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Online Learning

For t = 1, . . . , T
Environment presents input xt ∈ X
Learner predicts label ŷt ∈ {0, 1}
Environment reveals true label yt ∈ {0, 1}
Learner pays 1 if ŷt 6= yt and 0 otherwise

Goal: Make few mistakes

Online Learnability: When can we guarantee to make few mistakes ?

PAC Learnability: well understood (VC theory)
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Outline

Online Learnability:
Can we be almost as good as the best predictor in a reference class H ?

Finite H Infinite H margin-based H

No noise

Halving L’88 X

Arbitrary noise

LW’94 X X

Stochastic noise

X X X

Upper and (almost) matching lower bounds

Seamlessly deriving new algorithms/bounds
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Realizable Case (no noise)

Realizable Assumption: Environment answers yt = h(xt), where h ∈ H
and the hypothesis class, H, is known to the learner

Theorem (Littlestone’88)

A combinatorial dimension, Ldim(H), characterizes online learnability:

Any algorithm might make at least Ldim(H) mistakes

Exists algorithm that makes at most Ldim(H) mistakes

But, only in the realizable case ...

Shai Shalev-Shwartz (TTI-C) Online Learnability Feb’09 4 / 21



Littlestone’s dimension – Motivation

1 2 3 4 5 6 7 8

h1

h2

h8
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Littlestone’s dimension

Definition

Ldim(H) is the maximal depth of a full binary tree such that each path is
“explained” by some h ∈ H

Lemma

Any learner can be forced to make at least Ldim(H) mistakes

Proof.

Adversarial environment will “walk” on the tree, while on each round
setting yt = ¬ŷt.
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Standard Optimal Algorithm (SOA)

initialize: V1 = H
for t = 1, 2, . . .

receive xt
for r ∈ {0, 1} let V (r)

t = {h ∈ Vt : h(xt) = r}
predict ŷt = arg maxr Ldim(V (r)

t )
receive true answer yt
update Vt+1 = V

(yt)
t

Theorem

SOA makes at most Ldim(H) mistakes.

Proof.

Whenever SOA errs we have Ldim(Vt+1) ≤ Ldim(Vt)− 1.
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Intermediate Summary

Littlestone’s dimension characterizes online learnability

Example:
H = { all 100 characters long C++ functions }
⇒ Ldim(H) ≤ 500

Received relatively little attention by researchers

Maybe due to:

Non-realistic realizable assumption
Lack of interesting examples
Lack of margin-based theory

Coming Next – Generalizing to:

Agnostic case (noise is allowed)
Fat dimension and margin-based bounds
Linear separators
⇒ new algorithms/bounds
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Agnostic Online Learning and Regret Analysis

Make no assumptions on origin of labels

Analyze regret of not following best predictor in H:

T∑
t=1

|ŷt − yt| − min
h∈H

T∑
t=1

|h(xt)− yt|

When can we guarantee low regret ?
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Cover’s impossibility result

H = {h(x) = 1, h(x) = 0}
Ldim(H) = 1
Environment will output yt = ¬ŷt
Learner makes T mistakes

Best in H makes at most T/2 mistakes

Regret is at least T/2

Corollary: Online learning in the non-realizable case is impossible ?!?
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Randomized Prediction and Expected Regret

Let’s weaken the environment – it should decide on yt before seeing ŷt

For deterministic learner, environment can simulate learner so there’s
no difference

For learner that randomizes his predictions – big difference

We analyze expected regret

T∑
t=1

E[|ŷt − yt|] − min
h∈H

T∑
t=1

|h(xt)− yt|

This enables to sidestep Cover’s impossibility result

Online learning in the non-realizable case becomes possible !
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Weighed Majority

WM for learning with d experts

initialize: assign weight wi = 1 for each expert
for t = 1, 2, . . . , T

each expert predicts fi ∈ {0, 1}
environment determines yt without revealing it to the learner
predict ŷt = 1 w.p. ∝

∑
i:fi=1wi

receive label yt
foreach wrong expert: wi ← η wi

Theorem

WM achieves expected regret of at most:
√

ln(d)T

Shai Shalev-Shwartz (TTI-C) Online Learnability Feb’09 13 / 21



Weighed Majority

WM for learning with d experts

initialize: assign weight wi = 1 for each expert
for t = 1, 2, . . . , T

each expert predicts fi ∈ {0, 1}
environment determines yt without revealing it to the learner
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WM and Online Learnability

WM regret bound ⇒ a finite H is learnable with regret
√

ln(|H|)T
Is this the best we can do ? And, what if H is infinite ?

Solution: Combing WM with SOA

Theorem

Exists learner with expected regret
√

Ldim(H)T log(T )
No learner can have expected regret smaller than

√
Ldim(H)T

Therefore: H is agnostic online learnable ⇐⇒ Ldim(H) <∞
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Proof idea

Expert(i1, . . . , iL)

initialize: V1 = H
for t = 1, 2, . . .

receive xt
for r ∈ {0, 1} let V (r)

t = {h ∈ Vt : h(xt) = r}
define ŷt = arg maxr Ldim(V (r)

t )
if t ∈ {i1, . . . , iL} flip prediction: ŷt ← ¬ŷt
update Vt+1 = V

(ŷt)
t

Lemma

If Ldim(H) <∞, then for any h ∈ H exists i1, . . . , iL, L < Ldim(H), s.t.
Expert(i1, . . . , iL) agrees with h on the entire sequence.
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Agnostic Online Learning – Bounded Stochastic Noise

Previous theorem holds for any noise

For stochastic noise – better results

Assume: yt = h(xt) +2 νt, where P[νt = 1] ≤ γ < 1
2

Then, there exists learner with:

E

[
T∑
t=1

|ŷt − h(xt)|

]
≤ 1

1−2
√
γ(1−γ)

Ldim(H) ln(T )

Learner is better than teacher: Learner makes O(ln(T )) mistakes
while teacher makes γ T mistakes
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Fat Littlestone’s dimension

Consider hypotheses of the form h : X → R, where actual prediction
is sign(h(x))
Fat Littlestone’s dimension: Maximal depth of tree such that each
path is explained by some h ∈ H with margin γ

Importance: Can apply analysis tools for bounding a combinatorial
object

Theorem

Let M be expected #mistakes of online learner

Let Mγ(H) be #margin-mistakes of optimal h ∈ H

M ≤ Mγ(H) +
√

Ldimγ(H) ln(T )T
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Fat Littlestone’s dimension of linear separators

Linear predictors: H = {x 7→ 〈w,x〉 : ‖w‖ ≤ 1}

Lemma

If X is the unit ball of a σ-regular Banach space (B, ‖ · ‖?), then
Ldimγ(H) ≤ σ

γ2

Examples:

X H Ldimγ(H)

{x : ‖x‖2 ≤ 1} {x 7→ 〈w,x〉 : ‖w‖2 ≤ 1} 1
γ2

{x : ‖x‖∞ ≤ 1} {x 7→ 〈w,x〉 : ‖w‖1 ≤ 1} log(n)
γ2
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(Surprising) Corollary: Regret with non-convex loss

M ≤ Mγ(H) + 1
γ

√
ln(T )T

Freund and Schapire’99 – Quadratic loss

Gentile 02 – hinge loss

No result with non-convex loss

a

`(a, y)
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Summary

Online Learning PAC Learning

Dimension Ldim(H) VCdim(H)

Realizable case: dim
T X X

Agnostic case:
√

dim
T X X

Low noise: dim
T X X

Margin: X X
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Some Open Problems

Ldim and fat-Ldim calculus

Bridging the log(T ) gap between lower and upper bounds

Other noise conditions (Tsybakov, Steinwart)

Multiclass prediction with bandit feedback: Efficient algorithms?
Lower bounds ?

Low Ldim⇒ Compression scheme ⇒ Low VCdim

Low Ldim ?⇐ Compression scheme
?⇐ Low VCdim
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