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Abstract

This paper introduces a family of4 � 4� 4 tensors, re-
ferred to as “join tensors” or Jtensors for short, which per-
form “3D to 3D” alignment between coordinate systems of
sets ofdynamic3D points. 3D Configurations of points are
obtained by a 3D measuring device (such as a structured
light or laser range sensor, or a stereo rig) at timest1; t2; t3
from different viewing positions in addition to the motion
of the sensor the points are also allowed to move in space;
each point can move along an arbitrary straight-line path
— we refer to this situation as “dynamic”. The problem is
to recover the motion of the sensor given the 3D correspon-
dences of the points over time.

We introduce Jtensors to capture the problem described
above. Three observationsP; P 0; P 00 of a point measured at
three time instants contribute a linear measurement to the
Jtensor, regardless of whether the point has moved in space
or has remained stationary while the sensor has changed
position.

1 Introduction
Consider the classic problem of “3D to 3D” alignment of

point sets. We are given a set of 3D pointsP1; :::; Pn mea-
sured by some device such as a structured light range sensor
[?] or a stereo rig of cameras. When the sensor changes its
position in space while the 3D points remain stationary, the
3D positions of the measured pointsP 0

1
; :::; P 0

n, have under-
gone a coordinate transformation. In a projective setting,
five of these matching pairs in general position are suffi-
cient to recover the4�4 collineationA such thatAPi �= P 0

i ,
i = 1; :::; n. In a rigid motion setting the coordinate trans-
formation consists of translation and rotation which can be
recovered using four matching points; elegant techniques
using SVD have been developed for this purpose [2].

In this paper we introduce a “dynamic” version of the
3D-to-3D alignment problem (see Fig. 1). We allow for the
possibility that any number of the points may move along

straight-line paths during the motion of the sensor. Points
that remain in place are calledstatic and points that move
are calleddynamic. There can be any number of dynamic
points — including the possibility thatall points are dy-
namic — and the system need not know in advance which
points are static and which are dynamic (an unsegmented
configuration). Under these conditions we wish to find the
projective coordinate changes undertwomotions of the sen-
sor.

We derive a4�4�4 family of tensors, referred to asjoin
tensorsor Jtensors in short, that capture the dynamic 3D-
to-3D alignment problem. A tripletP; P 0; P 00 of positions
of some point measured at three time instants contributes a
linear measurement to the Jtensor regardless of whether the
physical point in space is dynamic or static while the sensor
has changed positions. The linear constraints add up to a
four-dimensional null space of Jtensors — that is, there ex-
ist four distinct Jtensors which are linearly recovered from
matching points. We will show how the coordinate trans-
formations are extracted from the Jtensors, how the map-
ping between coordinate systems is done directly using the
Jtensors, and what can be said about combining static and
dynamic observations in unsegmented and segmented situ-
ations.

2 Derivation of Jtensors

LetX be some point in 3D space with coordinate vector
P . LetP 0 be the coordinate representation of the pointX at
some other time instant (the sensor has changed its viewing
position) and letP 00 be the coordinate representation ofX at
a third time instant. LetA;B be the collineations mapping
the second and third coordinate representations back to the
first representation, i.e.,P �= AP 0 andP 00 �= BP 00.

If the point X happens tomovealong some straight-
line path during the change of coordinate systems, then
P;AP 0; BP 00 do not coincide but they form a rank-2 ma-
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Figure 1. The pointsP ,P 0 andP 00 are measured at three
time instants from different viewing positions of the sensor,
i.e., each point is given in a different coordinate system.
While the measuring device changes position, the physical
point in space moves along a straight line path. In other
words, the rank of the4 � 3 matrix [P; AP 0; BP 00] is 2 for
a moving point and 1 for a static point. The4� 4 matrices
A;B are responsible for the change of coordinate system
back to the starting position.

trix:
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@
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And for every column vectorV we have
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0
@
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j j j j
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Note that becauseV is spanned by a basis of size four,
we can obtain at most four linearly independent constraints
on some object consisting ofA;B from a triplet of match-
ing pointsP; P 0; P 00. Note also that the null vector of a4�3
matrix can be represented by the3� 3 determinant expan-
sion. For example, letX;Y; Z be three column vectors in
a 4 � 3 matrix, then the vectorW representing the plane
defined by the pointsX;Y; Z is

w1 = det

0
@

x2 y2 z2
x3 y3 z3
x4 y4 z4

1
A w2 = � det

0
@
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x4 y4 z4

1
A
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0
@
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1
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We can write the relationship betweenW andX;Y; Z as
a tensor operation as follows:

wi = �ijklx
jykzl

where the entries of� consist of+1;�1; 0 in the appropri-
ate places. We will refer to� as the “cross-product” tensor.

Note that the determinant of a4� 4 matrix whose columns
consist of[X;Y; Z; T ] can be compactly written as

tixjykzl�ijkl:

Using the cross-product tensor we can write the constraint
( 1) as follows:

0 = det

0
@

j j j j
P AP 0 BP 00 V

j j j j

1
A

= P i(�ilmu(A
l
jP

0j)(Bm
k P

00k)V u)

= P iP 0jP 00k(�ilmuA
l
jB

m
k V

u)

Note that the tensor form allows us to separate the mea-
surementsP; P 0; P 00 from the unknownsA;B, and we de-
note the expression in parentheses

Jijk = �ilmuA
0l
jB

0m
k V u (2)

as the “join”1 tensor, or Jtensor for short. Note that for ev-
ery choice of the vectorV we get a Jtensor. As previously
mentioned, sinceV is spanned by a basis of dimension four
there are four such tensors; each tensor is defined by the
constraints

P iP 0jP 00kJijk = 0:

These are linear constraints on the 64 elements of the Jten-
sor. Because there are four Jtensors the linear system of
equations for solving forJijk from the matching triplets
P; P 0; P 00 has a four-dimensional null space. The vectors
of the null space are spanned by the Jtensors. In practi-
cal terms, givenN � 60 matching tripletsP; P 0; P 00, each
triplet contributes one linear equationP iP 0jP 00kJijk = 0
for the 64 entries ofJijk . The eigenvectors associated with
the four smallest eigenvalues of the estimation matrix are
the Jtensors of the dynamic 3D-to-3D alignment problem.
We summarize this in the following theorem:

Theorem 1 (Jtensors)Each matching tripletP; P 0; P 00

arising from a dynamic or static point contributes one lin-
ear equationP iP 0jP 00kJijk = 0 to a4�4�4 tensorJijk .
Any N � 60 matching triplets in general position pro-
vide an estimation matrix forJijk with a four-dimensional
null space. Therefore, the eigenvectors associated with the
smallest four eigenvalues of the estimation matrix define
four tensors that agree with the measurements.

We see that at least 60 point measurements are needed
for a solution to the Jtensors. If all of the measurements
arise from dynamic points, these points should be dis-
tributed along at least ten lines, five of which can hold up

1The join operator is the exterior product of the Grassmann-Cayley al-
gebra. A join of three 3D points is a plane which contains the three points.



AP’ BP"

V

P

2

V1

Figure 2. The pointsAP 0,BP 00 andV define a plane.
AP 0,BP 00 andV 0 define another plane. The line of inter-
section of these planes containsP .

to eight dynamic points, and the remaining five up to four
dynamic points. We will not prove this statement here. We
will state the following results (for proof see [7]):

Theorem 2 The constraintsP iP 0jP 00kJijk = 0 made
solely from static points span at most a 20-dimensional
space.

Theorem 3 Out of the ten linearly independent constraints
arising from a labeled static point, four lie in the rank-20
subspace spanned by unlabeled static points and six lie in
the subspace spanned only by dynamic points.

In other words, the first five labeled static points con-
tribute 50 constraints (4 + 6 from each point), whereas
each additional labeled static point contributes only six ad-
ditional constraints (because the remaining four are already
spanned by the 20-constraints spanning the 20-dimensional
space generated by the static points). Consequently, one
needs at least seven labeled static points for a unique so-
lution for the Jtensors. In a mixed segmented and unseg-
mented situation, each labeled static point reduces the num-
ber of required dynamic points by 6. Thus, for example, if
only one point is labeled as static, we need at least50 addi-
tional (unlabeled) matching triplets out of which at most 16
can be static.

We will next investigate the tensor slices and the extrac-
tion of the constituent collineationsA;B from the four Jten-
sors.

3 Tensor Slices and the Extraction ofA;B
The tensorJijk is symmetric with respect to the posi-

tion of the pointsP; P 0; P 00 (this is true for every purely co-
variant or contravariant tensor, unlike the mixed covariant-
contravariant trifocal tensor). It is therefore sufficient
to investigateP 0jP 00kJijk as one of the tensor double-
contractions; the others,P iP 00kJijk andP iP 0jJijk , follow
by symmetry.

Consider any Jtensor with its associated vectorV . We
will refer to V as theprincipal point of the tensor; as de-
scribed next. Clearly,�i = P 0jP 00kJijk is a plane (because

of the index position). The plane� is defined by the three
pointsV;AP 0 andBP 00 because

P 0jP 00kJijk = �ilmu(A
l
jP

0j)(Bm
k P

00k)V u;

which by definition of the cross-product tensor provides
the plane associated with the three points acted upon by
�. Therefore by varyingP 0 andP 00 we obtain a star of
planes all coincident with the pointV . Therefore the prin-
cipal point of the tensor can be recovered by taking three
double slices of the tensor and finding their intersection.

To recover the line in space passing throughAP 0 and
BP 00 it is necessary to take two Jtensors. The intersection of
the planesP 0jP 00kJ 1

ijk andP 0jP 00kJ 2

ijk is the line passing
throughAP 0 andBP 00 (see Fig. 2).

A single contractionP 00kJijk is a4� 4 matrixHij that
maps points to planes.P 0jHij is the plane passing through
V;AP 0; BP 00; thus by varyingP 0 one obtains a pencil of
planes coincident with the line throughV andBP 00. Hence
the rank of the matrixH must be 2.

BecauseHP 0 is the plane throughV;AP 0; BP 00, we
haveP 0>A>HP 0 = 0 for every choice ofP 0. Therefore
A>H is a skew-symmetric matrix and thus provides ten lin-
ear constraints forA. By varyingP 00 and thus obtaining
other H-matricesP 00kJijk we can obtain more constraints
onA but this is not sufficient to obtain a unique solution for
A. A unique solution requires the H-matrix of at least an-
other Jtensor because the principal point must vary as well.
Likewise, one can recoverB from the contractionsP 0jJijk
by varyingP 0 and taking at least two Jtensors.

4 Applications
Consider the problem of 3D reconstruction of an object

which extends beyond the field of view of the sensor. For
this purpose we can use a stereo rig, that contains a texture
pattern projector for obtaining matching points on texture-
less areas of the object. Because the field of view of the
cameras does not cover the entire object, the stereo rig must
acquire images from multiple viewing positions. Each im-
age provides a 3D patch of the object and the goal is to
“stitch” these patches together by aligning their coordinate
systems. In other words, we must recover the relative 3D
motion of the rig. In this context, the dynamic points are
the points arising from the projected texture and the static
points arise from texture markings on the object’s surface.
Hence, if the rig moves in a piecewise straight-line path and
the object is polyhedral, Jtensor theory is an appropriate tool
for aligning the coordinate systems of the 3D patches.

In the experiment, the sensor is a stereo rig with two
cameras and a random texture projector. The stereo rig ac-
quires three pairs of textured images while moving approx-
imately on a straight line. We use the Lucas-Kanade optical
flow algorithm [3] for tracking, both between and across



the pairs. In each pair we compute the projective structure
[5, 1] of the points separately. The Jtensor is computed from
the reconstructed projective structure using Least Median of
Squares [4]. The motion of the rig (matricesA andB) is
then recovered and is used for filtering out the static feature
points — a task whose degree of success provides an indi-
cation to the usefulness of the algorithm because once the
static features have been identified one can then resort to
classic 3D-to-3D alignment methods (cf. [2]). Fig. 3 shows
the results.

5 Summary
We have presented a tool for relating dynamic sets of

points in 3D across three reference frames. The dynamic
points may move along straight lines and may be measured
at three arbitrary coordinate frames. The resulting tensors
(Jtensors) are the 3D extension of the recently discovered
”homography” tensors [6] applicable for 2D scenes viewed
by moving camera.

We have demonstrated that a possible application of the
Jtensor theory is dynamic alignment of 3D point sets re-
sulting from a moving stereo rig with an attached random
texture projector. The Jtensor alleviates the need to mark
and segment static points on the object. This leads to an au-
tomatic method of 3D reconstruction from multiple stereo
rigs without the need for a fixed source of texture projection.
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(a) Left view, time 1

            

(b) Left view, time 3

(c) Points Tracked Along 3
Frames (Overlaid on (a))

(d) Points after Stabilization

(e) Segmentation of moving/static points

Figure 3. Application of the Jtensor to 3D reconstruc-
tion. Row 1 displays the left image of the stereo pair at
times 1 and 3. Note that the texture is partly projected (dy-
namic) and partly surface markings (static). Row 2 displays
the tracked points before and after stabilization (motion of
the rig canceled out). Note that the static points were sta-
bilized, indicating that the Jtensor captured the correct 3D
motion. (e)shows the static points which were identified by
the Jtensor (see text).


