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Abstract

We describe the principles of building a moving vision
platform (a Rig) that once calibrated can thereon self-adjust
to changes in its internal configuration and maintain an Eu-
clidean representation of the 3D world using only projective
measurements. We term this calibration paradigm “Omni-
Rig”. We assume that after calibration the cameras may
change critical elements of their configuration, including
internal parameters and centers of projection.
Theoretically we show that knowing only the rotations be-
tween a set of cameras is sufficient for Euclidean calibra-
tion even with varying internal parameters and unknown
translations. No other information of the world is required.

1. Introduction

The projective framework of Structure from Motion
(SFM) is supported by a relatively large body of litera-
ture on the techniques for taking matching image features
(points and lines) across multiple views and producing a
projective representation of the three-dimensional (3D) po-
sitions of the features in space (the special cases of 2,3
views are theoretically interesting, for a review see [10]).
There are tasks, such as visual recognition by alignment
and image transfer in Photogrammetry in which a projective
representation is sufficient (for example, [18, 13]). How-
ever, in mensuration and model-based computer graphics an
Euclidean representation is necessary. To that end a grow-
ing body of literature is dedicated to the problem of obtain-
ing an Euclidean representation [7, 17, 12, 24, 1]. We divide
the various approaches into the following classes:

� Euclidean Input: In the most straightforward realiza-
tion of this approach one requires a minimal set of 5
control points whose positions in the desired Euclidean
space are known. This approach is obvious due to the

fact that a projective basis is defined by 5 points and
that the projective group includes the Euclidean group
as a subgroup. A more advanced variation on this
theme is to recover the projective to Euclidean (“Proj-
2-Euc”) transformation from Euclidean cues, such as
from known angles between lines (such as orthogonal
lines) and known distances between points [4].

� Fixed Internal Parameters Assumption: Here the
goal is to recover the internal parameters of the cam-
era explicitly by making the assumption of a sin-
gle moving camera whose internal parameters are un-
known but remain fixed throughout. These methods
are based on recovering invariants to Euclidean trans-
formations, notably the absolute conic and absolute
quadric [7, 16, 21] (and [1, 14, 9] in the case of
restricted camera motion). More recent approaches
[12, 24] assume a stereo rig (of two cameras) moving
rigidly.

� Varying Subset of Internal Parameters: Using
the machinery developed for recovering the absolute
quadric [21, 11], one can tolerate variation in a sub-
set of the internal parameters as the number of views
increases beyond three. For example, by counting ar-
guments one can show that in the absence of skew 8
views are required for solving for the remaining 4 in-
ternal parameters per camera. This idea has been so
far described fully and implemented successfully for
purely varying focal length [17]. Due to the highly
non-linear equations involved, the implementation of
these approaches are most suited for relatively large
sequences of views, as reported in [17].

In this paper, we pose the question of Projective-to-
Euclidean relationship differently. Instead of asking how
to calibrate (i.e. recover the internal parameters) a rig of
cameras, we askunder what conditions can we restore the
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Euclidean representation of a rig under a non-rigid motion
of the cameras?

To appreciate the difference between the two questions,
consider the following thought experiment. We are given
a rig of n � 2 cameras placed in roomA. Assume that
we have obtained somehow the Proj-2-Euc transformation,
either through direct input of Euclidean information com-
ing from the features of the room, or through one of the
self-calibration methods (by moving the rig rigidly while
assuming that the internal and external parameters remain
fixed). As long as the rig moves rigidly in space we can ob-
tain an Euclidean representation of space because the pro-
jective representation is fixed (or can be made fixed), thus
the Proj-2-Euc transformation remains valid. Also, if we
apply a non-rigid motion, i.e., change the relative position-
ing (and internal parameters) among the cameras, but re-
main in the same room, then by using the overlap between
the features of roomA seen before and after the non-rigid
change one can chain the projective-to-projective transfor-
mations together (since they form a group) to obtain back
the Euclidean representation.

However, consider placing the rig in a different room B,
such that there is no overlap between the features in room
A and the features in roomB. Once the rig is in roomB,
apply a non-rigid change to the rig and take a single snap-
shot of the room. Can we recover an Euclidean represen-
tation of roomB using only projective calculations, i.e.,
without using any Euclidean input from roomB? Note that
existing approaches for self-calibration are not designed to
handle such a situation. In roomB we do not have the
freedom to take multiple snapshots while applying a rigid
motion to the rig, nor can we assume that the internal pa-
rameters remain fixed (because we have a multiple camera
situation), and since there is no overlap with the previous
roomA we cannot chain together projective transforma-
tions. Yet, the question we have posed is less ambitious
than the self-calibration paradigm because we do allow for
the possibility of using Euclidean input from roomA in or-
der to calibrate once (and for all) the Proj-2-Euc transfor-
mation. The question of restoring the Proj-2-Euc transfor-
mation from dynamically changing projective representa-
tions (due to non-rigid changes of the rig) has an interest-
ing practical source. A constructive answer to the question
above provides means for designing a rig of cameras that
can change its internal configuration, such as focus, zoom,
during mensuration. The only requirement is that the rig be
calibrated once (i.e., by obtaining the Proj-2-Euc transfor-
mation), then during mensuration the field of view and the
working distance can change considerably without the need
for Euclidean input or overlap with image input taken prior
to the change of camera configuration.

Our working assumption is that from the application
point of view it is relatively manageable to start with a

known Proj-2-Euc (by simply taking a snapshot of a cali-
bration object prior to the mensuration process). Yet, it is
unrealistic to expect for Euclidean input each time the cam-
era configuration has changed, and it may be unrealistic (or
very restrictive) to ask for matching features across images
before and after the change of rig configuration (for exam-
ple, change of field of view is large, or the rig is positioned
far a way from its previous location, etc.).

In [20], the omni-rig scheme was presented and solved
for the case of arbitrary 2D projective transformation per
image plane. It was assumed that the internal parameters
and camera orientation may change, but the mutual dis-
placement between the centers of projection remains fixed.
This assumption is theoretically appealing, but may not hold
in most practical situations. Changing the zoom or focus of
a camera usually results in a change in the center of pro-
jection (COP), and thus changes the mutual displacement
between the COPs. Similarly, it is practically very hard
to rotate the cameras such that the camera COP is incident
with the rotation axis. The system also required 5 cameras
with their COPs positioned on a simplex. These require-
ments pose a practical challenge in terms of occlusions and
common field of view.

This work presents a different, more practical approach
to the omni-rig scheme. It is assumed that relative orienta-
tion between the cameras remains fixed, while the internal
parameters and the displacements between the COPs may
change freely.

Theoretically it is shown that knowing the rotations be-
tween a set ofn > 2 cameras is sufficient for upgrading a
projective reconstruction to an Euclidean one.

1.1 Formal Statement of the Problem

A pinhole camera projects a point P in 3-D projective
spaceP3 to a pointp in the 2-D projective planeP2. The
projection can be written as a 3x4 homogeneous matrixM :

p �=MP

where�= marks equality up to a scale factor. When the cam-
era is calibrated, it can be factored (by QR decomposition):

ME = K[R;T ]

where R and T are the rotation and translation of the camera
respectively, and K is a 3x3 upper diagonal matrix contain-
ing the internal parameters of the camera. The most general
form of the internal parameters matrix K is:

K =

0
@ f 
 u0

0 �f v0
0 0 1

1
A (1)

where f is thefocal length, � is theaspect ratio, (u0; v0) is
theprinciple pointand
 is theskew. It is practical to model
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K by a reduced set of internal parameters, for example as-
sume zero skew.

Generally, given projections ofm 3-D pointsfPjgmj=1 to
n images, it is possible to estimate the location of the 3-D
points and the camera matricesfMgni=1 up to a projective
transformation (collineation) represented by a 4x4 matrix
H:

p �= MHH�1P (2)

When the internal parameters of the camerasfKig
n
i=1

are known, then H can be recovered up to a 3-D simi-
larity transformation. The goal of (internal) calibration
is to recoverfKig

n
i=1, or equivalently recover the 4x4

CollineationH up to a similarity transformation.

This work follows the omni-rig two rooms calibration
scheme: A camera rig is calibrated in roomA, and then
placed in roomB. During the transfer to roomB, the cam-
eras may change their zoom/focus. Note that a change in
zoom results in a change of the internal parameters (focal
length and principle point) as well as a change in the po-
sition of the camera center of projection (the translational
component of camera position). The problem we address is
how to re-calibrate the rig in roomB using only projective
measurements.

It is assumed in this work, that relative rotations between
the cameras do not change in the transition from roomA to
roomB. This assumption is verified by experiments de-
scribed below.

2. Recovery of the Projective-to-Euclidean
Collineation in RoomB

Given point correspondences between the different
views in roomB, we recover the projective structure of the
scene, and the camera matrices up to a projective transfor-
mation. This can be done in various ways [10].

Let Mi; i = 1::n be the projective camera matrices in
roomB, computed from point correspondences. The pro-
jective coordinate system can be chosen such that

M1 = [I3�3; 03]

The Projective-to-Euclidean CollineationH satisfies, for
eachi = 1::n:

MiH �= Ki[Ri;Ti] (3)

whereRi; Ti;Ki are the rotation, translation and internal
parameters of thei-th camera in some Euclidean coordinate
system. The Euclidean coordinate system can be chosen
such thatT1 = 0. Let Ĥ be the4 � 3 matrix composed
from the first 3 columns of H. Following equation 3, for
eachi = 1::n:

MiĤ �= KiRi (4)

so there exist�i; i = 1::n such that:

MiĤR
T
i = �iKi (5)

Mi are computed from the images, andRi is assumed to
be known from roomA. Each known entry ofKi, i=1..n,
contributes one homogeneous equation in the twelve entries
of Ĥ and then scale factors�i.

The assumptions about K determine the minimal number
of cameras required to solve for the calibration. By counting
equations and variables, the number of camerasn should
satisfy: n + 12 � h � n + 1 or n � 11

h�1
Whereh is the

number of known entries inKi; i = 1::n.
For example:

� Full calibration: Ki contains 4 known entries (3 zeros
+ one), so the minimal numbers of cameras is 4.

� Known skew: Ki contain 5 known entries (3 zeros +
skew + one), so the minimal numbers of cameras is 3.

� Known principal point, skew: Ki contain 7 known
entries (3 zeros + 3 known parameters + one), so the
minimal numbers of cameras is 2.

OnceĤ is solved, the internal parameters can be recovered
by equation 5.

Note that only the first three columns ofH were recov-
ered. By choosingT1 = 0, andM1 = [I3�3; 03], the last
column ofH is ( 0 0 0 Æ )

T . The unknown parame-
terÆ determines the global scale of the reconstructed scene.
The reason for the scale ambiguity is that for everyÆ 6= 0
define

ĤÆ = H

�
I3�3 0
0 Æ

�
If equation 3 holds, then for everyi = 1::n,

MiĤÆ
�= Ki[Ri; ÆTi] (6)

Thus the common scale of the camera translationsTi; i =
1::n, and the scene cannot be recovered by knowing the in-
ternal parameters of the cameras.

3. Geometrical Analysis: Calibration by in-
variants.

In this section a geometrical interpretation is given to the
method described in the previous section. This interpreta-
tion uses points on the plane at infinity�1 whose projection
to the images are invariant to the changes in translation and
internal parameters.

Theorem 1 Let0
@ f 
 u0

0 �f v0
0 0 1

1
A
0
@ rT

1
T1

rT
2

T2
rT
3

T3

1
A
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be a calibrated camera matrix, whererTk , k=1..3, are the

rows of the rotation matrixR. LetQ be the point

�
r1
0

�
,

and let LetS be the point

�
r2
0

�
. Then the projection ofQ

to the image plane of this camera is( 1 0 0 )T , and the
projection of the line passing throughS andQ is the line of
infinity ( 0 0 1 )

T .

Proof:  
f 
 u0
0 �f v0
0 0 1

! 
rT1 T1
rT2 T2
rT3 T3

!�
r1
0

�
=

 
f 
 u0
0 �f v0
0 0 1

! 
1

0

0

!
�=

 
f

0

0

!

 
f 
 u0
0 �f v0
0 0 1

! 
rT1 T1
rT2 T2
rT3 T3

!�
r2
0

�
=

 
f 
 u0
0 �f v0
0 0 1

! 
0

1

0

!
�=

 



�f

0

!

and finally note that(f; 0; 0)> � (
; �f; 0)> �=
(0; 0; 1)>.

The pointsQ andS are on�1 and are determined by
the rotation of the matrix, and their projection to the image
plane does not depend on the camera translation and inter-
nal parameters. They are defined per camera. For a set of
camerasMi; i = 1::n, with known rotations, one can define
Qi, Si.

Let Ĥ be the4�3 matrix which maps(X Y Z )
T to

(A B C D )T , where(A B C D )T is the point
in the projective coordinate system of roomB correspond-
ing to the point(X Y Z 0 )

T in some Euclidean coor-
dinate system of roomB. If H is a Euclidean-to-projective
transformation of the second room, then̂H is composed
from the first three columns ofH . This definition ofĤ
is consistent with the definition of̂H given in the previous
section.

Knowing the invariant 3D points/lines constrainsĤ. For
example, the invariant point̂HQi lies on the line of sight
of point ( 1 0 0 ) in cameraMi. This contributes two
constraints onĤ . Similar constraints can be used with the
invariant lines. For example, The line passing throughĤQi

and ĤSi intersects the line of sight of point( 0 1 0 )
in the i-th camera. This contributes a constraint onĤ .
Therefore, for a full set of 5 internal parameters per camera,
we have 3 constraints per camera and thus need 4 cameras
to uniquely defineĤ . In the case of vanishing skew, we
have an additional invariant as the pointS is projected onto
( 0 1 0 ), thus each camera would provide 5 constraints
onĤ .

The Euclidean coordinate systems in roomA and room
B can be chosen such that the coordinates of the 3D invari-
ant points/lines in roomB and roomA coincide. Thus the
coordinates of the 3D invariant points/lines can be measured
in roomA, and then used in roomB. For example, for every
cameraMi; i = 1::n, pointQi as defined in theorem 1 is the
intersection of the plane at infinity with the line of sight of
the point( 1 0 0 ) in thei-th camera in roomA.

Having the recovered̂H, consider the3�3 matrixMiĤ .
It transforms a point in the plane at infinity, given in the re-
duced Euclidean coordinate frame, to it’s projection on the
i-th image in roomB. i.e This is the homography between
the plane at infinity and thei-th image.

KiRi
�= MiĤ

Ki can be recovered by QR decomposition, or, asRi is
known, byKi

�= MiĤR
T
i .

4. Results

To test the applicability of the proposed method, several
experiments were conducted. The cameras used were of a
720 � 480 pixels of resolution, where the combination of
field of view and distance to object made a pixel occupy a
millimeter square in space.

The first experiment was to test the basic assumption that
changes of zoom leaves the relative orientation unchanged
yet varies all other parameters (internal parameters and po-
sition of center of projection). In each zoom setting the cal-
ibration pattern (see Fig. 1) was used for a direct estimation
of the Euclidean camera matrices using the known 3D po-
sitions of the calibration points (the corners of the checker-
board pattern). Table 4 displays the values of the calibration
parameters at four different zoom settings (in the range of
1� 2 of scale factor). Note that the internal parameters and
the position of the center of projection vary considerably
(whereT varies mostly along theZ axis), yet the camera
orientation (measured in Euler anglesRx, Ry,Rz) remains
relatively stable.

The accuracy of the omni-rig solution for a 3-camera rig
(assuming vanishing skew) was evaluated as follows. The
Euclidean camera matrices were recovered from the cali-
bration pattern and the relative camera orientations were es-
timated. The effective accuracy of the reconstruction (com-
bining together the uncertainty of point matching and the
depth uncertainty due to rig geometry) was on average1
millimeter (distance of reconstructed points from the con-
trol points) and the back projection of the reconstructed
points onto the image space yielded an average error of 0.4
pixels.

After capturing the first set of images (roomA), the
zoom of the cameras was changed freely, and another set
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Parameter Zoom 1 Zoom 2 Zoom 3 Zoom 4
RX 169.376 169.267 168.923 168.975
RY 145.232 144.721 145.106 145.253
RZ 170.295 170.204 169.930 169.954
TX -102.025 -96.648 -100.095 -103.335
TY -149.359 -147.564 -146.491 -146.152
TZ -693.530 -688.638 -698.129 -718.160
fx 1546.778 1448.106 1335.391 1177.927

 -2.618 -3.118 -2.332 -1.755
fy 1424.203 1333.413 1228.614 1084.241
u0 376.842 387.107 376.397 369.073
v0 232.628 237.015 240.425 241.727

Table 1. Camera parameters values in different
zoom/focus states. The seems fixed in comparison with the
other parameters.

of images of the calibration object was captured (roomB).
Next, the corresponding points in the images of “Room
B” were used in order to compute the projective camera
matrices and the projective 3D coordinates of the points.
This was done without using any a priory knowledge of the
scene. Finally the Projective-to-Euclidean transformation
H , and the internal and external parameters of the cam-
eras were computed, based on the rotations/invariants from
“RoomA” and the projective camera matrices. The accu-
racy of calibration was measured both in terms of distance
from the control points and, since the calibration pattern
consists of two perpendicular planes, we used also the angle
between these planes as a measure of calibration quality.

The results of the omni-rig calibration were compared to
three other Euclidean reconstructions:

� Proj2Euc: Computing the optimal least squares trans-
formation mapping the projective reconstruction in
roomB to the known 3D points. The quality of this
computation depends on the accuracy of the image
measurements, and on the quality of the projective re-
construction algorithm. The omni-rig system estimates
this transformation without knowing the 3D points.
Thus the omni-rig solution is at most as accurate as
this solution.

� room-A: Assuming the camera parameters have not
changed in the transitions between the rooms. This
computation was expected to yield the worst results

� Known 3D: Direct linear computation of the Euclidean
cameras by using the knowledge of the 3D coordinates.
This computation was expected to yield the best re-
sults because the optimization is performed directly in
3D space without going through the projective recon-
struction which provides a less meaningful optimiza-
tion criteria.

Exp. Proj2Euc. Known-3D Omni-rig Room-A
1 90.0471 89.9585 89.6611 78.2593
2 90.1609 89.8293 89.0388 77.4602
3 89.9949 89.9886 90.5147 72.8573

Table 2. The angles between the planes of the calibration
object in the reconstructed points (see text for further de-
tails). A typical image of the calibration object is shown in
Fig. 1

Figure 1. The calibration object, composed of two per-
pendicular planes with a checker-board pattern.

Fig. 2 and table 2 summarize the results for the case of
zero-skew (3-camera rig). Fig. 2 describes the mean of dis-
tances (in millimeters) between the known 3D points and
the reconstructed points. The bar chart presents the results
of three experiments, each experiment on different set of
images. The high right bar in each experiment is the re-
sult of using the original cameras from roomA. Then,
from right to left are the results of the omni-rig, the calibra-
tion using known 3D points, and the optimal Projective-to-
Euclidean transformation. It is noticeable that the results of
the omni-rig are only slightly worse than the optimal Proj-
to-Euclidean. This implies that the process (including the
assumption that relative orientation remains fixed) did not
add a source of error (in addition to the projective recon-
struction). Note also that compared to the best one can do
in these circumstances (“known-3D”) the omni-rig process
is at most twice as worse from optimum, where most of the
error is attributed to the projective reconstruction stage and
not to the re-calibration stage.

Table 2 describes the angles between the reconstructed
planes of the orthogonal calibration object. As expected, the
worst results are achieved when using the camera parame-
ters from roomA, and the best results are achieved when
the known 3D points are used. The quality of the omni-rig
calibration is only slightly inferior to the Proj2Euc calibra-
tion. This proves the accuracy and the applicability of the
omni-rig calibration scheme.

Finally, the applicability of omni-rig for visualization
applications is demonstrated. Given 3 images, and dense
correspondences, the scene was reconstructed up to a
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Figure 2. The mean of distances (in millimeters) between
the reconstructed points and the corresponding known 3D
coordinates in 3 experiments. Right to left: RoomA, omni,
known 3D, proj-to-Euc. The omni rig error is almost as
small as the optimal least squares Proj-2-Euc error.

projective reconstruction. Then, using the known rotation,
the Projective-to-Euclidean collineation was computed by
the omni-rig method. Having the Euclidean coordinate
system enables to construct a texture-mapped 3D model,
and to rotate it by any angle. Rotating a non-Euclidean
reconstruction would result in affine or projective distortion
in the images. The results of this experiment are presented
in figure 3.

5. Summary

We have presented a simple linear method to re-calibrate
ann-camera rig. Our only assumption is that the camera
bodies are fixed relative to one another, hence their mutual
rotations remain unchanged. We have shown that for a full
re-calibration of internal parameters and position of center
of projection of each camera, a rig of 4 cameras is required.
In the case of vanishing skew a rig of 3 cameras would be
sufficient, and in case of vanishing skew and known princi-
ple point then a stereo rig would suffice.

The experimental setup verified our basic assumption
that changes of zoom does not affect the relative rotational
component of camera positions, yet affects all other calibra-
tion parameters. We have compared our re-calibration pro-
cedure to the optimal solutions (using knowledge of control
points) and have found a close agreement in terms of accu-
racy.

In the future we plan to make the recalibration process
more robust, without adding new information in roomB.
One Example of this would be to measure the axis on which

a)

b)

c)

d)

Figure 3. A 3D model of a face in various rotations and
zooms. The model was reconstructed projectively, and up-
graded to Euclidean by the omni-rig method. A correct Eu-
clidean reconstruction enables to rotate the 3D model with-
out introducing projective distortions to the images.
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each camera center moves.
Another future direction would be to describe all the pa-

rameters of the cameras in the omni rig as a function of
a minimal set of parameters. Every camera is allowed to
change it’s focus and zoom, and it seems reasonable to
model the entire configuration of the camera as a function
of these parameters. This process would require more de-
manding measurements in roomA, but might produce a
more accurate recalibrated rig.
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