visible. E.g. The trunk of a parked

car is visible for same number of frames as the window of

this car. We make no assumptions on the relative intensities

of peaks in an object. Peaks that are close in their pixel lo-

cations and in durations will be assigned to the same object

regardless of the color.

Let the complete set of histogram peaks from all pix-

els be denoted {P1, .., Pi, ..., PN} (N is the total number

of peaks). Each peak Pi has the following information:

its pixel location (xi, yi), its duration τi and its intensity

Ii (τ is measured in %). Such a list of peaks is shown in

Fig. 4. Our objective is to label each peak with the du-

ration of the object it belongs to. The labels Lτ are de-

fined from 1..W (W is the total number of labels, we use

W = 100), corresponding to peak duration quantized to W

levels (1/W, 2/W, .., 1). Combining the peaks at each pixel

into objects is a labeling problem that can be formulated as

the following optimization function:

The two opposing factors that we optimize are 1) Joining

peaks of similar duration into objects 2) Assuming object

continuity, peaks belonging to neighboring pixels are biased

to be grouped together.

First we define the neighborhood structure of each peak.

In order not to have an overly dense neighborhood graph but

still have each peak connected to its most important neigh-

bors, we calculate NNi, the 9 nearest neighbors for each

peak Pi, using the distance measure in Eq. 1 (where ρ is a

constant, we use ρ = 200):

di,j =
√
(xi − xj)2 + (yi − yj)2 + ρ · (τi − τj)2. (1)

The singleton cost for each peak is given in Eq. 2 penalizing

the assignment of peaks to object durations at large devia-

tions from the peak duration (where μ is a constant, we use

μ = 1000):

θi(l) = μ · abs(l − τi) (2)

The smoothness cost between a peak and its 9 NN is given

in Eq. 3 penalizing discontinuities in neighboring labels

and giving the nearby neighbors more influence over label

assignment than further neighbors (where di,j is the dis-

tance measure defined above and γ, ω are constants, we use

γ = 0.25 and ω = 20):

ψij(l1, l2) = ω · e−γ·di,j · (1− δl1,l2) (3)

The full cost function is therefore:

Cost({li}1..N ) =
∑
i

θi(li) +
∑
i

∑
j∈NNi

ψij(li, lj) (4)

The cost function can be re-formulated as a Graph Cuts

problem by mapping each peak to a vertex and the 9 NNs

as edges. The cost function is semi-metric and can be effi-

ciently solved using αβ - swap ([5, 12, 4]).

Example of histogram peaks and their durations as a

source for determining image layers is shown in Fig 5

4. Limits of extractable information
At first sight it might appear that full temporal informa-

tion is necessary for any meaningful reconstruction of data

from a video. In this work we present a successful algorithm

for extracting some information from a pixel-wise temporal

histogram of a video. It is obvious that not all information

can be reconstructed. In this section we will give some in-

tuition for the limits of the algorithm.

The main ingredients of our algorithm are the pixel-level

peaks and frame-level objects. For the success of the algo-

rithm it is required that both will be meaningful. The as-

sumption in using the pixel-level peaks is that similar inten-

sities belong to the same object/layer and the small differ-

ences are due to noise. The level of similarity is determined

by the rangeD0 used for the median shift peak-finding. Two
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Figure 5: An illustration of peak durations along a line of

pixels in Fig. 2. We can observe objects of 3 different du-

rations and two short duration noise peaks. Our graphical

model attempts to bundle intensity peaks similar in duration

and spatial location into objects. Typical extracted objects

(taken from the Car scene) are shown.

failure cases are thus possible, large motion in scene or in

camera, and proximity in color of different objects. If either

the camera is moving or the object is oscillating, a pixel

will see different regions of the object, creating a number

of small peaks. As the size of these peaks will be different

in different pixels, cross-pixel matching will be less accu-

rate. The other scenario is when several objects in the same

pixel location have similar intensities. In this case the peak-

finding algorithm is likely to assign the two objects to the

same peak, and the objects might not be resolved in the re-

construction. Very large lighting changes can make peaks

merge unto each other, but illumination corrections can be

implemented in many cases.

Object reconstruction can be improved by using a richer

feature space (such as colors instead of intensities). This

runs into the curse of dimensionality and can be dealt with

by using several 1D histograms one for each feature or using

a more efficient probability representation such as GMM

[20].

Joining peaks into objects presents further limits of reso-

lution. For objects to be meaningful, it needs to be unlikely

that nearby peaks of similar durations will belong to differ-

ent objects in the real world. It is likely that small peaks

belonging to different objects will happen to share similar

durations by chance but it is rather unlikely for longer du-

rations. In Fig 6 the distribution of peak durations for the

Car sequence (Fig. 7) is shown. The peaks corresponding

to significant objects are clearly seen in Fig. 6, and the dis-

tribution of small peaks is decaying exponentially. Assum-

ing that we estimated the exponential decay constant λ by

counting the number of peaks of different durations (say 0%

to 1%, 1% to 2% etc.) and fitting an exponential to the peak

count at low durations, the significance of a given peak can

Figure 6: The distribution of peaks in a sample video:

Duration of peaks vs. log number of peaks (all peaks in the

Car video shown in Fig. 7). We observe 4 peaks i) At short

durations due to noise and short lived objects ii,iii) Peaks

corresponding to dominant scene objects at 46% and 54%

iv) At 100% corresponding to the the static background.

be computed by:

P (Peak = noise) = e−λ·τ(Peak) (5)

The rule is a lower bound for our method, as using a spatial

prior (as is present in our peak matching by the graphical

model) can match peaks of low durations if they are close to

each other, even if there are many peaks of similar duration

globally.

5. Experiments

5.1. Extracting objects from pixel-wise histograms

In this subsection we present several examples of the

information extractable from a Histogram Camera. Al-

though no actual Histogram Cameras exist today, we can

easily simulate such data by creating intensity pixel-wise

histograms from videos taken by static video cameras. In

all examples our method was run on the Histogram Image.

In Fig. 7, the storyboard result of our algorithm on the

Histogram Image of the Car video is presented. In the Car

video, a car is seen coming to a halt on an empty sidewalk

about 46% into the video and staying there until the end.

Three objects are therefore extracted - the car (with dura-

tion 46%), the sidewalk beneath the car (with duration 54%)

and the background not underneath the car (with duration

100%).

In Fig. 8 we can see an example of a wide-baseline stereo

pair. The storyboard result of our method is shown for each
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A.1 A.2 A.3 A.4

B.1 B.2 B.3 B.4

Figure 8: The multi-car stereo sequence featuring two different cameras separated by 135 degrees. Cars 1 and 2 are seen

exiting a parking lot at different times, Car 1 also has an intermediate stop. A.1-A.4 give 4 reconstructed layers (out of 6)

from sensor A. The layer durations are [8%, 21%, 55%, 100%]. B.1-B.4 have the corresponding reconstructed layers from

sensor B. The layer durations are [8%, 22%, 58%, 100%]. The matches were obtained by the algorithm described in Sec. 5.3.

A close inspection reveals that all matches are correct despite the challenging geometry.

(a) (b)

(c) (d)

Figure 7: Layers constructed from the Car sequence. Black

pixels are not assigned to this layer. a) Background, du-

ration 100%. b) Background under car, duration 54% c)

Car and its shadow, duration 46% (d) The complete recon-

structed background unifying (a) and (b).

Histogram Image of the ParkingLotA and ParkingLotB se-

quences. In the videos a parking lot is shown, where Car

1 initially pulls out into an intermediate position and drives

off, Car 2 then proceeds to drive off. These stages are nicely

extracted by our algorithm in the storyboard representation.

In Fig. 9 our results on the Tram example from the

ChangeDetection.net dataset [10] are shown. In the Tram

video, a tram is seen moving off from a stopped position.

From the storyboard we can see the parked tram and the

area behind it (T.1,T.2), a box left in the scene (T.3) and the

long term background (T.4).

The above results show that our method is effective at

reconstructing objects from pixel-wise temporal histograms

and efficiently creates storyboard summaries from videos.

5.2. Background Reconstruction

When rendering objects in video (such us in video syn-

opsis [16]) one often needs to reconstruct the background

of the video. A standard approach for background recon-

struction selects the median or the mode of the intensities

visible at each pixel over time. While this simple approach

works well most of the time, it fails in cases such as park-

ing lots, where the background underneath a car may not be

visible most of the time. The background should include,

in addition to regions that are visible all the time, also oc-

cluded background regions that are visible to the camera

even briefly. As an example, in Fig. 7 a car is seen pulling

out of a parking lot. Although during the video the car was

visible for longer than the empty lot, the background should

contain the layer underneath the car. Segmenting objects
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T.1 T.2 T.3 T.4

Figure 9: The tram example from the ChangeDetection.net dataset. A tram is initially at rest at the station and later moves

off. A package is left on the sidewalk about 40% into the sequence. T.1 shows the parked tram (τ = 33%). T.2 shows the

area behind the parked tram (τ = 56%). T.3 shows the left package (τ = 58%). T.4 shows the scene background (τ = 93%)

(a) (b) (c)

Figure 10: Reconstruction of complete background for (a-b) the stereo pair in Fig. 8 (c) for the Tram example in Fig. 9

from a frame and replacing them by the true background is

non-trivial without semantic understanding of the objects.

To generate the background we start by generating a sto-

ryboard as described in Sec. 3.2. All objects with durations

above some threshold (say 97%) are first labeled as definite

background. Pixels not labeled as background can represent

one or more non-background objects and the background

behind the objects. An object will be added to the back-

ground when it is similar to the definite background sur-

rounding it and minimally overlaps with other background

objects. We therefore have to label each object as Back-

ground/ Non-Background given definite background simi-

larity and overlap with other objects. Measuring similarity

to background using histogram similarity worked well in

our case but other similarity measures are possible. Global

energy was reduced using Loopy Belief Propagation.

Let Oi(x, y) denote the map of object i, where for non-

empty pixels Oi(x, y) = I(x, y) contains the intensity of

the object and for empty pixels Oi(x, y) = −1. Let Vi,j be

the number of overlapping non-empty pixels between ob-

jects i and j. Additionally we compute the minimal bound-

ing square around each object containing the same number

of definite background pixels and non empty pixels belong-

ing to the object. We compute the intensity histograms for

the pixels in the bounding box belonging to the object and

those belonging to the definite background. Let ri denote

the Earth-Mover’s Distance (EMD) [21, 17] between the

histograms of object i and the definite background, ri is

a measure of similarity of the colors of the object and the

definite background. It is an effective but rather simple fea-

ture, more complex gradient and texture based features can

be used by our scheme in an identical manner.

Let li denote the label of object i - Background (B), or

Non-Background (NB).CP
i (li) is the cost of labeling object

i, we set CP
i (B) = ri, C

P
i (NB) = C0 that is the cost of

labeling an object as Background is the histogram distance

from the definite background and a constant cost for non

background labels (we use C0 = 0.6). To discourage over-

lap we add a smoothness cost of labeling both objects i and

j as Background as the total overlap CS
i,j(B,B) = Vi,j , all

other smoothness costs being zero. Finally we define λ as a

constant balancing overlap costs with background similarity

(we use λ = 0.01). The cost function is therefore:

Cost({li}1..N ) =
∑
i

CP
i (li) + λ ∗

∑
i,j

CS
i,j(li, lj) (6)

This energy minimization problem can be approximately

solved by standard probabilistic graphical methods such as

Loopy Belief Propagation (LBP) [15] and MCMC [9] meth-

ods. We optimize the problem by LBP using the UGM li-

brary [18]. As the number of objects is usually quite small

(20-30) this optimization is very fast. The background can

be post-processed to remove effects due to peak-finding im-

perfections (we use diffusion based inpainting [8]).

Examples of complete backgrounds computed for the se-
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quences used in previous examples are presented in Fig. 7d

and Fig 10.

5.3. Finding Wide Baseline Correspondences

Finding correspondences between sequences from dif-

ferent sensors (say IR and Visible) and cameras with widely

different poses, can be very difficult. The difficulty is due

to occlusions and the fact that objects can look very differ-

ent from different views. In this subsection we present a

simple but efficient method that is able to generate accurate

correspondences between very different views.

Let us consider two static cameras observing a car-park

from very different angles. The objects in the scene may not

appear similar at all. Consider a car pulling into a parking

lot, at some point in the video (say τ%). An observation

of the histogram of both cameras would reveal an object

with duration τ%. By matching these two regions we find a

correspondence.

This reveals a strong general feature of the Histogram

Camera. Using our method on both Histogram Images we

obtain objects and corresponding durations, Objects of sim-

ilar durations in the two cameras are a likely correspon-

dence.

An example is shown from the wide baseline stereo se-

quence in (Figs 8). In the sequence the sensors are very dif-

ferent (in terms of FOV and other optical parameters). De-

spite the difficult conditions, objects are accurately matched

between the two views.

6. Implementation Details
The same parameters were used for all the above ex-

periments. The median shift parameters were D0 = 10,

ν0 = 0.2%, ν1 = 1.0%. Boykov et al.’s MATLAB Graph-

Cut implementation was used for optimization. The param-

eters used in the graphical model were ρ = 200, μ = 1000,

γ = 0.25, δ = 20, N = 9, T = 100. Results have been

post-processed to replace isolated pixels with the median

value in their 5*5 neighborhood.

7. Conclusion
In this paper we have presented - the Histogram Camera

for transmitting at very low rates. A storyboard represen-

tation of the video can be generated for Histogram Images

and the low volume of transmitted data and simplicity of

the method also gives rise to energy efficiency. We have

found experimentally that the number of significant his-

togram peaks in a video is about 120-140% of the number

of pixels in an image, since most pixels are background.

This indicates that the histogram can be transmitted at

a cost similar to one image. The key challenge for the

Histogram Camera is the reconstruction of objects from the

’Histogram Image’ - the pixel-wise temporal histograms

of a video. We have presented an algorithm for this

task, and have showed experimental results verifying the

effectiveness of our algorithm. It is our hope that this work

will give rise to a new generation of very low frame rate

cameras.
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