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Abstract
Animal transcription factors drive complex spatial and temporal patterns of gene

expression during development by binding to awide array of genomic regions.While

the in vivoDNA binding landscape and in vitroDNA binding affinities of many such

proteins have been characterized, our understanding of the forces that determine

where, when, and the extent to which these transcription factors bind DNA in cells

remains primitive.

In this chapter, we describe computational thermodynamic models that predict the

genome-wide DNA binding landscape of transcription factors in vivo and evaluate the

contribution of biophysical determinants, such as protein–protein interactions and

chromatin accessibility, on DNA occupancy. We show that predictions based only on

DNA sequence and in vitroDNAaffinity data achieve amild correlation (r = 0.4) with

experimental measurements of in vivo DNA binding. However, by incorporating

direct measurements of DNA accessibility in chromatin, it is possible to obtain much

higher accuracy (r = 0.6–0.9) for various transcription factors across known target

genes. Thus, a combination of experimental DNA accessibility data and computa-

tional modeling of transcription factor DNA binding may be sufficient to predict the

binding landscape of any animal transcription factor with reasonable accuracy.
I. Introduction
Animal transcription factors each bind to many thousands of DNA regions

throughout the genome in cells (Boyer et al., 2005; Georlette et al., 2007;

MacArthur et al., 2009; Robertson et al., 2007; Zeitlinger et al., 2007; reviewed

by Biggin, 2011). While many of the most highly occupied regions are functional

cis-regulatory regions and are evolutionarily conserved, many thousands of other

genomic regions that are bound at lower levels in vivo do not appear to be functional

targets (Carr and Biggin, 1999; MacArthur et al., 2009). It is, therefore, a critical

challenge to quantitatively predict the DNA binding levels of regulatory transcrip-

tion factors in cells and to determine the biochemical mechanisms that direct these

complex patterns of factor occupancy.

Animal transcription factors recognize short (5–12 bp) sequences of DNA that occur

with high frequency throughout the genome (Wunderlich and Mirny, 2009), yet most

occurrences of these recognition sites are not detectably bound in vivo (Carr and
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Biggin, 1999; Li et al., 2008; Liu et al., 2006). There are severalmechanisms that could

account for this discrepancy between predicted and observed transcription factor DNA

binding in cells. Competitive inhibition of binding at those DNA recognition sites that

overlap sequences occupied either by other sequence-specific factors (Stanojevic et al.,

1991) or nucleosomes (Agalioti et al., 2000; Cosma et al., 1999; Narlikar et al., 2002)

could selectively inhibit DNA occupancy at these sites. In addition, direct or indirect

cooperative interactions between transcription factors bound at close by recognition

sites could increase their occupancy at other genomic locations (Buck and Lieb, 2006;

Mann et al., 2009;Miller andWidom, 2003; Zeitlinger et al., 2003).Herewe describe a

computationalmodeling strategy that can analyze the relative influence of each of these

biochemical mechanisms on the overall pattern of transcription factor DNA binding

in vivo (Kaplan et al., 2011). A glossary is provided to explain key technical terms used

in describing the computational modeling (Section VII).
II. Overview of Model/Algorithm

A. Alternate Modeling Strategies
Many computational algorithms have been developed for predicting in vivo DNA

binding. Crudely, these studies fall into two categories:

Qualitative models aim at identifying statistically significant occurrences of DNA

binding sites or cis-regulatory regions (Agius et al., 2010; Ernst et al., 2010; Frith

et al., 2001;Granek andClarke, 2005; Narlikaret al., 2007;Narlikar andOvcharenko,

2009; Rajewsky et al., 2002; Ramsey et al., 2010; Schroeder et al., 2004; Sinha,

2006; Sinha et al., 2003; Ward and Bussemaker, 2008; Whitington et al., 2009; Won

et al., 2010). These computational methods usually rely onmodeling the background

distribution of transcription factor DNA recognition sites and focus on identifying

significant p-values, that is, sites where the background hypothesis is rejected. These

algorithms can identify a subset of cis-regulatory binding sites and provide a putative

transcriptional regulatory architecture for an organism by connecting regulators to a

set of putative target genes. They are less adequate, however, for predicting the levels

of transcription factor DNA occupancy, which has been shown to be critical for

relating DNA binding patterns to biological function (Carr and Biggin, 1999;

MacArthur et al., 2009).

Quantitative models, on the other hand, estimate the occupancy of a factor along

the genome. Statistically, they aim to calculate the binding probability (hence, the

percent of time or cells) at which the protein binds a specific DNA locus. These

methods are, thus, more suitable for modeling the continuous quantitative landscape

of transcription factor DNA occupancy as measured by genome-wide chromatin

immunoprecipitation (ChIP) studies. An additional advantage of the quantitative

approach is its natural generative probabilistic settings, which allow for easy inte-

gration of external data, such as chromatin state, the concentration of transcription

factors in cells, or interactions between neighboring proteins (He et al., 2009; He

et al., 2010; Roider et al., 2007; Wasson and Hartemink, 2009).
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In addition to direct quantitative models of transcription factor DNA binding, a

related set of models have focused on predicting the gene transcription patterns

driven by predefined DNA cis-regulatory regions. These studies generally use

thermodynamic models to predict transcription factor DNA binding within known

cis-regulatory regions as well as the resulting expression patterns driven by these

target regions in animal embryos (He et al., 2010; Kazemian et al., 2010; Raveh-

Sadka et al., 2009; Segal et al., 2008; Zinzen et al., 2006). Three-dimensional

changes in the concentration of regulatory transcription factors result in differential

occupancy at the same DNA locus over different nuclei, which in turn results in

different expression outputs in each cell. Unfortunately, these models do not explic-

itly train their models (or test them) on experimental in vivo DNA binding data, and

limit their scope to predict the expression levels driven by specific target genes or

cis-regulatory regions across the embryo. Therefore, their success in predicting

in vivo DNA occupancy cannot be directly assessed.
B. Generalized Hidden Markov Models
Most direct quantitative algorithms for predicting transcription factor DNA bind-

ing rely on a probabilistic framework based on generalized hidden Markov models

(gHMMs). These models use inference algorithms to estimate the occupancies

(or DNA binding probability) of one or more transcription factors across any DNA

sequence given their concentrations and protein–DNA binding specificities (Frith

et al., 2001; Granek and Clarke, 2005; Kulp et al., 1996; Raveh-Sadka et al., 2009;

Segal et al., 2008; Sinha et al., 2003; Wasson and Hartemink, 2009).

We have adopted a form of gHMM for modeling transcription factor-DNA bind-

ing in vivo, as this class of model offers several advantages. These models have very

few parameters and are therefore straightforward to optimize. Unlike most proba-

bilistic graphical models, they offer exact inference of posterior probabilities in

linear time, using a forward-backward dynamic programming algorithm (Durbin

et al., 1998; Rabiner, 1989). Finally, gHMMs are related to thermodynamic equi-

librium models: they view the ensemble of all possible configurations of bound

factors along the DNA as a Boltzmann distribution in which each configuration is

assigned a weight (or probability) depending on its energetic state; the probability

that a factor is bound at a specific location is calculated by summing the probabilities

of all configurations in which it is bound (Ackers et al., 1982; Buchler et al., 2003;

Granek and Clarke, 2005; Rajewsky et al., 2002; Schroeder et al., 2004; Segal et al.,

2008; Sinha, 2006; Wasson and Hartemink, 2009).

On the other hand, gHMMs are limited in their modeling power due to their

Markovian property: these models lack any memory for past states, and so when

estimating the probability of binding at a certain position the model is agnostic of

other (nonoverlapping) DNA binding sites. This prevents this class of models from

considering the full context in which DNA binding occurs. We will address this

limitation below and offer an approximation to allow a full thermodynamic model

using sampling procedures.
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C. Experimental Datasets
We demonstrated our approach by modeling the genomic binding of five reg-

ulators of early embryonic anterior-posterior (A-P) patterning in Drosophila

melanogaster: Bicoid (BCD), Caudal (CAD), Hunchback (HB), Giant (GT), and

Kruppel (KR).

ChIP-seq data for the five factors in stage 5 blastoderm embryos were used to

provide the measure of in vivo DNA occupancy (Bradley et al., 2010). 20-bp-long

sequence reads were mapped to the genome (Apr. 2006 assembly, BDGP Release 5).

To minimize mapping noise, we only considered reads uniquely mapped to the

genome with up to one mismatch. The mapped reads were then extended according

to their orientation to a length of 150 bp, and binned (down-sampled) to a 10 bp

resolution. Finally, the genomic binding landscape of each factor was smoothed

using a running window of 10 bins (or 100 bp), to account for sampling noise.

DNA binding affinities of the five factors (expressed as position weight matrices –

PWMs) were derived from previous in vitro measurements that used SELEX-Seq

(Berkeley Drosophila Transcription Network Project, unpublished data;

(MacArthur et al., 2009) (Fig. 1). The PWMcounts were normalized to probabilities,
[(Fig._1)TD$FIG]

Fig. 1 The generalized hidden Markov model. Diagram of the model states, including the unbound

background (BG) state, five states corresponding to the five transcription factors in the model (BCD,

CAD, GT, HB, and KR), and a 141-bp-long nucleosomal binding state (Nucleo.). The emission proba-

bilities of each transcription factor state are visualized using sequence logos that are based on position

weight matrices (PWMs). (See color plate.)
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after adding a pseudo-count of 0.01 to avoid zero probabilities (available at http://

bdtnp.lbl.gov/gHMM). Additional sources of PWMs (Noyes et al., 2008; Segal

et al., 2008) were also tested in the model, yielding similar results (Kaplan et al.,

2011). In all cases, the DNA binding specificities defined by these various experi-

ments (i.e., the PWMs) were maintained and were not optimized as parameters in the

model. We found that the tradeoff between having potentially more accurate PWMs

(and a better fit to experimental in vivoDNAbinding data) versus the cost of additional

parameters to optimize was not beneficial for most factors. Moreover, using fixed

PWMs from external studies prevents overfitting or drift toward additional motifs

that are often present near developmental regions, such as the CAGGTAG sequence

known to be bound by the transcription factor Zelda (Bradley et al., 2010).

The accessibility of DNA in chromatin was obtained from DNase-seq data result-

ing from the DNase I digestion of isolated stage 5 blastoderm embryo nuclei

(Li et al., 2011; Thomas et al., 2011). 34-bp-long reads were mapped to the genome

by requiring unique matches with no more than two mismatches, then these were

extended to a length of 150 bp, binned (down-sampled) to a 10 bp resolution, and

smoothed using a running window of 10 bins.

Estimates of transcription factor protein concentrations in each nucleus were

derived from three-dimensional fluorescence microscopy of D. melanogaster

embryos at early stage 5 (Fowlkes et al., 2008).

All of the above experimental datasets are available from the supplemental web-

site for Kaplan et al. (2011) at http://bdtnp.lbl.gov/gHMM.
D. Model Overview
Hidden Markov models are probabilistic frameworks where the observed data

(such as, in our case the DNA sequence) are modeled as a series of outputs (or

emissions) generated by one of several (hidden) internal states. The model then uses

inference algorithms to estimate the probability of each state along every position

along the observed data. In our case, the model is composed of the various states that

theDNAcould be in: unbound (the background state), bound by transcription factor t1,

bound by transcription factor t2, etc., or wrapped around a nucleosome (Fig. 1).

Each state holds some probability distribution of the DNA sequences it favors (and

emits according to the HMM). In our case, the background state is derived using the

simplemononucleotide (single base) probability (frequency) in the genome tomodel

the A/T distribution along the noncoding parts of the genome. The ‘‘bound’’ states

hold a probabilistic DNA model that represents the sequences that each protein

prefers to bind (its recognition sites). Additional parameters of the gHMM include

the prior probabilities of entering each state, which are modeled using the transition

probabilities between states. For example, a highly expressed protein that is more

likely to be in the bound state along the DNAwill have a higher transition probability

than a protein present at lower concentrations in cells. Once the parameters of the

gHMM are optimized (using a held-out set of training sequences) and given a new

DNA sequence, it is straightforward to infer the probability of each state (unbound,

http://bdtnp.lbl.gov/gHMM
http://bdtnp.lbl.gov/gHMM
http://bdtnp.lbl.gov/gHMM
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bound by factor t1, bound by factor t2, etc.) at each position along the sequence. See

Section V for further details of these models.

All our computational models estimate the DNA binding probability of each

transcription factor at a single-nucleotide resolution. A model-based algorithm is

then used to transform these predictions into smoothed ChIP-like landscapes so they

can be compared to the in vivo ChIP-seq measurements of protein–DNA binding

(Fig. 2). For this, the length distribution of DNA fragments recovered by the ChIP

process is used to simulate the overall shape of one peak, corresponding to a single

DNA binding event measured by ChIP-seq. For a length distribution c(l), the esti-

mated shape F of a peak is described as:

FðDxÞ /
X1
l¼Dx

cðlÞ

whereDx denotes the relative distance from the binding locus or peak center. In other

words, the probability of obtaining a read Dx bp away from the binding event is

proportional to the total number of reads at least Dx bp long (Capaldi et al., 2008;

Kaplan et al., 2011).
[(Fig._2)TD$FIG]

Fig. 2 From DNA binding probabilities to ChIP landscape. (A) Each DNA binding event (left) was

transformed to a model-based estimation of expected ChIP peak shape based on the average length of the

DNA fragments immunoprecipitated in the ChIP experiment (right) (Kaplan et al., 2011). (B) This model

was then used to convolve the model’s binding predictions (vertical black bars) to the expected landscape

of ChIP sequencing assay (thin black line), which was then compared to the measured in vivo DNA

binding landscape (gray shaded landscape).
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III. Biological Insights

A. A Simple Model is Mildly Successful
We began with the simplest model – a single transcription factor binding to DNA.

This required optimizing only a single parameter, P(t), for each transcription factor

that corresponds to its effective concentration in nuclei and assuming, for this first

simple case at least, that the protein is expressed at the same concentration in all

embryo cells. We used standard optimization techniques (based on a combination of

genetic algorithms and gradient ascent-based algorithm) to optimize these para-

meters (see section V). For each tested value of P(t), we used the generalize hidden

Markov model to estimate the binding probability per position, and then convoluted

these predictions into the predicted DNA binding landscape.

To analyze our predictions, we compiled a list of 21 known target loci of the A-P

patterning system. Each target gene was expanded by �10 Kb upstream and down-

stream of the transcription unit to capture its cis-regulatory regions. In each analyses

presented in this chapter, we trained the model parameters to optimize the fit

between the predicted and the observed ChIP-seq landscapes at a set of six loci,

which spanned �87 Kb, and evaluated the trained model on the remaining set of

15 loci, which spanned �280 Kb. To account for long genomic regions where no

DNA binding is observed in vivo by ChIP, the training and test sets were enhanced by

addition of three or five control regions, spanning a total of 100 and 221 Kb,

respectively (Kaplan et al., 2011).

After parameter optimization using the training set, the model was applied to the

test set. The predicted DNA binding landscape around one gene in the test set is

shown in Fig. 3A. The total correlation between the model predictions and measured

data was quite weak when averaged over all �500 kb of the test set (r = 0.36), with

specific factors varying from r = 0.15 (GT) to r = 0.66 (BCD) (Kaplan et al., 2011).

In addition to estimating accuracy using the correlation between the model’s

predictions and experimentally measured in vivo DNA binding, we also tried two

alternatives. In one, we used distance-based measures such as the root mean square

deviation (RMSD) between the predicted and measured genomic landscapes. In the

second, we tried a peak-centric comparison method, where a peak calling algorithm

was used to identify ‘‘bound regions’’ in both the predicted and the measured data

and then the overlap between called peaks was compared. These alternate scoring

methods resulted in qualitatively similar results to the correlation coefficients given

in the rest of the text and in Fig. 4.
B. Allowing Transcription Factor Competition Does Not Improve the
Predictions’ Accuracy
Encouraged by the results with each transcription factor considered singly, we

examined the effect of DNA binding site competition between the five factors on our

ability to predict in vivo DNA occupancy. Overlapping DNA recognition sites can



[(Fig._3)TD$FIG]

Fig. 3 High-resolution predictions of protein–DNA binding landscape. (A) The model’s DNA binding

predictions (thin black line) for BCD are compared to the measured in vivoDNA binding landscape (dark

shaded landscape) across the 15 Kb around the os locus. In this example, the BCD binding landscape was

predicted without considering the other transcription factors. (B) Same as (A), except that direct DNA

binding competition between the five factors and with nucleosomes was allowed, and BCD binding was

modeled independently in each of 6,078 nuclei of the stage 5 blastoderm embryo. (C) Same as (B), but

also incorporating a nonuniform DNase I hypersensitivity-based prior on transcription factor binding to

account for variations in DNA accessibility (shown as light shaded landscape). (D) Same as (C), but

further adding cooperative interactions between adjacently bound transcription factor molecules in a

thermodynamic setting.
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allow direct competition between transcription factors (Stanojevic et al., 1991).

Moreover, overlapping sites are often conserved at long evolutionary distances,

suggesting an important role for inter-factor competition (Hare et al., 2008).

Therefore, we expanded the gHMM in our model to consider all five transcription
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Fig. 4 Prediction accuracy at increasing degrees of model complexity. Accuracy of DNA binding

predictions for the test set of 15 known A-P targets and five control loci. Shown are the correlation

coefficients between model prediction and measured in vivo DNA binding landscape for increasing

degrees of model complexity. These are, from left to right: independent predictions per transcription

factor using our simplest model; allowing DNA binding site competition between transcription factors;

making predictions at a single-nucleus resolution; including nucleosomes using a sequence-specific or a

sequence-independent model of nucleosome binding; adding a nonuniform prior on transcription factor

binding using DNA accessibility measurements; and adding cooperative DNA binding interactions in a

thermodynamic setting.
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factors simultaneously in a probabilistic framework (Fig. 1), where the concentra-

tions of each factor t is modeled by an additional probabilistic term P(t). In the single

transcription factor model, binding of one protein to a recognition site did not affect

the DNA occupancy of a different transcription factor at an overlapping site. In this

new model, however, because the total occupancy at a site cannot exceed 1, tran-

scription factors effectively compete for DNA binding to overlapping recognition

sites. Surprisingly, this competitive model gave slightly less accurate predictions

than its single factor counterpart. On the test data, the model’s predictions decreased

from a total correlation of 0.36 to 0.33 (see Fig. 4).
C. Expanding the Model to Three Dimensions With Single Nucleus Resolution
Has Only Slight Effects
One reason why the model did not improve when competition was allowed could

have been that, because we treated the embryo as a homogenous entity, the model

allowed competition between transcription factors that are not expressed together at

high levels in the same cells. We therefore expanded our algorithm to model the

DNA binding of all transcription factors in each of the �6000 nuclei of the embryo

separately. To scale the optimized concentration parameters of the five transcription

factors for each nuclei, we further scaled the prior probability P(t) of every tran-

scription factor t proportionally to its protein expression level, as measured at a

single-cell resolution (Fowlkes et al., 2008). We then averaged the predicted DNA

binding landscape of all nuclei to obtain whole-embryo genomic predictions, which

were then compared to the (whole-embryo average) in vivo DNA binding measure-

ments from ChIP-seq (Kaplan et al., 2011). This slightly improved the predictions

relatively to the whole-embryo predictions (Figs. 3B and 4). However, combining
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DNA binding site competition and 3D expression data yields a model that is only

about as effective as the simplest model. Thus, while competition between transcrip-

tion factors is likely important at a subset of recognition sites, it does not appear to be

a principal determinant of the overall distribution of transcription factor DNA

occupancy in vivo.
D. Predicting Nucleosome Location Does Not Improve the Model’s Predictive Power
To test if chromatin state influences the accuracy of our model, we first attempted

to predict the locations of nucleosomes to enable modeling of the competition

between transcription factors and nucleosomes in binding to DNA (Narlikar et al.,

2007; Raveh-Sadka et al., 2009; Wasson and Hartemink, 2009). As there are no

direct measurements of nucleosome positions from early Drosophila embryos, we

modeled these computationally. We extended our Markov model to represent the

sequence bound by a single nucleosome. This was done by including an additional

state in the gHMM that comprised a sequence-independent model of nucleosome

DNA binding in which nucleosomes are viewed as long ‘‘space-fillers’’ that, when

present, prevent regulators from binding to DNA. We used a 141-bp long model of

nucleosome binding, based on a fixed distribution of nucleotides as in the back-

ground state PB of the Markov model (0.32 for A/T, 0.18 for G/C). Similarly to the

transcription factor states, the nucleosomal state was assigned a prior probability

term P(t) to reflect a fixed nucleosomal concentration along the embryo. P(t) was

optimized together with other concentration-related parameters P(t) for all transcrip-

tion factors. Alternatively, due to uncertainty in the literature about the contribution

of DNA sequence specificity to in vivo nucleosome positioning, we also tested a

sequence-specific model of nucleosome binding (Segal et al., 2006). Neither of

these nucleosomal models dramatically improved the DNA binding predictions for

the five transcription factors (Fig. 4).
E. DNA Accessibility Data Greatly Improve DNA binding Predictions
Aweakness of the above strategies to predict nucleosome location is that only one

constitutive model is derived for all cells of the organism for all stages of develop-

ment. Yet it is known that chromatin accessibility varies dramatically over time and

between cells (Kharchenko et al., 2011; Thomas et al., 2011). Therefore, we sought

to exploit direct genome-wide measurements of DNA accessibility for the same

developmental stage from which the ChIP-seq data were derived (Li et al., 2011;

Thomas et al., 2011). Interestingly, when we compared these DNA accessibility data

to the predictions of the original, simple version of our gHMM, we found that the

model correctly predicts DNA binding on the most highly accessible genomic

regions but tended to predict stronger DNA binding than was actually measured

on less accessibility regions (Kaplan et al., 2011). We therefore leveraged the

statistical framework of generalized hidden Markov models and incorporated
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DNA accessibility data into the model as a nonuniform prior probability of regula-

tory binding along the genome – with regions of low accessibility being given a

greatly reduced probability of binding.

The incorporation of differential DNA accessibility in this way dramatically

boosted the model’s accuracy by almost twofold to a correlation of r = 0.67 with

themeasured in vivo occupancy datawhen averaged over all the�500 kb test set, with

the factor-specific correlationvarying from 0.58 (HB) to 0.79 (BCD) (Figs. 3C and 4).

In addition to the sigmoidal prior described in Section V, we investigated addi-

tional methods to transform the DNA accessibility data DDx into probabilities PDx.

First, we tried to linearly scale the accessibility dataDDx and limit the maximal PDx

values at one. This resulted with slightly less accurate predictions (r = 0.66 on test

data). Also, we tried an even simpler model using a step function, namely modeling

PDx as one value below some minimal value of DDx, and another value above it.

Even this naive model achieved comparable accuracy, at r = 0.64. This slightly

reduced correlation suggests that the effect of DNA accessibility on transcription

factor binding may be almost binary – low accessibility regions show almost no

regulatory binding, while binding at accessible regions is modeled quite accurately

by DNA sequence alone (Kaplan et al., 2011).
F. Modeling Direct Cooperative DNA Binding Does Not Affect Model Performance
Although our predictions that included DNA accessibility data were reasonable,

we sought to further refine our model by considering factor-factor interactions other

than the simple direct competition (via overlapping recognition sites) described

earlier. For example, direct physical interactions between transcription factors bound

at neighboring recognition sites have often been found to increase the occupancy of

one or both proteins on DNA, for both homomeric and heteromeric cooperative

interactions, and to sharpen the regulatory response to changes in transcription factor

concentration (Arnosti et al., 1996; Small et al., 1992).

Generalized hidden Markov models, however, have limited ability to model the

broader context of DNA binding events, including cooperative interactions between

neighboring sites.We therefore added a second, sampling-based phase to our compu-

tational model. In this phase, a large ensemble of DNA binding configurations is

sampled, each with a different set of protein–DNA interactions. The probability of

each configuration is then estimated based on all pairs of nearby occupied sites (up to

95 bp apart) and the parameterized energetic gain of each pair. Finally, the overall

DNA binding probability at each position is quantified as a weighted sum of all

sampled configurations.

By adopting a statistical mechanics perspective, the exponential space of protein–

DNA binding configurations can be viewed as a canonical ensemble in a thermo-

dynamic equilibrium. Here, the probability of each configuration is directly linked to

its energetic state, including direct protein–DNA interactions, steric hindrance con-

straints, and cooperative interactions with neighboring factors (Ackers et al., 1982;

Segal et al., 2008). We extended our model to capture cooperative interactions

between transcription factors using a novel set of 15 parameters (one for each



11. Quantitative Models of the Mechanisms that Control Genome-Wide Patterns 275
nonredundant pair of the five factors), modeling the energy gain for the nearby

binding of every possible pair of the five transcriptional regulators in our model.

The optimized set of cooperative DNA binding parameters includes predictions of

interactions between many homomeric and heteromeric pairs (Kaplan et al., 2011).

These cooperativity parameters improved the predictive power of the model to a

correlation of r = 0.67 on the test data, ranging from r = 0.58 (HB) to r = 0.79

(BCD), a marginal improvement over the Markovian approach (Figs. 3D and 4).

Thus, our model suggests that cooperative interactions between transcription factor

molecules have a rather limited contribution in shaping the genomic landscape of

in vivo DNA binding (Kaplan et al., 2011).
G. Implications for Determining Transcription Factor DNA Occupancy in vivo
The increasing availability of genome-wide in vivomeasurements of DNA acces-

sibility (via DNase I, FAIRE) for a variety of cell types, developmental stages, and

environmental conditions, together with the laborious nature of direct ChIP mea-

surements, suggests a mixed computational-experimental streamlined strategy for

estimating the genome-wide binding landscape of proteins. While we often fail to

predict transcription factor DNA binding levels from DNA sequence and in vitro

DNA affinity measurements alone, by incorporating DNA accessibility data into a

thermodynamic model, a reasonable job of quantitatively predicting the occupancy

of transcription factors can be made. While such an approach should not be viewed

as a substitute for systematic experimental measurement of transcription factor DNA

binding in vivo, we believe our predictions are good enough to be useful when such

experimental data are unavailable or impractical to obtain.
IV. Open Challenges
Quantitative computational models of sequence-specific protein–DNA interac-

tions offer a fast approximation of the genomic landscape of protein–DNA binding.

Nonetheless, these predictions are still far from being reliable enough to fully

replace experimental in vivo measurements.

One of the greatest challenges for improving future models is in modeling locus-

specific DNA accessibility using genomic DNase I hypersensitivity data. Our cur-

rent models rely on a probabilistic platform, in which we tested various ways to

transform read coverage into a priori DNA binding probabilities, with a sigmoid

function being the most useful. While this approach worked well on relatively

accessible regions (cis-regulatory regions and the regions flanking actively

expressed genes), it was not as accurate on a full genomic scale, giving a correlation

coefficient of only 0.33 for an entire chromosome arm (Kaplan et al., 2011). Most

false predictions arose from bona fide sites predicted to be strongly bound, but which

show limited or no binding in vivo due to limited accessibility. In addition, we

observed some highly accessible regions bound by several transcription factors,

even in the absence of cognate sequence recognition sites. We believe that
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optimizing the transformation fromDNase I read densities into binding probabilities

at very low and very high DNase-seq read densities could strengthen the model.

A second challenge is to improve the modeling of cooperative DNA binding (both

direct and indirect). In our work to date, we applied a somewhat simple approach,

where two nearby transcription factor molecules contribute some constant energetic

value only if they bind in close proximity (<95 bp). It seems probable that more

sophisticated methods, with a greater number of parameters, could model the bio-

logical/physical effect with greater accuracy.

Wasson and Hartemink (2009) recently used hidden Markov models to analyze

transcription factor DNA binding in yeast and showed that their predictions improve

as more sequence-specific transcription factors are added to themodel.Whilewe did

not observe this trend with our data, possibly because we only analyzed five tran-

scription factors, revisiting this approach with a greater number of transcription

factors could be revealing.

Finally, while the direct goal of the work described in this chapter was to predict

in vivo DNA binding from DNA sequence, in vitro affinity, and chromatin accessi-

bility data, a more challenging question is to understand and predict de novo how

dynamic patterns of DNA accessibility are themselves generated in cells. This may

require correctly modeling the activities of hundreds of sequence-specific transcrip-

tion factors, the chromatin remodeling proteins that they recruit, nucleosomes, and

other chromatin proteins. We doubt that sufficient data or knowledge is available to

yet take up this task.
V. Computational Methods

A. Generalized Hidden Markov Models
Generalized hiddenMarkovmodels were used to predict transcription factor DNA

binding based on the factor concentration and the DNA sequence. We followed a

thermodynamic rationale, and considered the space of all valid DNA binding con-

figurations as a Boltzmann distribution. Under this statistical framework, the prob-

ability of each configuration, Pi, is proportional to its energetic state Ei

Pi / e�bEi

where b equals 1/kBT, with kB being the Boltzmann constant and T the temperature

(25 �C).
The energetic state of each configuration could therefore be calculated from its

binding probability. Under this model, bound nucleotides are generated according to

the protein–DNA binding preference, or PWM, of the transcription factor. The

probability of a subsequence Si to be bound by transcription factor t equals

PtðSiÞ ¼ PðtÞ
Ylt�1

j¼0

PjðSiþjjutÞ



11. Quantitative Models of the Mechanisms that Control Genome-Wide Patterns 277
with P(t) being the a priori binding probability of transcription factor t, lt the length

of the binding site for factor t, and Pj(Si+j|ut) corresponds to the probability of the

nucleotide Si+j, at the j position of a binding site for factor t, as modeled by its

recognition parameters ut. Unbound nucleotides are generated from a mononucleo-

tide background distribution PB (0.32 for A/T, 0.18 for G/C).

It is useful to visualize this family of models as a series of probabilistic transitions

between the internal states of the model (Fig. 1). The different types of DNA

sequence (unbound DNA; DNA bound by factor t, etc.) are the nodes, and the

allowed transitions between states are shown as arrows in the figure. The parameters

of themodel correspond to the probabilities of transition between states. Each state is

associated with one transcription factor; the probability of the corresponding DNA

subsequence is calculated using its binding site model Pj(Si). Each configuration is

viewed as one path along the internal states of the model, starting in one state at the

beginning of the DNA sequence, and transitioning among the states until the end of

the sequence. The full binding configuration of DNA sequence S, with multiple

factors t1,. . .,tk bound at positions x1. . .xk, respectively, is viewed as a path that loops
into the unbound state along most of the DNA sequence except for positions x1. . .xk
where it enters the states corresponding to the transcription factors t1,. . .,tk. We can

then write the probability of this path as:

PðSÞ ¼ PBðSÞ
Yk
i¼1

PðtÞPtiðSxiÞ
PBðSxiÞ

Note that no overlapping binding sites are allowed in each configuration. To further

account for steric hindrance, each PWM was extended by two flanking regions of 3

bp. These were modeled by a nonspecific background distribution PB (0.32 for A/T,

0.18 for G/C). The minimal distance between two occupied sites in one binding

configuration is therefore 7 bp (two 3 bp flanks plus a 1 bp transition through the

unbound state).

To infer the overall binding probability of each transcription factor at each DNA

position, one must account for the exponentially large number of possible config-

urations, whileweighting each configuration based on its probability.While this task

seems difficult at first, it can be solved in a linear time using the dynamic program-

ming inference algorithm (Durbin et al., 1998; Rabiner, 1989). Specifically, we use

the forward-backward algorithm. First, we calculate the local probabilities of each

transcription factor t to bind DNA at each position i, Ut,i = P(t) * Pt(Si). We then

calculate the Forward Potentials Ft,i and the Backward Potentials Bt,i by summing the

probabilities of all configurations (paths) that end (for Forward Potentials) or begin

(for Backward Potentials) at position i with a binding site of t. Finally, we calculate

the exact a posteriori probability of transcription factor t bound at position i by

multiplying the forward and backward potentials. This calculates the binding prob-

ability of factor t at position i, given all possible combinations of other transcription

factors along the entire sequence S.
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B. Model-based Simulation of Chromatin
We used a sigmoid transformation to convert the genomic landscape of DNase I

hypersensitivity data DDx (density of sequenced reads along the genome) into the a

priori probability PDx of entering a bound state at position x:

PDx ¼ 1

1þ e�b DDxþa

The parameters of this equation, a = 6.008 and b = 0.207, were optimized over the

training data, separately from the concentration parameters in an iterative manner

(piecewise optimization). Those probabilities PDx are then multiplied by the prior

probability of binding P(t) for each transcription factor t in order to calculate the

actual transition probability into the bound state of transcription factor t at position x

along the genome.
C. Thermodynamic Modeling of Protein–DNA Interactions Using Boltzmann Ensembles
To predict transcription factor DNA binding in a full thermodynamic setting we

first used the generalized hidden Markov model to analyze the underlying sequence

and predict proteins’DNA binding according to the different protein concentrations

within each nucleus in the Drosophila blastoderm stage embryo. This was used to

calculate an approximate map of DNA binding. To allow for cooperative interactions

between the transcription factor molecules, we then used the DNA binding proba-

bilities described above to sample 10,000 binding configurations per sequence/run

and reweighted them to account for the energetic gain due to cooperative DNA

binding interactions. This was done in a thermodynamic setting, where every con-

figuration i was reweighted by Wi

W i ¼ exp �
X

jxj�xk j< 95

Cj;k

0
@

1
A

where xj and xk are the binding locations of factors j and k, while Cj,k corresponds to

their optimized cooperativity parameter. The reweighted samples are then averaged,

and the binding probability of every factor at every position is calculated. This

combination of direct gHMM calculations followed by importance-weighted sam-

pling allows us to approximate the full thermodynamic landscape of binding using a

fast framework with few parameters.
D. Optimization of Model Parameters
We optimized all the parameters in our models by focusing on the train set loci and

maximizing the correlation among the model predictions and the in vivo measure-

ments of transcription factor DNA binding. The prior probabilities P(t) of entering

into the bound state for each transcription factor, which reflect the nuclear protein
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concentration of each factor, were first optimized by a genetic optimization algo-

rithm (Goldberg and Holland, 1988) with 25 generations and a population size of 15.

We then further optimized the P(t) variables using a gradient-based trust-region

algorithm (Steihaug, 1983).
VI. Glossary
Qualitative Models of DNA Binding Sites: A family of computational models

aimed at identifying transcription factor binding sites along a given DNA sequence.

Quantitative Models of DNA Binding: A family of computational models aimed

at estimating the occupancy of DNA-binding proteins along the positions of a given

DNA sequence. For example, given an input sequence, a qualitative model may

identify two putative recognition sites, while a quantitative model may predict that

one of these sites is occupied twice as often (i.e., for longer periods of time) as the other.

Position Weight Matrix (PWM): A statistical representation of a DNA motif.

Commonly used to model the DNA recognition element of a transcription factor, a

PWM is a table of 4-by-N that records the probability of observing each of the four

nucleotides at every position of the motif. These models assume independence

between theN positions of themotif such that each nucleotide position is represented

as a single column with the estimated probabilities for each of the four nucleotides.

To calculate the probability of transcription factor binding at a DNAword of size N

given the PWM, the probabilities given in the cells of the table that correspond to the

nucleotide at each of the N positions of the word are multiplied.

Background Model of DNA: A statistical representation of DNA sequences,

typically used as a negative control when scanning DNA for sequence motifs.

These models typically model only the general nucleotide (A-T content) of the

DNA and as a result are too weak to model the entire length of a sequence-specific

binding site for transcription factors.

Thermodynamic Model: According to statistical thermodynamics, the relative

amount of time a complex system with multiple states would spend in each state is

related to its energetic states. Using aBoltzmann distribution, the energetic state of each

configuration is used to estimate the probability of the system being in each state. For

example, every position along a DNA sequence could be bound by many transcription

factors, but it is more likely the system is usually in a ‘‘stable’’state – such as no binding

at all or binding of one or more proteins at their higher-affinity recognition sites.

Hidden Markov Model (HMM):A probabilistic framework for modeling a series

of observations (in our case a DNA sequence) using a series of unobserved transi-

tions between the internal states of the model. The parameters of the model include

the probabilities of transition between the various states (the transition probabilities),

and the probabilities for each of the possible outputs of each state (the emission

probabilities). Using inference algorithms, HMMs are used to efficiently find the

most probable explanation (path over the states of the model) of the data, or to infer

the posterior probability of a given state at a given position.
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Generalized Hidden Markov Model (gHMM): An extended class of HMMs that

allow states with longer outputs as well as mute states with no output at all. We

employ a gHMM with ‘‘bound’’ states that use PWM to model sequence-specific

binding sites, and a ‘‘not-bound’’ state that uses a background model of DNA

nucleotide distribution. Given a DNA sequence, we use the gHMM to infer which

positions along the sequence are likely to correspond to the ‘‘bound’’ states and to

what extent.

Prior and Posterior Probabilities: In Bayesian statistics, the prior and posterior

probabilities estimate the likelihood of an event before or after we take evidence into

account, respectively. For example, the prior probability of a given state in model

corresponds to how often we believe a given transcription factor binds DNA in

general, while the posterior probability of the protein’s binding depends of the actual

sequence of the DNA.

Dynamic Programming: A class of algorithms in computer science that solve

certain problem by breaking them down into simpler overlapping subproblems.

Forward-Backward Algorithm:A dynamic programming inference algorithm for

calculating the posterior probability of all states at all the positions of an input series

of observations. Here, we use the algorithm to estimate the posterior binding prob-

ability of each transcription factor along a sequence of DNA. First, the algorithm

calculates the probabilities of each state at any position given the DNA sequence

from the start until that point (forward probabilities). It then calculates the proba-

bilities of all states given the remaining part of the DNA sequence (background

probabilities). Finally, these are combined to produce the posterior probability given

the full sequence.
Further Reading
More details on our model and the implications of our analysis for transcription

factor DNA binding can be found in Kaplan et al. (2011). A companion paper

providing additional biochemical arguments suggesting that chromatin accessibility

plays a more important role than direct heteromeric cooperative association between

transcription factors in directing factor binding in cells can be found in Li et al.

(2011). Finally, Biggin (2011) comprehensively reviews the relationship between the

continuum of transcription factor DNA occupancy levels seen in animal cells and

biological function.
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