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Abstract. Can we say anything general about the distribution of two
dimensional views of general three dimensional objects? In this paper we
present a first formal analysis of the stability and likelihood of two dimen-
sional views (under weak perspective projection) of three dimensional
objects. This analysis is useful for various aspects of object recognition
and database indexing. Examples are Bayesian recognition; indexing to a
three dimensional database by invariants of two dimensional images; the
selection of “good” templates that may reduce the complexity of corre-
spondence between images and three dimensional objects; and ambiguity
resolution using generic views.

We show the following results: (1) Both the stability and likelihood of
views do not depend on the particular distribution of points inside the
object; they both depend on only three numbers, the three second mo-
ments of the object. (2) The most stable and the most likely views are
the same view, which is the “flattest” view of the object. Under ortho-
graphic projection, we also show: (3) the distance between one image to
another does not depend on the position of its viewpoint with respect
to the object, but only on the (geodesic) distance between the view-
points on the viewing sphere. We demonstrate these results with real
and simulated data.

1 Introduction

Model-based object recognition is often described as a two stage process, where
indexing from the image into the database is followed by verification. However,
using noisy images and large databases, the indexing stage rarely provides a sin-
gle candidate, and the verification stage only reduces the ambiguity but cannot
eliminate is altogether. Typically, therefore, we are left with a list of candidate
objects, from which we should choose the best interpretation. This problem is
demonstrated in Fig. 1, which could be the image of many different objects, all
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of which could possibly be retrieved by the recognition system. How do we de-
cide which object this really is? is it a bagel? maybe a plate? neither. The task
is easier when using more likely views of the object, such as those in Fig. 2.

Fig.1. Non generic (not probable) view of
an object.

A plausible strategy is to select the model which obtains the highest confi-
dence, or the highest conditional probability Prob(model/image). To accomplish
this, we first rewrite the conditional probability as

P

Prob(model/image) = Prob(image/model) 5

where P,, and P; denote the prior probabilities of the model and image respec-
tively. From this we see that optimal object recognition requires knowledge of
the conditional distribution of images given models. Thus, for example, this like-
lihood measure is very small for the image of the water bottle shown in Fig. 1,
and we therefore interpret the image as something else, such as a bagel or a
plate.

Surprisingly, this important question of image likelihood has been (almost)
totally neglected. There is a single exception, a study of the distribution of
views of simple “objects”, specifically planar angles, reported by Ben-Arie [2]
and later expanded by Burns et al. [3]. These papers analyzed (via simulations)
the changes in the appearance of angles from different points of views, and
numerically identified stable images.

Can we say anything general about the distribution of two dimensional views
of general three dimensional objects? In this paper we present a first formal
analysis of this question. We first define the problem generally, connecting the
concepts of stability and likelihood in the same framework. We then concentrate
on geometry, to obtain (analytically) some simple and elegant characterizations,
as well as some surprising properties, of image stability and likelihood of ob-
jects composed of localized features. These results are summarized below, in
Section 1.1. Similar analysis should be done for sources of image variation other
then geometry, such as lighting.

The theory developed here has many applications and can be used for ob-
ject recognition in various ways, as described in Section 1.2. One result, where
we show that the most stable view of an object is also its most likely view,
has the following practical application: it implies that if we want to find and
store the most stable view(s) of an object, we do NOT need to know the three-
dimensional structure of the object; rather, we can expect to find this view by
random sampling of the views of the object. This theory is also motivated by
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and related to human perception, and some of the results reported here can be
used to reinterpret psychophysical findings, as discussed below.

1.1 Characterization of views

Consider the viewing sphere, which is a sphere around the center of mass of the
object. This sphere contains all possible viewing angles, or camera orientations
relative to the object. We characterize each view V by two numbers:

e-likelihood: the probability (or the area on the viewing sphere) over which
views of the object are within € of V' (as pictures).

T-stability: the maximal error obtained when view V is compared to neigh-
boring views less than 7" away (in geodesic distance) from V on the viewing
sphere.

T-stability measures how stable a particular two dimensional view of a three
dimensional object is with respect to change of camera position. e-likelihood
measures how often one should expect to see a particular view of a general
object, if € error is tolerated, and assuming known prior distribution on the
viewing sphere (or viewing orientations). Each number provides a somewhat
different answer to a similar question: how representative is a two dimensional
view of a three dimensional object?

For objects composed of distinct features, this analysis of the viewing sphere
can be carried out relatively simply thanks to the following observation, which
is true within an aspect of the object?: Given an object composed of any num-
ber of features, the three eigenvalues of the auto-correlation scatter matriz of
the features’ 3D coordinates are sufficient to compute the image differences be-
tween any two different views of the object. Therefore, these three numbers fully
characterize the stability and likelihood of any viewpoint.

For such objects we give in Section 3 explicit expressions for e-likelihood
and T-stability. We give expressions for the distance between any two views
in terms of the three eigenvalues of the autocorrelation matrix. We show that
the “flattest” view is the most stable and the most likely. Under orthographic
projection we also demonstrate an elegant and surprising property of the viewing
sphere: viewpoints which are at the same geodesic distance from a certain view on
the viewing sphere induce (very different) images that are at the same distance
in image space. In other words, if we fix a view V as the pole on the viewing
sphere, all the viewpoints that are on the same latitude on the viewing sphere
induce images which are at the same distance from the image of V.

1.2 What is it good for?

The characterization of views by stability or likelihood can be useful for various
aspects of object recognition and spatial localization:

2 We define an aspect as the set of views of the object in which the same features are
visible.



Bayesian recognition and image understanding: As explained above, in
order to select the most likely model from a set of models, each of which is
a possible interpretation of an object in the scene, we need the conditional
distribution of images given models. More generally, the probabilistic char-
acterization of views, as defined below, measures how generic viewpoints are.
In ambiguous cases, the interpretation which involves a more generic view
may be preferable (see also [4]).

Indexing by invariants: To finesse correspondence, various algorithms look
for indices which can be computed from 2D images, and directly point to the
object (or a family of objects) in the database [5]. To be useful, such indices
are typically invariant to some aspects of the imaging process. However,
geometrical invariants for general 3D objects do not exist [3]. By identifying
a set of “representative” 2D views of an object, such that any other image
of the object is not too far from at least one image in this set, we can attach
to each object a list of invariant indices which will have small errors.

Viewer-based representations: The three dimensional structure of objects
can be represented in two fundamentally different ways: a two dimensional
viewer-centered description, or a three dimensional object-centered descrip-
tion. In a viewer-centered description three dimensional information is not
represented explicitly. In employing this approach, an object is represented
by a list of 2D views, that were acquired during a familiarization period. A
novel view of the object is recognized by comparing it to the stored views.
A measure of image stability and likelihood can be used to select a set of
“good” views for such a representation.

Correspondence by two dimensional template matching: Various recog-

nition methods of 3D objects, such as alignment, require correspondence
between a 2D image and a library of 3D models. Image to model correspon-
dence (or indexing) is computationally difficult, and may require exponential
searches. One solution is to use 2D templates for the direct matching of 2D
images, which may reduce the complexity of search considerably from O(n?)
to O(dn?), where d is the number of templates (see [1] for a discussion of
algorithms for finding all such matches). The two dimensional templates are
possibly grey-level images of the object, where distinctive features are used
to determine stability and likelihood.
Our characterization will make it possible to select the “best” templates,
which can be matched to the largest amount of different views with the
smallest amount of error. Moreover, we will be able to identify local configu-
rations which are particularly stable and therefore should be relied on more
heavily during the initial stage of correspondence.

The rest of this paper is organized as follows: in Section 2 we define the above
concepts more precisely. In Section 3 we show a simple computational scheme
to compute viewpoint characterizations for the case of an object composed of a
set of 3D features, and describe the basic results. In Section 4 we demonstrate
these results with real and simulated data.
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Fig.2. Left: a not very
likely view of an object;
right: a likely view of a
water bottle.

2 Definitions

2.1 The viewing sphere

viewing sphere

3D object
N B
% Fig. 3. The viewing sphere of a 3D
. object. Two views on the viewing
op sphere, obtained by some combina-
2/ tion of rotations ¥ and ¢, are illus-
camera trated.

We fix a coordinate system attached to the camera, where Z is the optical axis
of the camera (assumed orthogonal to the image plane). The object is assumed
fixed, and the camera (with the coordinate system) rotates around it on the
viewing sphere. The viewing sphere is an imaginary sphere around the centroid
of the object (see Fig. 3), representing all the possible different viewpoints of the
object.

The viewing sphere takes into account deformations in the appearance of an
object which are due solely to its 3D structure and orientation in space, when the
camera is allowed to translate and rotate relative to the object. We assume weak
perspective projection and therefore translations of the camera can be ignored if
by default images are centered around the center of mass of an object. Therefore
without loss of generality, the center of rotation is assumed to be the centroid
of the object. With this convention the viewing sphere describes all the possible
different images of an object, since there is a 1-1 mapping between a viewpoint
and a feasible image.

With this definition, a view of the object corresponds to a point on the
viewing sphere, which is completely defined by two angles of rotation. If we
assume that all viewing angles are equally likely, areas on the viewing sphere
correspond to probability or likelihood. In the following (see also Fig. 3), the
viewing sphere is parameterized by two angles: rotation ¢ around the Z axis
followed by a rotation ¥ around the X axis. This defines a spherical coordinate



system whose pole is the optical axis of the camera (the Z axis), and where ¢ is
the azimuth (longitude) and ¥ is the elevation (colatitude).

2.2 Stability and likelihood of views

Consider an object O and a point on the viewing sphere of O denoted by Vy .
The range 9 € [0, 3], ¢ € [0,27] gives a parameterization of half the viewing
sphere in spherical coordmates whose pole is the Z-axis, where ¢ is the azimuth
and ¥ is the elevation.

Let Vﬁ’%aﬁ denote another view, corresponding to a rotation in spherical
coordinates on the viewing sphere, where the point 9, ¢ is now the pole, o € [0, 7]
the elevation, and 8 € [0, 27] the azimuth. The distance from Vj ,, to Vﬂ ,p ON
the viewing sphere is parameterized by the elevation angle «. Let d(?ﬂ 4,0, a, B)
denote the image distance, as defined in Section 2.4, between the images obtained
from view V and view V',

For each view V = [J, ] we measure the following:

T-stability: the maximal error (difference) d, when compared to other views on
the viewing sphere separated from it by an elevation o < 7°: n<1%x d(9,p,a,p)

e-likelihood: the measure (on the viewing sphere) of the set {(«, £)| such that
(¥, ¢, 0, B) < ¢}

We select the view V' which represents an aspect of the object according to
one of the following criteria:

Most stable view: the view V = [J, ¢] which for all bounded movements of
the viewing point from V the image changes the least:

min max, d(ﬁ v, a,f) (1)
9,0 alY
Most likely view: the view V = [J, ¢] that has the largest number of views
that as are images close to it:

rgyixMeasure({(a,ﬁﬂd(ﬁ,go,a,ﬁ) <e}) (2)

2.3 TImages of objects with fiducial points

We consider objects composed of n three dimensional fiducial points. Let {p; =
(Zs, Ui, 2i) 7, denote the coordinates of the object features in the camera coordi-
nate system in R3. A three-dimensional representation of the object is the 3 x n
matrix 13, whose i-th column is p;, the vector describing the world coordinates
of the i-th feature of the object.

An image of the object is obtained by a rigid transformation (of the object or
the camera), followed by weak perspective (or scaled orthographic) projection
from three dimensional space to the two dimensional image. An image of the
object is therefore the set of n image points {p; = (&, ¥)}%,. An equivalent
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representation of the image is the 2 x n matrix P, whose ¢-th column is the image
coordinates of the i-th feature of the object. The use of matrix P to represent
an image of the object implies a correspondence between the image features and
the object features, where different correspondences lead to permutations of the
matrix’ columns.

2.4 How to compare two images

Given two images, or the two matrices P and Q, the question of comparing them
is equivalent to matrix comparison. We are using the “usual” metric, which is the
Frobenius norm of the difference matrix, and which is the same as the Euclidean
distance between points in the images:

IP - Q3 =Y (Pli,j]- Q[i,j)* = tr[(P - Q) - (P - Q)" (3)

(tr denotes the trace of a matrix). Henceforth we will omit the subscript F', and
a matrix norm will be the Frobenius norm.

Before taking the norm of the difference between the images, we want to
remove differences which are due to irrelevant effects, such as the size of the
image (which is arbitrary under scaled orthography) or the exact location of
the object (e.g., due to an arbitrary translation and rotation of the object in
the image). In particular, we may want to consider as equivalent all images
obtained from each other by the group of 2D similarity transformations, which
includes 2D rotations, translations, and scale. The equivalence under similarity
transformation is necessary, since under weak perspective projection, images
that differ by image scale, rotation or translation can be obtained from the same
object, and should therefore be considered the same image.

It can be readily shown that the optimal translation when measuring distance
by sum of square distances, under the similarity equivalence, puts the centroid of
the object in the origin of the image. We therefore assume w.l.g. that the images
are centered on the centroid of the object, so that the first moments of the object
are 0. In [7] we define image distance measures, which satisfy all the properties
of a metric, and which compare the images P and Q while taking into account
the desired image equivalence discussed above. We get the following expression:

_ IQPT|? + 2det(QPT)

D¥P,Q)=1
(P.Q) HEEE

(4)

2.5 The “flattest” view

Let Ry, denotes a 3D rotation in spherical coordinates around the pole (0,0, 1),
with azimuth ¢ and elevation . Consider the 3 x 3 symmetric autocorrelation
scatter matrix of the object:

S =prPpP7T



The scatter matrix of the object at view Vj , obtained by a rotation Ry, on
the viewing sphere away from the initial view, is:

S(V) = Ry, PP R}, = Ry, SRy,

Definition1. The flattest view is the view V; whose scatter matrix S(V})
is diagonal, and where the eigenvalues (the diagonal elements) are ordered in
decreasing order.

It is straightforward to compute the orthogonal matrix L such that S = LY DL,
where D is diagonal with diagonal elements in decreasing order (e.g., by comput-
ing the SVD of the symmetric matrix S). L is the rotation matrix which rotates
the object from its original orientation to V; . Henceforth we will assume w.l.g.
that the coordinate system is initially oriented so that Vj o = V;. Let Sy denote
the diagonal scatter matrix at Vg o:

a 0 0
So=PPT=10 b 0
0 0 e

where a > b > c.

3 Viewpoint characterization

Consider an object which is characterized by n fiducial points in three dimen-
sional space, O = p1, P2, .-+, Pn- Let P denote the 3 x n matrix whose i-th column

is f)Z

3.1 Stability and likelihood at each view

As defined in Section 2.2, let V3 ,, denote a point on the viewing sphere of object
O, and let Vﬂl,(p,oz,ﬁ denote another view of O. (Recall that the distance from
Vi, to Vz9l,<p,a, on the viewing sphere is parameterized by the elevation angle
a.) Let d(9, ¢, o, ) = D(V, V') denote the image distance, defined in Section 2.4,
between the appearance of object O from view V' and its appearance from view
V'. We can show that:

Result 1: d(J, ¢, a, §) depends only on the diagonal matrix Sy, regardless of
the number of features in O or their distribution in space. We therefore denote
the distance by da 3 .(9, ¢, a, §).

We computed dq 3 .(9, ¢, a, §) by substituting V and V' into Eq (4), to get:

(1 — cos(a)) (absy + acsa + bess)
u(at1 + th + Ctg)

D2 = dz,b,c(ﬁa P, ﬁ) = (5)
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where
51 =1 —2 cos(¥)? cos(a) + 2 cos(¥) sin(a) sin(¥?) cos(B) + cos(a)
s3 = 1 —2 cos(a) cos(p)? sin(¥)? — 2 cos(B) cos(p)? sin(a) sin(¥) cos(I) +
( () cos(p) sin(¥) + cos(cx)
53 = 1+ 2 cos(a)sin(yp)? cos(9)? — 2 sin(B) sin(a) sin() cos(p) sin(d) —
2 cos(f) sin(p)? sin(a) sin(¥) cos(¥) — cos(a) + 2 cos(a) cos(p)?
u=a(l—sin(p)’sin(9)?) + b (1 — cos(p)*sin(¥)?) + csin(¥)?
t; = —2 cos(a) cos(/3) sin(a) cos(?) sin(¥) sin(p)? — sin(¥)? cos(a)? sin(p)? —
2 cos(ip) sin(p) cos(¥) sin(a)? cos(B) sin(B) — cos(yp)? sin(a)?sin(B)* + 1 —
cos(¥)? sin(a)? cos(B)? sin(p)? — 2 cos(ip) cos(a) sin(3) sin(a) sin(¥) sin(y)
ty = 2 cos(y) sin(p) cos(¥) sin(a)? cos(B) sin(B) + sin(p)? sin(a)? cos(B)* +
cos(ip)? sin(a)? — 2 cos(a) cos(B) sin(a) cos(¥) sin(¥) cos(p)? +
cos(19)? cos(a)? cos()? + 2 cos(p) cos(a) sin(B) sin(a) sin(¥) sin(p) +
cos(a)? sin(p)? — cos(¥)?sin(a)? cos(B)? cos(p)?
t3 =14 2 cos(¥)sin(a) sin() cos(a) cos(F) — COS(Q?)2 cos(oz)2 —
sin(¥)? sin(a)? cos(5)*

2 sin(B) sin(«) sin

3.2 The most stable and likely view

We substituted dq s (9, ¢, @, f) into Eqs (1),(2), to compute the stability and
likelihood measures numerically for various objects, characterized by different
parameters a, b, ¢, and for various likelihood and stability thresholds ¢ and T.
The simulations lead us to conjecture the following result:

Result 2: The flattest view V; = Vj o is both the T-stable view and the e-likely
view for all T and ¢, and for every object parameterized by [a, b, c].

Fig.4. V; of a square pyramid and a cube.
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Examples:

We computed V; for two simulated familiar objects: a cube and a pyramid.
For the cube we consider a certain aspect where 7 vertices are visible. For the
pyramid we consider an aspect where 4 vertices are visible. Fig. 4 shows the V}
of each of these objects.

4 Orthographic projection:

In order to match images to the projections of a model, 2D similarity normal-
ization was used. There are cases in which it is more appropriate to use 2D
affine normalization or orthographic projection. In these cases the two results
described in the previous section still hold (see [6]).

Under orthographic projection, the scale of the image is known and we want
to avoid normalization, but rather compare the model to the image as is. We
therefore take the difference between the given image and the model, where the
model is aligned with an affine transformation to the image, and without any
manipulation permitted to be applied to the image. If we denote the model P
and the new image Q, we get the following orthographic distance measure, which
replaces the similarity metric given in Eq (4):

D*(P,Q) = tr[Q"Q(I — P*P)]

(I denotes the n X n unity matrix, and P* denotes the pseudo-inverse of P).
Eq (5) now becomes surprisingly simple:

abesin(a)?
acsin(9)? cos(p)? + besin(¥)? sin(p)? + ab cos(d)?

D* = da,b,c(ﬁa w, , 5) =

and the following result immediately follows:

Result 3: For all ¥, ¢, the distance between Vy , and Vj , o s depends only
on the geodesic distance o and does not depend on the azimuth 3, although for
different (3 the views Vy o, o g are not affine equivalent.

In other words, if we fix a view V as the pole on the viewing sphere, all the
viewpoints that are on the same latitude on the viewing sphere induce images
which are at the same distance from the image of V.

Examples:

To demonstrate the above results, we took an image P;,, of a toy tiger from an
arbitrary angle, and then took a sequence of images, (P1, P2, Q1, @2, @3, S),
at other orientations (see Fig. 5). We did not measure the orientations, but we
know that the images marked by (P;) were taken at the same elevation relative
to Piop, and that the images marked by (Q;) were taken at the same elevation
relative to P;op. The elevation of the (FP;) images was smaller than the elevation
of the (Q;) images, which in turn was smaller than the elevation of image S.
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| s

Fig. 5. The pictures used in the experiment: first row, from left to right — Piop, P1, Po;
second row, from left to right — @1, @2, S.

(A [P @ Q@[ 5|
0.125[0.163][0.195]0.233]0.205 || 0.34
6352 7122 [[11045[10964]10557[15312

Table 1. The distances between the real images shown in Fig. 5. The first row gives
the similarity (metric) distance, and the second row gives the orthographic distance.

Table 1 gives the distances of all the pictures from Pi,,, (using ears, eyes,
knees, tail and nose as features). As can be seen from the data, the distances
between images depend monotonically on the elevation, and the orthographic
distance does not depend on the azimuth.

5 Discussion

The analysis and results described above have many applications for geometry-
based object recognition, as discussed in the introduction:

— It provides the basic tools for object recognition from noisy images and
large databases, giving a measure to select the model that best fits the data
from a list of candidates obtained by “traditional” indexing and verification.
More generally, it can be used with a general Bayesian image interpretation
approach to select the most likely interpretation of a scene.
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— It gives the framework within which an invariant recognition scheme such
as geometric hashing can be generalized to three-dimensional objects, by
storing invariant indices of a list of representative views. This framework also
provides a measure for the selection of “good” templates, for the purpose
of model to image corresponednce, a computationally hard problem. Here
we see the significance of result 2 above, since it tells us that if we want
to select the most stable view of an object (say, for a template), we need
not necessarily compute the complete three dimensional structure of the
object. Rather, since the most stable view is also the most likely view, we
may attempt to obtain this view using a learning algorithm that is given a
random sample of the views of the object.

— It provides the basic tools to define and analyze aspect graphs such that the
different aspects are not necessarily topologically distinct, rather they differ
metrically. In this way we can choose a representative set of viewpoints so
that we cover every possible view of an object upto some error ¢, and we can
use the neighborhood information in the graph in order to track a moving
object.
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