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Abstract.

We describe the problem of recognition under changing illumination conditions and changing viewing
positions from a computational and human vision perspective. On the computational side we focus on
the mathematical problems of creating an equivalence class for images of the same 3D object undergo-
ing certain groups of transformations | mostly those due to changing illumination, and brie
y discuss
those due to changing viewing positions. The computational treatment culminates in proposing a simple
scheme for recognizing, via alignment, an image of a familiar object taken from a novel viewing position
and a novel illumination condition. On the human vision aspect, the paper is motivated by empirical
evidence inspired by Mooney images of faces that suggest a relatively high level of visual processing is
involved in compensating for photometric sources of variability, and furthermore, that certain limitations
on the admissible representations of image information may exist. The psychophysical observations and
the computational results that follow agree in several important respects, such as the same (apparent)
limitations on image representations.

Keywords: Visual Recognition, Alignment, Photometric Stereo, Recognition from Shading, Visual Cor-
respondence.

1. Introduction

The problem of visual recognition is one of the well
known challenges to researchers in human and ma-
chine vision. The task seems very easy and natural
for biological systems, yet has proven to be very
di�cult to place within a comprehensive analytic
framework. Some of the di�culties arise due to
a lack of a widely accepted de�nition of what the
problem is. For example, one can easily recognize
scenes (such as a highway scene, city scene, restau-
rant scene, and so forth) [41] without an apparent
need to recognize individual objects in the scene,
nor to have a detailed recollection of the spatial
layout of \things" in the scene. In this case it
seems that some form of statistical regularity of
scenes of a speci�c type is exploited, rather than
what we normally associate with the task of \rec-
ognizing an object". Other di�culties arise due
to hard mathematical problems in understanding
the relationship between 3D objects and their im-

ages. For example, as we move our eyes, change
position relative to the object, or move the ob-
ject relative to ourselves, the image of the object
undergoes change. Some of these changes are in-
tuitive and include displacement and/or rotation
in the image plane, but in general the changes are
far from obvious. If the illumination conditions
change, that is, the level of illumination, as well
as the positions and distributions of light sources,
then the image of the object changes as well. The
light intensity distribution changes, and shadows
and highlights may change their position.

In this paper we focus on the mathematical
problems of creating an equivalence class for im-
ages of the same 3D object undergoing a certain
group of changes. Before narrowing further the
scope of discussion it may be worthwhile to con-
sider further the types of \sources of variability"
that are of general interest in recognition of indi-
vidual objects. Following the seminal work of [54],
we distinguish four general sources of variability:
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� Photometric: changes in the light intensity dis-
tribution as a result of changing the illumina-
tion conditions.

� Geometric: changes in the spatial location of
image information as a result of a relative
change of viewing position.

� Varying Context: objects rarely appear in iso-
lation and a typical image contains multiple ob-
jects that are next to each other or partially oc-
cluding each other. Changes in the image can,
therefore, occur by changing the context with-
out applying any transformation to the object
itself.

� Non-rigid Object Characteristics: these include
objects changing shape (such as facial expres-
sions), objects having movable parts (like scis-
sors), and so forth.
The photometric source of variability has to do

with the relation between objects and the images
they produce under changing conditions of illu-
mination, i.e., changing the level of illumination,
direction and number of light sources. This has
the e�ect of changing the light intensity distribu-
tion in the image and the location of shadows and
highlights. We will examine this issue later in the
paper.

The geometric source of variability has to do
with the geometric relation between rigid ob-
jects and their perspective images produced un-
der changing viewing positions (relative motion
between the viewer and the object). This is prob-
ably the most emphasized source of variability in
computer vision circles and has received much at-
tention in the context of recognition, structure
from motion, visual navigation, and recently in
the in the body of research on geometric invari-
ants (e.g., [34], [35]). We note that even relatively
small changes in viewing position between two im-
ages of the same object often create a real problem
in matching the two against each other. Figure 1
illustrates this point by superimposing two edge
images of a face separated by a relatively small
rotation around the vertical axis. We will discuss
geometric issues of recognition later in Section 6,
but for the most part of this paper we will focus
only on the photometric source of variability.

The third source of variability has to do with
the e�ect of varying context. A typical image of-
ten contains multiple objects that are next to each

other, or partially occluding each other. If we at-
tempt to compare the entire image (containing a
familiar object) to the model representation of an
object in question, then we are unlikely to have a
match between the two. The problem of varying
context is, therefore, a question of how the im-
age representation of an object (say its contours)
can be separated from the rest of the image be-
fore we have identi�ed the object. The problem is
di�cult and is often referred to as the problem of
\segmentation", \grouping" or \selection". In the
context of achieving recognition the crucial ques-
tion is whether the problem of context can be ap-
proached in a bottom-up manner, i.e., irrespective
of the object to be recognized, or whether it re-
quires top-down processes as well. It appears that
in some cases in human vision the processes for
performing grouping and segmentation cannot be
isolated from the recognition process. In some well
known examples, such as R.C. James' image of a
Dalmation dog (see, [29]), it appears unlikely that
the image of the object can be separated from the
rest of the image based on image properties alone
and, therefore, some knowledge about the speci�c
class of objects is required to interpret the image.

Human vision, however, appears also to con-
tain relatively elaborate processes that perform
grouping and segmentation solely on a data-driven
basis independent of subsequent recognition pro-
cesses. For example, Kinsbourne and Warrington
([19], cited in [7]) report that patients with les-
sions in the left inferior temporo-occipital region
are generally able to recognize single objects, but
do poorly when more than one object is present
in the scene. Another line of evidence comes
from displays containing occlusions. The occlud-
ing stimuli, when made explicit, seem to stimu-
late an automatic `grouping' process that groups
together di�erent parts of the same object [36].
The third line of evidence comes from `saliency'
displays in which structures, not necessarily rec-
ognizable ones, are shown against a complex back-
ground. Some examples are shown in Figure 2. In
these displays, the �gure-like structures seem to
be detected immediately despite the lack of any
apparent local distinguishing cues, such as local
orientation, contrast and curvature [52], [53]. We
will not consider further the problem of varying
context, and assume instead that the region in
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Fig. 1. Demonstrating the e�ects of changing viewing position on the matching process. The di�culty of matching two
di�erent views can be illustrated by superimposing the two. One can see that, even for relatively small changes in viewing
position, it could be very di�cult to determine whether the two views come from the same face without �rst compensating
for the e�ects of viewing transformation.

Fig. 2. Structural-saliency displays. The �gure like structures seem to `pop-up' from the display, despite the lack of any
apparent local distinguishing cues, such as local orientation, contrast and curvature [52].

the image containing the object has been isolated
for purposes of recognition.

The fourth source of variability has to do with
objects changing their shape. These include ob-
jects with movable parts (such as the human
body) and 
exible objects (for example, a face
where the changes in shape are induced by facial
expressions). This source of variability is geomet-
rical, but unlike changing viewing positions, the
geometric relation between objects and their im-
ages has less to do with issues of projective ge-
ometry and more to do with de�ning the space of
admissible transformations in object space.

Our primary focus will be on the photometric
source of variability, with some discussion on the
geometric source. We discuss next in more de-

tail the issues related to changing illumination in
visual recognition.

2. The photometric Source of Variability

and its Impact on Visual Recognition

The problem of varying illumination conditions, or
the photometric source of variability as we refer to
it here, raises the question of whether the prob-
lem can be isolated and dealt with independently
of subsequent recognition processes, or whether it
is coupled with the recognition process.

It appears that in some cases in human vision
the e�ects of illumination are factored out at a rel-
atively early stage of visual processing and inde-
pendently of subsequent recognition processes. A
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Fig. 3. Grey-scale images of `Ken' taken from three di�erent illumination conditions. The bottom row shows the step edges
detected by local energy measures followed by hysteresis [10]. The step edges look very similar to the ones produced by
Canny's edge detection scheme.

well known example is the phenomenon of light-
ness and color constancy. In human vision the
color of an object, or its greyness, is determined
primarily by it's re
ectance curve, not by the ac-
tual wavelengths that reach the observer's eye.

This property of the visual system is not com-
pletely robust as it is known, for example, that

uorescent lighting alters our perception of colors.
Nevertheless, this property appears to suggest
that illumination is being factored out at an early

stage prior to recognition. Early experiments that
were used to demonstrate this used simple dis-
plays such as a planar ensemble of rectangular
color patches, named after Mondrians' paintings,
or comparisons among Munsel chips [24]. More

recent psychophysical experiments demonstrated
the e�ect of 3D structure on the perception of
color and lightness [11], [21]. These experiments
show that the perception of lightness changes with
the perceived shape of the object. The objects

that were used for these experiments are rela-
tively simple, such as cylinders, polyhedrons and
so forth. It is therefore conceivable that the 3D
structure of the object displayed in these kinds
of experiments can be re-constructed on the basis

of image properties alone after which illumination

e�ects can be factored out.

Another example of factoring out the illumi-

nation at an early stage, prior to and indepen-

dently of recognition, is the use of edge detection.

Edge detection is the most dominant approach to

the problem of changing illumination and is based

on recovering features from the image that are

invariant to changes of illumination. The best

known example of such features are step edges,

i.e., contours where the light intensity changes rel-

atively abruptly from one level to another. Such

edges are often associated with object boundaries,

changes in surface orientation, or material proper-

ties [28], [30]. Edge images contain most of the rel-

evant information in the original grey-level image

in cases where the information is mostly contained

in changing surface material, in sharp changes in

surface depth and/or orientation, and in surface

texture, color, or greyness. In terms of 3D shape,

these are characteristics of relatively simple ob-

jects. Therefore, the edges of simple objects are

relatively informative (or recognizable) and will
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Fig. 4. Valleys, ridges, and composite contour images produced by Freeman's contour detection method applied to the
three images of the previous �gure.

change only slightly when the illumination condi-
tions change.

Many natural objects have a more complex
structure, however: surface patches do not change
orientation abruptly but rather smoothly. In this
case, step edges may not be an ideal representa-
tion for two reasons: the edge image may not nec-
essarily contain most of the relevant information
in the grey-level image, and not all edges are stable
with respect to changing illumination. For exam-
ple, edges that correspond to surface in
ections in
depth are actually \phantom" edges and depend
on the direction of light source [33].

Alternative edge detectors prompted by the
need for more recognizable or more stable con-
tour images search instead for extremal points of
the light intensity distribution, known as valleys

and ridges, or build up a \composite" edge rep-
resentation made out of the union of step edges,
valleys, and ridges [38], [32], [39], [10]. The com-
posite edge images do not necessarily contain the
subset of edges that are stable against changing
illumination; they generally look better than step
edges alone, but that varies considerably depend-
ing on the speci�c object.

The process of edge detection, producing step
edges, ridges, valleys, and composite edge im-
ages, is illustrated in Figures 3 and 4. In Fig-
ure 3 three `Ken' doll images are shown, each
taken under a distinct illumination condition, with
their corresponding step edges. In Figure 4 the
ridges, valleys, and the composite edge images of
the three original images are shown (produced by
Freeman and Adelson's [10] edge and line detec-
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Fig. 5. Images of `Ken' taken from di�erent illumination conditions followed by a thresholding operation. The recognizabil-
ity of the thresholded images suggests that some knowledge about objects is required in order to factor out the illumination,
and speci�cally that the image we are looking at is an image of a face.

tor). These results show the invariance of edges
are not complete; some edges appear or disappear,
some change location, and spurious edges result
from shadows (especially attached shadows), spec-
ularities, and so forth.

The `Ken' images and their edge representa-
tions also demonstrate the practical side of the
problem of recognition under changing illumina-
tion conditions. The images appear di�erent to
the degree that a template match between any
two of them is not likely to succeed without �rst
compensating for the changing illumination.

Human vision appears also to contain processes
that factor out the e�ect of illumination during
the recognition process. In other words, the im-
age and the model are coupled together early on in
the stages of visual processing. Consider, for ex-
ample, the images displayed in Figure 5. The im-
ages are of `Ken' lit by two di�erent illumination
conditions, and thresholded by an arbitrary value.
The thresholded images appear to be recognizable,
at least in the sense that one can clearly identify
the image as containing a face. Because the ap-
pearance of the thresholded images critically rely
on the illumination conditions, it appears unlikely
that recognition in this case is based on the input

properties alone. Some knowledge about objects
(speci�cally that we are looking at the image of a
face) may be required in order to factor out the
illumination.

Thresholded images are familiar in psychologi-
cal circles, but less so in computational. A well-
known example is the set of thresholded face im-
ages produced by Mooney [31] for clinical recog-
nizability tests, known as the closure faces test,
in which patients had to sort the pictures into
general classes that include: boy, girl, grown-up
man or woman, old man or woman, and so forth.
An example of Mooney's pictures are shown in
Figure 6. Most of the control subjects could eas-
ily label most of the pictures correctly. Some of
Mooney's pictures are less interpretable (for ex-
ample, Figure 7), but as a general phenomenon
it seems remarkable that a vivid visual interpre-
tation is possible from what seems an ambiguous
collection of binary patches that do not bear a
particularly strong relationship to surface struc-
ture or other surface properties.

Mooney images are sometimes referred to as
representing the phenomenon of \shape from
shadows" [3]. Although some Mooney images do
contain cast shadows, the phenomenon is not lim-
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Fig. 6. Mooney faces and their level-crossings.

ited to the di�culty of separating shadow bor-
ders from object contours. The thresholded image
shown in Figure 8, for example, is not less di�-
cult to account for in computational terms, yet
the original image was not lit in a way to create
cast or attached shadows.

These kind of images appear also to indicate
that in some cases in human vision the interpre-
tation process involves more than just contours. It
is evident that the contours (level-crossings) alone
are not interpretable, as can be seen with the orig-
inal Mooney pictures and with the level-crossing
image in Figure 8. It seems that only when the
distinction of what regions are above the thresh-
old and what are below the threshold is made clear
(we refer to that as adding \sign-bits") does the
resulting image become interpretable. This ap-
pears to be true not only for thresholded images
but also for step edges and their sign-bits (see Fig-
ure 8, bottom row).

It appears, therefore, that in some cases in hu-
man vision the illumination is factored out within
the recognition process using top-down informa-
tion and that the process responsible apparently
requires more than just contours | but not much
more. We refer from here on to the Mooney-kind
of images as reduced images. From a computa-

tional standpoint we will be interested not only in
factoring out the illumination, in a model-based
approach, but also in doing so from reduced im-
ages.

3. Problem Scope

The recognition problem we consider is that of
identifying an image of an arbitrary individual 3D
object. We allow the object to be viewed from ar-
bitrary viewing positions and to be illuminated by
an arbitrary setting of light sources. We assume
that the image of the object is already separated
from the rest of the image, but may have missing
parts (for example, as caused by occlusion).

We adopt the alignment methodology, which
de�nes \success" as the ability to exactly re-
construct the input image representation of the
object (possibly viewed under novel viewing and
illumination conditions) from the model represen-
tation of the object stored in memory. Alignment
has been studied in the past for compensating
for changes of viewing positions and the method
is typically realized by storing a few number of
\model" views (two, for example), or a 3D model
of the object, and with the help of correspond-
ing points between the model and any novel input
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Fig. 7. A less interpretable Mooney picture and its level-crossings

Fig. 8. Top Row: A `Ken' image represented by grey-levels, the same image followed by a threshold, the level-crossings
of the thresholded image. The thresholded image shown in the center display is di�cult to account for in computational
terms, yet the original image was not lit in a way to create cast or attached shadows. Bottom Row: The sign-bits of the
Laplacian of Gaussian operator applied to the original image, and its zero-crossings (step edges). Interpretability of the
sign-bit image is considerably better than the interpretability of the zero-crossings.

view, the object is \re-projected" onto the novel
viewing position. Recognition is achieved if the
re-projected image is successfully matched against
the input image [9], [26], [54], [18], [55]. Our ap-
proach is to apply the basic concept of alignment
onto the photometric domain, and then combine
both sources of variability into a single alignment
framework that can deal with both changes due
to geometry and photometry occurring simulta-
neously.

The basic method, we call photometric align-
ment, for compensating for the e�ects of illumi-

nation during recognition is introduced next. The
method is based on a result that three images of
the surface provide a basis that spans all other
images of the surface (same viewing position, but
changing illumination conditions). The photomet-
ric problem of recognition is, therefore, reduced to
the problem of determining the linear coe�cients
| which is conceptually similar to the idea of [55]
in the geometric context. We then extend the ba-
sic method to deal with situations of recognition
from reduced image representations with results
that appear to agree with the empirical observa-
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tion made earlier that sign-bits appear to be su�-
cient for visual interpretation, whereas edges alone
do not.

4. Photometric Alignment

The basic approach is based on �nding an alge-
braic connection between all images of an object
taken under varying illumination conditions. We
start by de�ning the family of surface re
ectance
functions for which our results will hold:

De�nition. An order k Linear Re
ectance Model
is de�ned as the scalar product x � a, where x

is a vector in k-dimensional Euclidean space of in-
variant surface properties (such as surface normal,
surface albedo, and so forth), and a is an arbitrary
vector (of the same dimension).

The Lambertian model of re
ection is an ob-
vious case of an order 3 linear re
ectance model.
The grey-value, I(p), at location p in the image
can be represented by the scalar product of the
surface normal vector and the light source vector,

I(p) = np � s:

Here the length of the surface normal np repre-
sents the surface albedo (a scalar ranging from
zero to one). The length of the light source vector
s represents a mixture of the spectral response of
the image �lters, and the spectral composition of
light sources | both of which are assumed to be
�xed for all images of the surface (we assume for
now that light sources can change direction and
level of intensity but not spectral composition).

Another example of a linear re
ectance model
is the image irradiance of a tilted Lambertian sur-
face under a hemispherical sky. Horn ([14], pp.
234) shows that the image irradiance equation is
E�pcos

2 �
2
, where � is the angle between the sur-

face normal and the zenith, E is the intensity of
light source, and �p is the surface albedo. The
equation is an order 4 linear re
ectance function:

I(p) =
1

2
E�p(1 + cos�) = np � s+ jnpj � jsj

= (np; jnpj)
t(s; jsj);

where s represents the direction of zenith, whose
length is E

2
.

Proposition 1 An image of an object with an or-
der k linear re
ection model I(p) = x(p) � a can
be represented as a linear combination of a �xed
set of k images of the object.

Proof: Let a1; :::;ak be some arbitrary set of
basis vectors that span k-dimensional Euclidean
space. The image intensity I(p) = x(p)�a is there-
fore represented by

I(p) = x(p)[�1a1+:::+�kak] = �1I1(p)+:::+�kIk(p);

where �1; :::; �k are the linear coe�cients that rep-
resent a with respect to the basis vectors, and
I1; :::; Ik are the k images Ik(p) = x(p) � ak.

To see the relevance of this proposition to visual
recognition, consider the case of a Lambertian sur-
face under a point light source (or multiple point
light sources). Assume we take three pictures of
the object I1; I2; I3 from light source directions
s1; s2; s3, respectively. The linear combination re-
sult is that any other image I of the object, taken
from a novel setting of light sources, is simply a
linear combination of the three pictures,

I(p) = �1I1(p) + �2I2(p) + �3I3(p);

for some coe�cients �1; �2; �3. The coe�cients
can be solved by observing the grey-values of three
points providing three equations. Using more than
three points will provide a least squares solution.
The solution is unique provided that s1; s2; s3 are
linearly independent, and that the normal direc-
tions of the three sampled points span all other
surface normals (for a general 3D surface, for ex-
ample, the three normals should be linearly inde-
pendent).

Alignment-based recognition under changing il-
lumination can proceed in the following way. The
images I1; :::; Ik are the model images of the object
(three for Lambertian under point light sources).
For any new input image I, rather than matching
it directly to previously seen images (the model
images), we �rst select a number of points (at least
k) to solve for the coe�cients, and then synthesize
an image I0 = �1I1+:::+�kIk. If the image I is of
the same object, and the only change is in illumi-
nation, then I and I0 should perfectly match (the
matching is not necessarily done at the image in-
tensity level, one can match the edges of I against
the edges of I0, for example). This procedure has
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factored out the e�ects of changing illumination
from the recognition process without recovering
scene information, i.e. surface albedo or surface
normal, and without assuming knowledge of di-
rection of light sources. Another property of this
method is that one can easily �nd a least squares
solution for the reconstruction of the synthesized
image, thereby being less sensitive to errors in the
model, or in the input.

We address below the problems that arise when
some of the objects points are occluded from some
of the light sources, and when the surface re
ects
light specularly. We then extend the results to
deal with cases of changing spectral composition
of light sources.

4.1. Attached and Cast Shadows

We have practically assumed that surfaces are
convex because the linear combination result re-
quires that points be visible to the light sources.
In a general non-convex surface, object points
may be occluded from some, or from all, the
light sources. This situation generally leads to
two types of shadows known as attached and cast
shadows. A point P is in an attached shadow if the
angle between the surface normal and the direc-
tion of light source is obtuse (np�s < 0). An object
point P is in a cast shadow if it is obstructed from
the light source by another object or by part of
the same object. An attached shadow, therefore,
lies directly on the object, whereas cast shadows
are thrown from one object onto another, or from
one part onto another of the same object (such as
when the nose casts a shadow on the cheek under
oblique illumination).

In the case of attached-shadows, a correct re-
construction of the image grey-value at p does not
require that the object point P be visible to the
light source s, but only that it be visible to the
light sources s1; s2; s3. If P is not visible to s,
then the linear combination will produce a nega-
tive grey-value (because np � s < 0), which can be
set to 0 for purposes of display or recognition.

If P is not visible to one of the model light
sources, say s1, then the linear combination of
the three model images will produce I0(p) under
a light source s0 which is the projection of s onto

the sub-space spanned by s2; s3. This implies that

photometric alignment would perform best in the

case where the novel direction of light source s is

within the cone of directions s1; s2; s3.

The remaining case is when the object point P

is in a cast shadow region with respect to the novel

light direction s. In this case there is no way to

predict a low, or zero, grey-value for I0(p) and the

reconstruction will not match I(p) in that region.

Therefore, cast shadow regions in the novel image

are not modeled in this framework, and hence, the

performance degrades with increasing number and

extent of cast-shadows in the novel image.

With regard to human vision, there appears

to be a marked increase in di�culty in interpret-

ing cast shadows compared to attached shadows.

Arnheim [2] discusses the e�ect of cast shadows

on visual perception, its relation to chiaroscuro in

Renaissance art, and its symbolism in various cul-

tures. He points out that cast shadows often inter-

fere with the object's integrity, whereas attached

shadows are often perceived as an integral part of

the object. The general observation is that the

more the cast-shadow extends from the part that

throws it, the less meaningful is the connection

made with the object. The interpretability of cast

shadows can be illustrated by `Ken' images dis-

played in Figure 3. The three model images have

extensive attached shadows that appear naturally

integrated with the object. The cast shadow re-

gion thrown from the nose in the image on the

right appears less integrated with the overall com-

position of the image.

In conclusion, attached shadows in the novel

image, or shadows in general in the model images,

do not have signi�cant adverse e�ects on the pho-

tometric alignment scheme. Cast shadows in the

novel image, cannot be reconstructed or even ap-

proximated, and therefore are not modeled in this

framework. It may be noted that apparently there

is a perceptual di�erence between attached and

cast shadows, whereby the latter may appear to

be disconnected from the object upon which they

are cast.
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4.2. Detecting and Removing Specular Re
ec-
tions

The linear combination result and the photomet-
ric alignment scheme that followed assume that
objects are matte. In general, inhomogeneous sur-
faces are dominantly Lambertian, except for iso-
lated regions that are specularly re
ecting light.
In practice, if the specular component is ignored,
the reconstructed image contains the specular re-
gions of all three model images combined together,
and the specular regions of the novel image are
not reconstructed. For purposes of recognition, as
long as the specular regions are relatively small,
they do not seem to have a signi�cant adverse ef-
fect on the overall photometric alignment scheme.
Nevertheless, the alignment method can be used
to detect the specular regions and replace them
with the Lambertian re
ectance provided that
four images are used.

The Detection of specular points is based on
the observation that if a point is in the specu-
lar lobe, then it is likely to be so only in one of
the images at most. This is because the specular
lobe occupies a region that falls o� exponentially
from the specular direction. In general we cannot
detect the specular points by simply comparing
grey-values in one image with the grey-values of
the same points in the other images because the
intensity of the light source may arbitrarily change
from one image to another.

By using Proposition 1, that is, the result that
three images uniquely determine the Lambertian
component of the fourth image, we can, thereby,
compare the reconstructed intensity of the fourth
image with the observed intensity, and check for
signi�cant deviations. For every point p, we se-
lect the image with the highest intensity, call it
Is, and reconstruct I0s(p) from the other three im-
ages (we recover the coe�cients once, based on
points that are not likely to be specular or shad-
owed, i.e. do not have an especially high or low
intensity). If Is(p) is in the specular lobe, then
I0s(p) << Is(p). To avoid deviations that are a
result of shadowed points, we apply this proce-
dure to points for which none of the images has
an especially low grey-value.

In practice we observe that the deviations that
occur at specular points are of an order of magni-

tude higher than deviations anywhere else, which
makes it relatively easy to select a threshold for
deciding what is specular and what is not. A
similar approach for detecting specular points was
suggested by [6] based on photometric stereo [56].
The idea is to have four images and to reconstruct
the normal at each point from every subset of
three images. If the point in question is not signif-
icantly specular, then the reconstructed normals
should have the same direction and length, oth-
erwise the point is likely to be specular. Their
method, however, requires knowledge of direc-
tion and intensity of light sources, whereas in our
method we do not.

4.3. Some Experiments

We used the three `Ken' images displayed in Fig-
ure 3 as model images for the photometric align-
ment scheme. The surface of the doll is non-
convex and not purely matte which gives rise to
specular re
ections and shadows. The novel image
(shown in Figure 9) was taken using light source
directions that were within the cone of directions
used to create the model images. In principle, one
can use novel light source directions that are out-
side the cone of directions, but that will increase
the likelihood of creating new cast shadow regions.
The reconstruction was based on a least squares
solution using eight points. The points were cho-
sen automatically by searching for smooth regions
of image intensity. The search was restricted to
the area of the face, not including the background.
To minimize the chance of selecting shadowed or
specular points, a point was considered as an ad-
missible candidate if it was contained in an 8� 8
sized smooth area, and its intensity was not at the
low or high end of the spectrum. We then selected
eight points that were widely separated from each
other. The reconstructed image (linear combina-
tion of the three model images) is displayed in
Figure 9 together with its step edges. The novel
and reconstructed image are visually very simi-
lar at the grey-value level, and even more so at
the edge-map level. The di�erence between the
two edge maps is negligible and is mostly due to
quantization of pixel locations.

In conclusion, this result shows that for the pur-
poses of recognition, the existence of shadows and
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Fig. 9. Reconstructing a novel image. Row 1 (left to right): A novel image taken from two point light sources, and the
reconstructed image (linear combination of the three model images). Row 2: Step edges of the novel and reconstructed
images. Row 3: Overlaying both edge maps, and subtracting (xor operation) the edge maps from each other. The di�erence
between the images both at the grey-scale and edge level is hardly noticeable.
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(small) specular regions in the model images do
not have a signi�cantly adverse e�ect on the recon-
struction. Moreover, we did not use a matte sur-
face for the experiment, illustrating the point that
plastic surfaces are dominantly Lambertian, and
therefore su�ciently applicable to this method.

Figure 10 demonstrates the specular detection
scheme. The method appears to be success-
ful in identifying small specular regions. Other
schemes for detecting specular regions using the
dichromatic model of re
ection often require a
relatively large region of analysis and, therefore,
would have di�culties in detecting small specular
regions [45], [20].

4.4. The Linear Combination of Color Bands

The photometric problem considered so far in-
volved only changes in direction and intensity of
light sources, but not changes in their spectral
compositions. Light sources that change their
spectral composition are common as, for example,
sunlight changes its spectral composition depend-
ing on the time of day (because of scattering).
The implication for recognition, however, is not
entirely clear because there may be an adaptation
factor involved rather than an explicit process of
eliminating the e�ects of illumination. Adapta-
tion is not a possibility when it comes to changing
direction of light source, because objects are free
to move in space and hence change their positions
with respect to the light sources. Nevertheless, it
is of interest to explore the possibility of compen-
sating for changing spectral composition as well
as direction of light sources.

We assume, for reasons that will be detailed
below, that our surface is either neutral , or is of
the same color, but may change in luminosity. A
neutral surface is a grey-scale surface only a�ect-
ing the scale of light falling on the surface, but
not its spectral composition. For example, the
shades of grey from white to black are all neutral.
Note that the assumption is weaker than the uni-
form albedo assumption because we allow change
in luminosity, but is less general than what we
had previously because we do not allow changes
in hue or saturation to occur across the surface.
We also assume that our model of the object con-

sists of a single color image obtained by overlaying
three color images of the object each taken from a
distinct direction of light source having a distinct
spectral composition.

Let Ir ; Ig; Ib be the three color bands that to-
gether de�ne the color picture. Let �p�(�) be the
surface re
ectance function, where �p is the sur-
face albedo and �(�) is the spectral re
ectance
function of wavelength �. Note that the neu-
tral surface assumption means that across the sur-
face �(�) is �xed, but �p may change arbitrarily.
Let S1(�); S2(�); S3(�) be the spectral composi-
tion of the three light sources, and s1; s2; s3 be
their directions. As before, we require that the
directions be non-coplanar, and that the spectral
compositions be di�erent from each other. This,
however, does not mean that the three spectral
functions should form a basis (such as required
in some color constancy models [27]). Finally,
let Rr(�); Rg(�); Rb(�) be the spectral sensitiv-
ity functions of the three CCD �lters (or retinal
cones). The composite color picture (taking the
picture separately under each light source, and
then combining the results) is, therefore, deter-
mined by the following equation:

0
@ Ir(p)

Ig(p)
Ib(p)

1
A =

0
@
R
S1(�)�(�)Rr(�)d�R
S1(�)�(�)Rg(�)d�R
S1(�)�(�)Rb(�)d�

1
Anp � s1 +

0
@
R
S2(�)�(�)Rr(�)d�R
S2(�)�(�)Rg(�)d�R
S2(�)�(�)Rb(�)d�

1
Anp � s2 +

0
@
R
S3(�)�(�)Rr(�)d�R
S3(�)�(�)Rg(�)d�R
S3(�)�(�)Rb(�)d�

1
Anp � s3;

where the length of np is �p. This can re-written
in matrix form, as follows:

0
@ Ir(p)

Ig(p)
Ib(p)

1
A =

0
@ v1

v2
v3

1
Anp � s1 +

0
@ u1

u2
u3

1
Anp � s2 +

0
@ w1

w2

w3

1
Anp � s3

= [v;u;w]

2
4 s1s2
s3

3
5np = Anp:
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Fig. 10. Detecting and removing specular regions. Row 1: The image on the left is a novel image, and the one on the
right is the same image following the procedure for detecting and removing the specular regions. The specular regions are
replaced with the reconstructed grey-value from the model images. Row 2: The specular regions that were detected from
the image.

The 3� 3 matrix [v;u;w] is assumed to be non-
singular (for that reason we required that the spec-
tral composition of light sources be di�erent from
one another), and therefore the matrix A is also
non-singular. Note that because of the assump-
tion that the surface is neutral, the matrixA is in-
dependent of position. Consider any novel image
of the same surface, taken under a new direction
of light source with a possible di�erent spectral
composition. Let the novel picture be Jr; Jg; Jb.
The red color band, for instance, can be repre-
sented as a linear combination of the three color
bands Ir ; Ig; Ib, as follows:

Jr(p) =

�Z
S(�)�(�)Rr (�)d�

�
np � s

= np � (�1A1 + �2A2 + �3A3)

= �1Ir(p) + �2Ig(p) + �3Ib(p)

where A1; A2; A3 are the rows of the matrix A.
Because A is non-singular, the row vectors form a
basis that spans the vector

�R
S(�)�(�)Rr (�)d�

�
s

with some coe�cients �1; �2; �3. These coe�-
cients are �xed for all points in the red color band
because the scale

R
S(�)�(�)Rr (�)d� is indepen-

dent of position (the neutral surface albedo �p is
associated with the length of np). Similarly the
remaining color bands Jg; Jb are also represented
as a linear combination of Ir ; Ig; Ib, but with dif-
ferent coe�cients. We have, therefore, arrived at
the following result:

Proposition 2 An image of a Lambertian object
with a neutral surface re
ectance (grey-scale sur-
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face) taken under an arbitrary point light source
condition (intensity, direction and spectral com-
position of light source) can be represented as a
linear combination of the three color bands of a
model picture of the same object taken under three
point light sources having di�erent (non-coplanar)
directions and di�erent spectral composition.

For a neutral surface, the linear combination
of color bands can span only images of the same
surface with the same hue and saturation under
varying illumination conditions. The combination
of color bands of a non-neutral surface spans the
space of illumination and color (hue and satura-
tion). That is, two surfaces with the same struc-
ture but with di�erent hue and saturation levels,
are considered the same under the photometric
alignment scheme.

5. Photometric Alignment with Reduced

Images

We have seen in Section 2 empirical evidence to
suggest that in some cases the process responsible
for factoring out the illumination during the recog-
nition process appears to require more than just
contour information, but just slightly more. So far
we proposed a scheme which can directly factor
out the illumination during the model-to-image
matching stage by using the information contained
in the grey-values of the model and novel images.

In this section we explore the possibilities of
using less than grey-values for purposes of factor-
ing out the illumination. In other words, since
the photometric alignment method is essentially
about recovering the linear coe�cients that rep-
resent the novel image as a linear combination
of the three model images, then the question is
whether those coe�cients can be recovered by ob-
serving more reduced representations of the novel
image, such as edges, edges and gradients, sign-
bits, and so forth. Speci�cally, we are most inter-
ested in making a computational connection with
the empirical observation that sign-bits appear
to be su�cient for visual interpretation, whereas
edges alone are not.

The proposition below shows that in principle
the level-crossing or zero-crossing contours of the
novel image are theoretically su�cient for recover-

ing the linear coe�cients for combining the model
images.

Proposition 3 The coe�cients that span an im-
age I from three model images, as described in
proposition 1, can be solved, up to a common scale
factor, from just the contours of I, zero-crossings
or level-crossings.

Proof: Let �j be the coe�cients that span
I by the basis images Ij , j = 1; 2; 3, i.e. I =P

j �jIj. Let f; fj be the result of applying a
Laplacian of Gaussian (LOG) operator, with the
same scale, on images I; Ij, j = 1; 2; 3. Since LOG
is a linear operator we have f =

P
j �jfj . Since

f(p) = 0 along zero-crossing points p of I, then
by taking three zero-crossing points, which are not
on a cast shadow border and whose corresponding
surface normals are non-coplanar, we get a homo-
geneous set of equations from which �j can be
solved up to a common scale factor.

Similarly, let k be an unknown threshold ap-
plied to I. Therefore, along level crossings of I
we have k =

P
j �jIj; hence four level-crossing

points that are visible to all four light sources are
su�cient for solving �j and k.

The result is that in principle we could cancel
the e�ects of illumination directly from the zero-
crossings (or level-crossings) of the novel image in-
stead of from the raw grey-values of the novel im-
age. Note that the model images are represented
as before by grey-values. Because the model im-
ages are taken only once, it is not unreasonable
to assume more strict requirements on the quality
of those images. We therefore make a distinction
between the model acquisition, or learning, phase
for which grey-values are used and the recogni-
tion phase for which a reduced representation of
the novel image is being used.

The result that contours may be used instead
of grey-values is not surprising at a theoretical
level, considering the literature of image compres-
sion. Under certain restrictions on the class of
signals, it is known that the zero-crossings form
a complete representation of an arbitrary signal
of that class. The case of one-dimensional band-
pass signals, with certain conditions on the sig-
nals' Hilbert transform, is provided by Logan [25].
The more general case is approached by assuming
the signal can be represented as a �nite complex
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polynomial [4], [44]. Complex polynomials have
the well known property that they are fully de-
termined by their analytic varieties (curves in the
one-dimensional case) using analytic continuation
methods (see for example, [43]). It is well known
that analytic continuation is an unstable process
[13] and therefore, the reconstruction of the im-
age from its zero-crossings is likely to be unstable.
Curtis et al. [4] report, for instance, that zero-
crossings must be recorded with great precision,
at sub-pixel accuracy of 14 digits.

The result of Proposition 3 can be viewed as a
model-based reconstruction theorem, that applies
to a much less restricted class of signals (images
do not have to be bandpass, for instance). The
process is much simpler, but on the other hand
it is restricted to a speci�c model undergoing a
restricted group of transformations (changing il-
lumination). The simplicity of the model-based
reconstruction, however, is not of great help in
circumventing the problem of instability. Stabil-
ity depends on whether contours are recorded ac-
curately and whether those contours are invariant
across the model images.

The assumption that the value of f at a zero-
crossing location p is zero, is true for a subpixel
location p. In other words, it is unlikely that
f(p) = 0 for some integral location p. This in-
troduces, therefore, a source of error whose mag-
nitude depends on the `strength' of the edge that
gives rise to the zero-crossing in the signal f , that
is, the sharper and stronger the discontinuity in
image intensities along an edge in the image I is,
the larger the variance around f(p). This suggests
that `weak' edges should be sampled, with more or
less the same strength, so that by sampling more
than the minimum required number of points, the
error could be canceled by a least squares solution.

The second source of error has to do with the
stability of the particular edge under changing il-
lumination. Assume, for example, that the zero-
crossing at p (recorded accurately) is a result of
a sharp change in surface re
ectance. Although
the image intensity distribution around p changes
across the model images, the location of the dis-
continuity does not, i.e. the zero-crossing is sta-
ble. In this case we have that f(p) = fj(p) = 0,
j = 1; 2; 3. Therefore, such a point will not con-
tribute any information if recorded accurately and

will contribute pure noise if recorded with less
than the required degree of accuracy. This �nding
suggests, therefore, that zero-crossings should be
sampled along attached shadow contours or along
valleys and ridges of image intensities (a valley or
a ridge gives rise to two unstable zero-crossings
[33]).

The situation with reconstruction from level-
crossings is slightly di�erent. The �rst source of
error, related to the accuracy in recording the lo-
cation of level-crossings, still applies, but the sec-
ond source does not. In general, the variance in
intensity around a level crossing point p is not as
high as the variance around an edge point. A ran-
dom sampling of points for a least squares solution
is not likely to have a zero mean error, however,
and the mean error would therefore be absorbed
in the unknown threshold k. The least squares so-
lution would be biased towards a zero mean error
solution that will a�ect both the recovered thresh-
old and the linear coe�cients �j. The solution,
therefore, does not necessarily consist of a correct
set of coe�cients and a slightly o� threshold k,
but a mixture of both inaccurate coe�cients and
an inaccurate threshold. This implies that level-
crossings should be sampled at locations that do
not correspond to zero-crossings in order to mini-
mize the magnitude of errors.

To summarize, the reconstruction of the novel
image from three model images and the contours
of the novel image is possible in principle. In the
case of both zero-crossings and level-crossings, the
locations of the contours must be recorded at sub-
pixel accuracy. In the case of zero-crossings, an-
other source of potential error arises, which is re-
lated to the stability of the zero-crossing location
under changing illumination. Therefore, a stable
reconstruction requires a sample of points along
weak edges that correspond to attached shadow
contours or to ridges and valleys of intensity. Al-
ternatively, the locations of contour points must
be recorded at sub-pixel accuracy, given also that
the sample is large enough to contain unstable
points with respect to illumination. Experimental
results show that a random sample of ten points
(spread evenly all over the object) with accuracy
of two digits for zero-crossings and one digit for
level-crossings is su�cient to produce results com-
parable to those produced from sampling image
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intensities directly. The performance with inte-
gral locations of points sampled over edges p that

have no corresponding edges in a 3 � 3 window

around p in any of the model images was not sat-

isfactory.

These results show that reconstruction from

contours does not appear to be generally useful
for the photometric alignment scheme because of

its potential instability. It is also important to

note that in these experiments the viewing posi-

tion is �xed, thereby eliminating the correspon-

dence problem that would arise otherwise and

would most likely increase the magnitude of er-
rors.

5.1. Photometric Alignment from Contours and

Gradients

When zero-crossings are supplemented with gradi-

ent data, the reconstruction does no longer su�er

from the two sources of errors that were discussed

in the previous section. We can can use gradient

data to solve for the coe�cients, because the op-

eration of taking derivatives (continuous and dis-
crete) is linear and therefore leaves the coe�cients

unchanged. The accuracy requirement is relaxed

because the gradient data is associated with the

integral location of contour points, not with their

sub-pixel location. Stable zero-crossings do not

a�ect the reconstruction, because the gradient de-
pends on the distribution of grey-values in the

neighborhood of the zero-crossing, and the dis-

tribution changes with a change in illumination

(even though the location of the zero-crossing may

not change).

Errors, however, may be more noticeable once
we allow changes in viewing positions in addition

to changes in illumination. Changes in viewing

positions may introduce errors in matching edge

points across images. Because the change in im-

age intensity distribution around an edge point is

localized and may change signi�cantly at nearby
points, then errors in matching edge points across

the model images may lead to signi�cant errors in

the contribution those points make to the system

of equations.

5.2. Photometric Alignment from Sign-bits

Reconstruction from contours, general or model-
based, appears to rely on the accurate location of
contours. This reliance, however, seems to be at
odds with the intuitive interpretation of Mooney-
type pictures, like those in Figures 6. These im-
ages suggest that, instead of contours being the
primary vehicle for shape interpretation, the re-
gions bounded by the contours (the sign-bit re-
gions) are primarily responsible for the interpre-
tation process. Thus instead of a contour-based
technique we investigate below an area-based tech-
nique arising from the use of sign-bits. It is worth
noting that the \sign-bit correlation" method for
stereo matching proposed by Nishihara [37] was
advocated on similar grounds. Nishihara's con-
clusion was that the sign-bits contributed to in-
creased stability (because regions change less than
contours do) | conclusions that are similar to
what we �nd below. It is also worthwhile noting
that, theoretically speaking, only one bit of in-
formation is added in the sign-bit displays. This
is because zero-crossings and level-crossings form
nested loops [22], and therefore the sign-bit func-
tion is completely determined up to a common
sign 
ip. In practice, however, this property of
contours does not emerge from edge detectors be-
cause weak contours are often thresholded out as
they tend to be the most sensitive to noise (see,
for example, Figure 3). This may also explain
why our visual system apparently does not use
this property of contours. We therefore do not
make use of the global property of the sign-bit
function; rather, we treat it as a local source of
information, i.e. one bit of information per pixel.

Because the location of contours is an unreli-
able source of information, especially when the
e�ects of changing viewing positions are consid-
ered, we propose to rely instead only on the sign-
bit source of information. From a computational
standpoint, the only information that a point in-
side a region can provide is whether the function
to be reconstructed (the �ltered image f , or the
thresholded image I) is positive or negative (or
above/below threshold). This information can be
incorporated in a scheme for �nding a separating
hyperplane, as suggested in the following proposi-
tion:
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Fig. 11. Reconstruction from sign-bits. Top Row (left to right): the input novel image; the same image but with the
sample points marked for display. Bottom Row: the reconstructed image; the overlay of the original level-crossings and the
level-crossings of the reconstructed thresholded image.

Proposition 4 Solving for the coe�cients from

the sign{bit image of I is equivalent to solving

for a separating hyperplane in 3D or 4D space in

which image points serve as \examples".

Proof: Let z(p) = (f1; f2; f3)
T be a vec-

tor function and ! = (�1; �2; �3)T be the un-

known weight vector. Given the sign-bit �ltered

image f̂ of I, we have that for every point p, ex-

cluding zero-crossings, the scalar product !T
z(p)

is either positive or negative. In this respect,

points in f̂ can be considered as \examples" in

3D space and the coe�cients �j as a vector nor-

mal to the separating hyperplane. Similarly, the

reconstruction of the thresholded image Î can be

represented as a separating hyperplane problem

in 4D space, in which z(p) = (I1; I2; I3;�1)
T and

! = (�1; �2; �3; k)
T :

The contours lead to a linear system of equa-

tions, whereas the sign-bits lead to a linear system

of inequalities. The solution of a linear system

of inequalities Aw < b can be approached using

Linear Programming techniques or using Linear

Discriminant Analysis techniques (see [5] for a re-

view). Geometrically, the unknown weight vector

w can be considered as the normal direction to

a plane, passing through the origin, in 3D Eu-

clidean space, and a solution is found in such a

way that the plane separates the \positive" exam-

ples, !T
z(p) > 0, from the \negative" examples,

!
T
z(p) < 0. In the general case, where b 6= 0, the
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Fig. 12. Reconstruction from sign-bits. Row 1: three model images. Row 2: novel image; thresholded input; reconstructed
image (same procedure as described in the previous �gure). Note that the left ear has not been reconstructed; this is mainly
because the ear is occluded in two of the three model images. Row 3: the level-crossings of the novel input; level-crossings
of the reconstructed image; the overlay of both level-crossing images.
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solution is a point inside a polytope whose faces
are planes in 3D space.

The most straightforward solution is known as
the perceptron algorithm [42]. The basic percep-
tron scheme proceeds by iteratively modifying the
estimate of w by the following rule:

w
n+1 = w

n +
X
i2M

z
i

where wn is the current estimate of w, and M is
the set of examples zi that are incorrectly clas-
si�ed by wn. The critical feature of this scheme
that it is guaranteed to converge to a solution, ir-
respective of the initial guess w0, provided that a
solution exists (examples are linearly separable).
Another well known method is to reformulate the
problem as a least squares optimization problem
of the form

min
w
jAw � bj2

where the i'th row of A is zi, and b is a vec-
tor of arbitrarily speci�ed positive constants (of-
ten b = 1). The solution w can be found using
the pseudoinverse of A, i.e.

w = A+
b = (AtA)�1At

b;

or iteratively through a gradient descent proce-
dure, which is known as the Widrow-Ho� proce-
dure. The least squares formulation is not guar-
anteed to �nd a correct solution but has the ad-
vantage of �nding a solution even when a correct
solution does not exist (a perceptron algorithm is
not guaranteed to converge in that case).

By using the sign-bits instead of the contours,
we are trading a unique, but unstable, solution
for an approximate, but stable, solution. The sta-
bility of reconstruction from sign-bits is achieved
by sampling points that are relatively far away
from the contours. This sampling process also
has the advantage of tolerating a certain degree
of misalignment between the images as a result of
less than perfect correspondence due to changes
in viewing position (this feature is discussed fur-
ther in Section 7.4). Experimental results (see
Figures 11 and 12) demonstrate that 10 to 20
points, distributed over the entire object, are suf-
�cient to produce results that are comparable to
those obtained from an exact solution. The ex-
periments were done on images of `Ken' and on

another set of face images taken from a plaster
bust of Roy Lamson (courtesy of the M.I.T Me-
dia Laboratory). Both the perceptron algorithm
and the least-squares approach were implemented
and both yielded practically the same results. The
sample points were chosen manually, and over sev-
eral trials we found that the reconstruction is not
sensitive to the particular choice of sample points,
as long as they are not clustered in a local area of
the image and are sampled a few pixels away from
the contours. The results show the reconstruction
of a novel thresholded images from three model
images. The linear coe�cients and the threshold
are recovered from the system of inequalities us-
ing a sample of 16 points; the model images are
then combined and thresholded with the recovered
threshold to produce a synthesized thresholded
image. Recognition then proceeds by matching
the novel thresholded image given as input against
the synthesized image.

6. The Geometric Source of Variability

So far, we have assumed that the object is viewed
from a �xed viewing position, and allowed only
photometric changes to occur. This restriction
was convenient because that allowed us to com-
bine the model images in a very simple manner.
When changes in viewing positions are allowed to
occur, the same image point across di�erent pro-
jections does no longer correspond to the same
object point. The simplest example is translation
and rotation in the image plane which occur when
the object translates, rotates around the line of
sight, and then orthographically projects onto the
image. This transformation can easily be undone
if we observe two corresponding points between
the novel input image and the model images. In
general, however, the e�ects of changing viewing
positions may not be straightforward as happens
when the object rotates in depth and when the
projection is perspective.

Because of the Lambertian assumption, we can
treat the photometric and geometric sources of
variability independently of each other. In other
words, we have assumed photometric changes oc-
curring in the absence of any geometric changes,
and now we will assume that the di�erent views
are taken under identical illumination conditions.
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We can later combine the two sources of variabil-
ity into a single framework which will allow us to
compensate for both photometric and geometric
changes occurring simultaneously.

The geometric source of variability raises two
related issues. First, is establishing point-to-point
correspondence between the model images. Sec-
ond, given correspondence between the model im-
ages, undo the e�ects of viewing transformation
based on a small number of corresponding points
between the novel view and the model views.

The process of \undoing" the e�ects of chang-
ing viewing transformation between views is
known as the \alignment" approach in recogni-
tion. Given a 3D model, or at least two model
views in full correspondence, one can \re-project"
the object onto the novel viewing position with the
help of a small number of corresponding points.
Recognition is achieved if the re-projected image
is successfully matched against the input image.
We refer from hereafter to the problem of predict-
ing a novel view from a set of model views using
a limited number of corresponding points, as the
problem of re-projection. The problem of �nding
a small number of corresponding points between
two views is often referred to as Minimal Corre-
spondence [17].

The problem of establishing full correspondence
between the model images requires not only un-
doing the e�ects of viewing transformation, but
knowledge of object structure as well. Given two
views, there is no �nite number of correspond-
ing points that would determine uniquely all other
correspondences, unless the object is planar.

We discuss these issues brie
y in the next sec-
tion, restricting the discussion to the case of or-
thographic views. A more detailed treatment of
these issues, including perspective views, can be
found in [46], [47], [48], [49], [51], [50].

6.1. Re-projection and Correspondence

Let O;P1; P2; P3 be four non-coplanar object
points, referred to as reference points, and let
O0; P 01; P

0
2; P

0
3 be the coordinates of the reference

points from the second camera position. Let
b1; b2; b3 be the a�ne coordinates of an object
point of interest P with respect to the basis

OP1; OP2; OP3, i.e.,

OP =
3X

j=1

bj(OPj);

where the OP denotes the vector from O to P .
Under parallel projection the viewing transfor-
mation between the two cameras can be repre-
sented by an arbitrary a�ne transformation, i.e.,
O0P 0 = T (OP ) for some linear transformation T .
Therefore, the coordinates b1; b2; b3 of P remain
�xed under the viewing transformation, i.e.,

O0P 0 =
3X

j=1

bj(O
0P 0j):

Since depth is lost under parallel projection, we
have a similar relation in image coordinates:

op =
3X

j=1

bj(opj) (1)

o0p0 =
3X

j=1

bj(o
0p0j): (2)

Given the corresponding points p; p0 (in image
coordinates), the two formulas 1,2 provide four
equations for solving for the three a�ne coor-
dinates associated with the object point P that
projects to the points p; p0. Furthermore, since the
a�ne coordinates are �xed for all viewing trans-
formations, we can predict the location p00 on a
novel view by �rst recovering the a�ne coordi-
nates from the two model views and then substi-
tuting them in the following formula:

o00p00 =
3X

j=1

bj(o
00p00j ):

We have, therefore, a method for recovering a�ne
coordinates from two views and a method for
achieving re-projection given two model views
(in full correspondence) and four corresponding
points across the three views.

Assume we would like to �nd the correspond-
ing point p0 given we know the correspondences
due to the four reference points. It is clear that
this cannot be done with the available information
because a dimension is lost due to the projection
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from 3D to 2D (in fact, any number of correspond-
ing points n would not be su�cient for determin-
ing the correspondence of the n+1 point [16], [1]).
Since we do not have a su�cient number of obser-
vations to recover the a�ne coordinates, we look
for an additional source of information.

We assume that both views are taken under
similar illumination conditions:

I(x +�x; y +�y; t+�t) = I(x; y; t);

where v = (�x;�y) is the displacement vector,
i.e., p0 = p + v. We assume the convention that
the two views were taken at times t and t + �t.
A �rst order approximation of a Taylor series ex-
pansion leads to the following equation which de-
scribes a linear approximation to the change of
image grey-values at p due to motion:

rI � v + It = 0; (3)

where rI is the gradient at point p, and It is the
temporal derivative at p. Equation 3 is known
as the \constant brightness equation" and was in-
troduced by Horn and Schunk [15]. In addition
to assuming that the change in grey-values is due
entirely to motion, we have assumed that the mo-
tion (or the size of view separation) is small, and
that the surface patch at P is locally smooth.

The constant brightness equation provides only
one component of the displacement vector v, the
component along the gradient direction, or normal
to the isobrightness contour at p. This \normal

ow" information is su�cient to uniquely deter-
mine the a�ne coordinates bj at p, as shown next.
By subtracting equation 1 from equation 2 we get
the following relation:

v =
3X

j=1

bjvj + (1�
X
j

bj)vo; (4)

where vj (j = 0; ::; 3) are the known displacement
vectors of the points o; p1; p2; p3. By substituting
equation 4 in the constant brightness equation, we

get a new equation in which the a�ne coordinates
are the only unknowns:

X
j

bj[rI � (vj � vo)] + It +rI � vo = 0:

(5)

Equations 1, and 5, provide a complete set of
linear equations to solve for the a�ne coordinates
at all locations p that have a non-vanishing gra-
dient, which is not perpendicular to the direction
of the epipolar line passing through p0. Once the
a�ne coordinates are recovered, the location of
p0 immediately follows. We have, therefore, de-
rived a scheme for obtaining full correspondence
given a small number of known correspondences,
and a scheme for re-projecting the object onto any
third view, given four corresponding points with
the third view (the a�ne coordinates b1; b2; b3 are
view independent). Both schemes can be consid-
erably simpli�ed by expressing the problems in
terms of one unknown per image point (instead
of three) as follows.

Let A and w be the six a�ne parameters de-
termined (uniquely) from the three corresponding
vectors opj  ! o0p0j j = 1; 2; 3, i.e.,

o0p0j = A(opj) +w; j = 1; 2; 3: (6)

For an arbitrary pair of corresponding points p; p0,
we have the following relation:

o0p0 =
3X

j=1

bj(o
0p0j) =

3X
j=1

bj(A(opj) +w)

= A(op) + (
X
j

bj)w;

or equivalently:

p0 = [A(op) + o0 + w] + 
pw: (7)

where 
p =
P

bj � 1 is view-point invariant
and is unknown. Note that 
p = 0 if the ob-
ject point P is coplanar with the plane P1P2P3
(reference plane), and therefore 
p represents the
relative deviation of P from the reference plane
[23], [46]. A convenient way to view this result is
that the location of the corresponding point p0 is
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determined by a \nominal component", described
by A(op) + o0 + w and a \residual parallax com-
ponent", described by 
pw. The nominal compo-
nent is determined from the four known correspon-
dences, and the residual component can be deter-
mined using the constant brightness equation 3
(for more details and discussion, see [46], [47]):


p =
�It �rI � [A� I](op)

rI �w
:

The \a�ne depth" 
p can be also used to simplify
the re-projection scheme onto a third view: since

p is invariant, then it can be computed from the
correspondence between the two model views and
substituted in the equation describing the epipolar
relation between the �rst and third (novel) view.
The re-projection scheme can be further simpli�ed
[47] to yield the \linear combination of views" of
[55] (also [40]):

x00 = �1x
0 + �2x+ �3y + �4; (8)

y00 = �1y
0 + �2x+ �3y + �4; (9)

where the coe�cients �j; �j are functions of the
a�ne viewing transformations between the three
views. The coe�cients can be recovered from four
corresponding points across the three views, and
then used to generate p00 for every corresponding
pair p ! p0.

These techniques extend to the general case of
perspective views. Instead of a�ne coordinates
one can recover projective coordinates from two
views and eight corresponding points [8], [12], [48].
The a�ne depth invariant 
p turns into an in-
variant (\relative a�ne structure") [50]. Finally,
the linear combination of views result of [55] turns
into a trilinear relation requiring seven matching
points in general (instead of four), or bilinear in
case only the model views are orthographic | re-
quiring �ve matching points [49].

7. Combining Changes in Illumination

with Changes in Viewing Positions:

Experimental Results

We have described so far three components that
are necessary building blocks for dealing with
recognition via alignment under the geometric and
photometric sources of variability. First, is the

component describing the photometric relation

between three model images and a novel image of

the object. Second, is the component describing

the geometric relation between two model views

and a novel view of an object of interest. Third,

is the correspondence component with which it

becomes possible to represent objects by a small

number of model images. The geometric and pho-

tometric components were treated independently

of each other. In other words, the photometric

problem assumed the surface is viewed from a

�xed viewing position. The geometric problem

assumed that the views are taken under a �xed

illumination condition, i.e., the displacement of

feature points across the di�erent views is due en-

tirely to a change of viewing position. In practice,

the visual system must confront both sources of

variability at the same time. The combined geo-

metric and photometric problem is de�ned below:

We assume we are given three model images of a

3D matte object taken under di�erent viewing po-

sitions and illumination conditions. For any in-

put image, determine whether the image can be

produced by the object from some viewing position

and by some illumination condition.

The combined problem de�nition suggests that

the problem be solved in two stages: �rst, changes

in viewing positions are compensated for, such

that the three model images are aligned with the

novel input image. Second, changes of illumina-

tion are subsequently compensated for, by using

the photometric alignment method. In the follow-

ing sections we describe several experiments with

`Ken' images starting from the procedure that was

used for creating the model images, followed by

three recognition situations: (i) the novel input

image is represented by its grey-levels, (ii) the in-

put representation consists of sign-bits, and (iii)

the input representation consists of grey-levels,

but the model images are taken from a �xed view-

ing position (di�erent from the viewing position

of the novel image). In this case we make use

of the sign-bits in order to achieve photometric

alignment although the novel image is taken from

a di�erent viewing position.
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7.1. Creating a Model of the Object

The combined recognition problem implies that
the model images represent both sources of vari-
ability, i.e., be taken from at least two distinct
viewing positions and from three distinct illumina-
tion conditions. The three model images displayed
in the top row of Figure 13 were taken under three
distinct illumination conditions, and from two dis-
tinct viewing positions (23o apart, mainly around
the vertical axis). In order to apply the correspon-
dence method described in the previous section,
we took an additional image in the following way.
Let the three illumination conditions be denoted
by the symbols S1; S2; S3, and the two viewing
positions be denoted by V1; V2. The three model
images, from left to right, can be described by
< V1; S1 >;< V2; S2 > and < V1; S3 >, respec-
tively. Since the �rst and third model images are
taken from the same viewing position, the two im-
ages are already aligned. In order to achieve full
correspondence between the �rst two model im-
ages, a fourth image < V2; S1 > was taken. Cor-
respondence between < V1; S1 > and < V2; S1 >

was achieved via the correspondence method de-
scribed in the previous section. Since < V2; S1 >

and < V2; S2 > are from the same viewing posi-
tion, then the correspondence achieved previously
holds also between the �rst and second model im-
ages. The fourth image < V2; S1 > was then
discarded and did not participate in subsequent
recognition experiments.

7.2. Recognition from Grey-Level Images

The method for achieving recognition under both
sources of variability is divided into two stages:
�rst, the three model images are re-projected onto
the novel image. This is achieved by �rst assuming
minimal correspondence between the novel image
and one of the model images. With minimal corre-
spondence of four points across the images (model
and novel) we can predict the new locations of
model points that should match with the novel
image (assuming orthographic projection). Sec-
ond, photometric alignment is subsequently ap-
plied by selecting a number of points (no corre-
spondence is needed at this stage because all im-

ages are now view-compensated) to solve for the
linear coe�cients. The three model images are
then linearly combined to produce a synthetic im-
age that is both view and illumination compen-
sated, i.e., should match the novel image.

Figure 13 illustrates the chain of alignment
transformations. The novel image, displayed in
the third row left image, is taken from an in-
between viewing position and illumination condi-
tion. Although, in principle, the recognition com-
ponents are not limited to in-between situations,
there are few practical limitations. The more ex-
trapolated the viewing position is, the more new
object points appear and old object points dis-
appear, and similarly, the more extrapolated the
illumination condition is, the more new cast shad-
ows are created (see Section 4.1). Minimal cor-
respondence was achieved by manually selecting
four points that corresponded to the far corners
of the eyes, one eye-brow corner, and one mouth
corner. The model views were re-projected onto
the novel view, and their original grey-values re-
tained. As a result, we have created three syn-
thesized model images (shown in Figure 13, sec-
ond row) that are from the same viewing position
as the novel image, but have di�erent image in-
tensity distributions due to changing illumination.
The photometric alignment method was then ap-
plied to the three synthesized model images and
the novel image, without having to deal with cor-
respondence because all four images were already
aligned. The sample points for the photometric
alignment method were chosen automatically by
searching over smooth regions of image intensity
(as described in Section 4.3). The resulting syn-
thesized image is displayed in Figure 13, third row
right image. The similarity between the novel and
the synthesized image is illustrated by superim-
posing the step edges of the two images (Figure
13, bottom row right image).

7.3. Recognition from Reduced Images

A similar procedure to the one described above
can be applied to recognize a reduced novel im-
age. In this case the input image is taken from
a novel viewing position and illumination con-
dition, followed by a thresholding operator (un-
known to the recognition system). Figure 14 il-
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Fig. 13. Recognition from full grey-level novel image (see text for more detailed description). Row 1 (left to right): Three
model images (the novel image is shown third row lefthand display). Row 2: View-compensated model images | all three
model images are transformed (using four points) as if viewed from the novel viewing position. Row 3: Novel image, edges
of novel image, photometric alignment of the three view-compensated model images (both view and illumination compen-
sated). Row 4: Edges of the resulting synthesized image (third row righthand), overlay of edges of novel and synthesized
image.
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Fig. 14. Recognition from a reduced image. Row 1 (left to right): novel thresholded image; its level-crossings (the original
grey-levels of the novel image are shown in the previous �gure, third row on the left). Row 2: the synthesized image
produced by the recognition procedure; its level-crossings. Row 3: overlay of both level-crossings for purposes of verifying
the match.
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lustrates the procedure. We applied the linear
combinationmethod of re-projection [55] and used
more than the minimum required four points. In
this case it is more di�cult to reliably extract cor-
responding points between the thresholded input
and the model images. Therefore, seven points
were manually selected and their corresponding
points were manually estimated in the model im-
ages. The linear combination method was then
applied using a least squares solution for the lin-
ear coe�cients to produce three synthesized view-
compensated model images. The photometric
alignment method from sign-bits was then applied
(Section 5.2) using a similar distribution of sample
points as shown in Figure 11.

We consider next another case of recognition
from reduced images, in which we make use of
the property that exact alignment is not required
when using sign-bits.

7.4. Recognition from a Single Viewing Position

Photometric alignment from sign-bits raises the
possibility of compensating for changing illumina-
tion without an exact correspondence between the
model images and the novel image. The reason lies
in the way points are sampled for setting the sys-
tem of inequalities; that is, points are sampled
relatively far away from the contours (see Sec-
tion 5.2). In addition, the separation of image
displacements into nominal and residual compo-
nents (Section 6.1) suggests that in an area of in-
terest bounded by at least three reference points,
the nominal component alone may be su�cient to
bring the model images close enough to the novel
image so that we can apply the photometric align-
ment from sign bits method.

Consider, for example, the e�ect of applying
only the nominal transformation between two dif-
ferent views (Figure 15). Superimposing the two
views demonstrates that the displacement is con-
centrated mostly in the center area of the face
(most likely the area in which we would like to
select the sample points). By selecting three cor-
responding points covering the center area of the
face (two extreme eye corners and one mouth cor-
ner), the 2D a�ne transformation (nominal trans-
formation) accounts for most of the displacement
in the area of interest at the expense of large dis-

placements at the boundaries (Figure 15, bottom
row on the right). This is expected from the ge-
ometric interpretation of a�ne depth 
p, as it in-
creases as the object gets farther from the refer-
ence plane [23], [46].

Taken together, the use of sign-bits and the
nominal transformation suggests that one can
compensate for illumination and for relatively
small changes in viewing positions from model im-
ages taken from the same viewing position. We
apply �rst the nominal transformation to all three
model images and obtain three synthesized im-
ages. We then apply the photometric alignment
from sign-bits to recover the linear coe�cients
used for compensating for illumination. The three
synthesized images are then linearly combined to
obtain an illumination-compensated image. The
remaining displacement between the synthesized
image and the novel image can be recovered by ap-
plying the residual motion transformation (along
the epipolar direction using the constant bright-
ness equation).

Figure 16 illustrates the alignment steps. The
three model images are displayed in the top row
and are the same as those used in Section 4.3 for
compensating for illumination alone. The novel
image (second row, left display) is the same as in
Figure 13, i.e., it is taken from a novel viewing
position and novel illumination condition. The
image in the center of the second row illustrates
the result of attempting to recover the correspon-
dence (using the full correspondence method de-
scribed in the previous section) between the novel
image and one of the model images without �rst
compensating for illumination. The image on the
left in the third row is the result of �rst applying
the nominal transformation to the three model im-
ages followed by the photometric alignment using
the sign-bits (the sample points used by the pho-
tometric alignment method are displayed in the
image on the right in the second row). The re-
maining residual displacement between the latter
image and the novel image is recovered using the
full correspondence method and the result is dis-
played in the center image in the third row. The
similarity between the �nal synthesized image and
the novel image is illustrated by superimposing
their step edges (fourth row, right display).
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Fig. 15. Demonstrating the e�ect of applying only the nominal transformation between two distinct views. Row 1: edges of
two distinct views. Row 2: overlay of both edge image, and overlay of the edges of the left image above and the nominally
transformed righthand image.

8. Summary and Discussion

In this paper we addressed the connection between
recognition of general 3D objects and the ability to
create an equivalence class of images of the same
object. Recognizing objects eventually reduces to
comparing/matching images against each other or
against models of objects. This can be viewed as
comparing measurements (features, x; y positions
of points, and so forth) that ideally must be se-
lected or manipulated such that they remain in-
variant if coming from images of the same object.

We have distinguished two sources of variability
against which invariant measurements are needed.
One, is the well known geometric problem of
changing viewing positions between the camera
and the object. Second, is the photometric prob-
lem due to changing illumination conditions in the
scene. Our emphasis in this paper was on the
latter problem which, unlike the geometric prob-
lem of recognition, did not receive much attention
in the past. The traditional assumption concern-
ing the photometric problem is that one can re-
cover a reasonably complete array of invariants

just from a single image alone, such as the repre-
sentations produced by edge detectors. It is inter-
esting to note that in the earlier days of recogni-
tion, the geometric problem was approached in a
similar manner by restricting the class of objects
to polyhedra (the so-called \blocks world"). We
have argued that complete invariance of edges is
achieved when simple block-like objects are con-
sidered, whereas for more natural and complex ob-
jects, like a face, it may be necessary to explore
model-based approaches, i.e., the photometric in-
variants are model-dependent.

Motivated by several empirical observations on
human vision, and by computational arguments
on the use of edge detection, we arrived at two
observations: �rst, there appears to be a need for
a model-based approach to the photometric prob-
lem. Second, the process responsible for factoring
out the illumination during the recognition pro-
cess appears to require more than contour infor-
mation, but just slightly more.

We suggested a method, we call photometric
alignment, that is based on recording multiple
images of the object. We do not use these pre-
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recorded images to recover intrinsic properties of
the object, as in photometric stereo, but rather
to directly compensate for the change in illumi-
nation conditions for any other novel image of
the object. This di�erence is critical, as we are
no longer bounded by assumptions on the light
source parameters (e.g., we do not need to re-
cover light source directions) or assumptions on
the distribution of surface albedo (e.g., arbitrary
distributions of surface albedo are allowed). We
have discussed the situations of shadows, specular
re
ections, and changing spectral compositions of
light sources. In the case of shadows, we have seen
that the alignment scheme degrades with increas-
ing cast shadow regions in the novel input image.
As a result, photometric alignment, when applied
to general non-convex surfaces, is most suitable
for reconstructing novel images whose illumina-
tion conditions are in between those used to create
the model images. We have also seen that specular
re
ections arising from non-homogeneous surfaces
can be detected and removed if necessary. Finally,
the theory was extended to deal with color images
and the case of changing spectral composition of
light sources: the of color bands of a single model
image of a neutral surface can form a basis set for
reconstructing novel images.

We next introduced two new results to explore
the possibility of working with reduced representa-
tions instead of image grey values | as suggested
by empirical evidence from human vision (Sec-
tion 2). First, step edges and level-crossings of the
novel image are theoretically su�cient for the pho-
tometric alignment scheme. This result, however,
assumes that edges be given at sub-pixel accuracy
| a �nding that implies di�culties in making use
of this result in practice. Second, the sign-bit in-
formation can be used instead of edges. Photo-
metric alignment using sign-bits is a region-based
process by which points inside the binary regions
of the sign-bit image are sampled and each con-
tributes a partial observation. Taken together, the
partial observations are su�cient to determine the
solution for compensating for illumination. The
more points sampled, the more accurate the solu-
tion. Experimental results show that a relatively
small number of points (10 to 20) are generally suf-
�cient for obtaining solutions that are comparable
to those obtained by using the image grey values.

This method agrees with the empirical observa-
tions that were made in Section 2 regarding the
possibility of having a region-based process rather
than a contour-based one, the possibility of pre-
ferring sign-bits over edges, and the su�ciency of
sign-bits for factoring out the illumination. The
possibility of using sign-bits instead of edges raises
also a potentially practical issue related to chang-
ing viewing positions. A region-based computa-
tion has the advantage of tolerating a small de-
gree of misalignment between the images due to
changing viewing positions. This �nding implies
that the illumination can be factored out even in
the presence of small changes in viewing positions
without explicitly addressing the geometric prob-
lem of compensating for viewing transformations
| a property that was demonstrated experimen-
tally in Section 7.4.

Finally, we have shown how the geometric, pho-
tometric, and the correspondence components can
be put together to address the case when both
changes in illumination and changes in viewing
positions occur simultaneously, i.e., recognition of
an image of a familiar object taken from a novel
viewing position and a novel illumination condi-
tion.

8.1. Issues of Future Directions

The ability to interpret Mooney images of faces
may suggest that these images are an extreme case
of a wider phenomenon. Some see it as a tribute
to the human ability to separate shadow borders
from object borders [3]; here we have noted that
the phenomenon may indicate that in some cases
illumination is factored out in a model-based man-
ner and that the process responsible apparently
requires more than just contour information, but
only slightly more. A possible topic of future re-
search in this domain would be to draw a con-
nection, both at the psychophysical and compu-
tational levels, between Mooney images and more
natural kinds of inputs. For example, images seen
in newspapers, images taken under poor lighting,
and other low quality imagery have less shading
information to rely on and their edge information
may be highly unreliable, yet are interpreted with-
out much di�culty by the human visual system.
Another related example, is the image informa-
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Fig. 16. Recognition from a single viewing position (see text for details).



?? 31

tion contained in draftsmen's drawings. Artists
rarely use just contours in their drawings and rely
on techniques such as \double stroking" to cre-
ate a sense of relief (surface recedes towards the
contours) and highlights to make the surface pro-
trude. These pictorial additions that artists intro-
duce are generally not interpretable at the level
of contours alone, yet do not introduce any di-
rect shading information. In other words, it would
be interesting (and probably important on prac-
tical grounds) to discover a continuous transfor-
mation, a spectrum or scale-space of sorts, start-
ing from high-quality grey-level imagery, produc-
ing mid-way low-quality imagery of the type men-
tioned above, and converging upon Mooney-type
imagery.

Another related topic of future interest is the
level at which sources of variability are compen-
sated for. In this paper the geometric and pho-
tometric sources of variability were factored out
based on connections between di�erent images of
individual objects. The empirical observations we
used to support the argument that illumination
should be compensated for in a model-based man-
ner, actually indicate that if indeed such a process
exists, it is likely to take place at the level of clas-
sifying the image as belonging to a general class
of objects, rather than at the level of identifying
the individual object. This is simply because the
Mooney images are of generally unfamiliar faces,
and therefore, the only model-based information
available is that we are looking at an image of a
face. A similar situation may exist in the geomet-
ric domain as well, as it is known that humans
can recognize novel views just from a single view
of the object.

There are also questions of narrower scope re-
lated to the photometric domain that may be of
general interest. The question of image repre-
sentation in this paper was applied only to the
novel image. A more general question should ap-
ply to the model acquisition stage as well. In
other words, what information needs to be ex-
tracted from the model images, at the time of
model acquisition, in order to later compensate
for photometric e�ects? This question applies to
both the psychophysical and computational as-
pects of the problem. For example, can we learn
to generalize to novel images just from observing

many Mooney-type images of the object? (chang-
ing illumination, viewing positions, threshold, and
so forth). A more basic question is whether
the Mooney phenomenon is limited exclusively to
faces. And if not, what level of familiarity with
the object, or class of objects, is necessary in or-
der to generalize to other Mooney-type images of
the same object, or class of objects.

At a more technical level, there may be interest
in further pursuing the use of sign-bits. The sign-
bits were used as a source of partial observations
that, taken together, can restrict su�ciently well
the space of possible solutions for the photomet-
ric alignment scheme. In order to make further
use of this idea, and perhaps apply it to other do-
mains, the question of how to select sample points,
and the number and distribution of sample points,
should be addressed in a more systematic manner.
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