Littlestone's Dimension and Online Learnability

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago \Rightarrow The Hebrew University

Talk at UCSD workshop, February, 2009

Joint work with Shai Ben-David and David Pal

Online Learning

For $t = 1, \ldots, T$

- Environment presents input $\mathbf{x}_t \in \mathcal{X}$
- Learner predicts label $\hat{y}_t \in \{0, 1\}$
- Environment reveals true label $y_t \in \{0, 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Goal: Make few mistakes

Online Learning

For $t = 1, \ldots, T$

- Environment presents input $\mathbf{x}_t \in \mathcal{X}$
- Learner predicts label $\hat{y}_t \in \{0, 1\}$
- Environment reveals true label $y_t \in \{0, 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Goal: Make few mistakes

Online Learnability: When can we guarantee to make few mistakes ?

Online Learning

For $t = 1, \ldots, T$

- Environment presents input $\mathbf{x}_t \in \mathcal{X}$
- Learner predicts label $\hat{y}_t \in \{0, 1\}$
- Environment reveals true label $y_t \in \{0, 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Goal: Make few mistakes

Online Learnability: When can we guarantee to make few mistakes ?

PAC Learnability: well understood (VC theory)

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

	Finite ${\cal H}$	Infinite ${\cal H}$	margin-based ${\cal H}$
No noise	Halving		
Arbitrary noise			
Stochastic noise			

.

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

	Finite ${\cal H}$	Infinite ${\cal H}$	margin-based ${\cal H}$
No noise	Halving	L'88	
Arbitrary noise			
Stochastic noise			

.

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

	Finite ${\cal H}$	Infinite ${\cal H}$	margin-based ${\cal H}$
No noise	Halving	L'88	
Arbitrary noise	LW'94		
Stochastic noise			

< ロト < 同ト < ヨト < ヨト

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

	Finite ${\cal H}$	Infinite ${\cal H}$	margin-based ${\cal H}$
No noise	Halving	L'88	\checkmark
Arbitrary noise	LW'94	\checkmark	\checkmark
Stochastic noise	\checkmark	\checkmark	\checkmark

.

Can we be almost as good as the best predictor in a reference class ${\cal H}$?

	Finite ${\cal H}$	Infinite ${\cal H}$	margin-based ${\cal H}$
No noise	Halving	L'88	\checkmark
Arbitrary noise	LW'94	\checkmark	\checkmark
Stochastic noise	\checkmark	\checkmark	\checkmark

- Upper and (almost) matching lower bounds
- Seamlessly deriving new algorithms/bounds

Realizable Assumption: Environment answers $y_t = h(\mathbf{x}_t)$, where $h \in \mathcal{H}$ and the hypothesis class, \mathcal{H} , is known to the learner

Theorem (Littlestone'88)

A combinatorial dimension, $Ldim(\mathcal{H})$, characterizes online learnability:

- Any algorithm might make at least $Ldim(\mathcal{H})$ mistakes
- Exists algorithm that makes at most $Ldim(\mathcal{H})$ mistakes

But, only in the realizable case ...

Littlestone's dimension - Motivation

Littlestone's dimension - Motivation

Definition

 $Ldim(\mathcal{H})$ is the maximal depth of a full binary tree such that each path is "explained" by some $h\in\mathcal{H}$

Lemma

Any learner can be forced to make at least $\operatorname{Ldim}(\mathcal{H})$ mistakes

Proof.

Adversarial environment will "walk" on the tree, while on each round setting $y_t = \neg \hat{y}_t$.

Standard Optimal Algorithm (SOA)

 $\begin{array}{ll} \textbf{initialize:} \ V_1 = \mathcal{H} \\ \textbf{for} \ t = 1, 2, \dots \\ & \text{receive} \ \textbf{x}_t \\ & \text{for} \ r \in \{0, 1\} \ \text{let} \ V_t^{(r)} = \{h \in V_t : h(\textbf{x}_t) = r\} \\ & \text{predict} \ \hat{y}_t = \arg \max_r \operatorname{Ldim}(V_t^{(r)}) \\ & \text{receive true answer} \ y_t \\ & \text{update} \ V_{t+1} = V_t^{(y_t)} \end{array}$

Standard Optimal Algorithm (SOA)

initialize:
$$V_1 = \mathcal{H}$$

for $t = 1, 2, ...$
receive \mathbf{x}_t
for $r \in \{0, 1\}$ let $V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}$
predict $\hat{y}_t = \arg \max_r \operatorname{Ldim}(V_t^{(r)})$
receive true answer y_t
update $V_{t+1} = V_t^{(y_t)}$

Theorem

SOA makes at most $Ldim(\mathcal{H})$ mistakes.

Proof.

Whenever SOA errs we have $Ldim(V_{t+1}) \leq Ldim(V_t) - 1$.

Intermediate Summary

- Littlestone's dimension characterizes online learnability
- Example:
 - $\mathcal{H} = \{ \text{ all 100 characters long C++ functions } \}$
 - $\Rightarrow \operatorname{Ldim}(\mathcal{H}) \leq 500$

3 🕨 🖌 3

Intermediate Summary

- Littlestone's dimension characterizes online learnability
- Example:
 - $\mathcal{H} = \{ \text{ all 100 characters long C++ functions } \}$
 - $\Rightarrow \operatorname{Ldim}(\mathcal{H}) \leq 500$
- Received relatively little attention by researchers
- Maybe due to:
 - Non-realistic realizable assumption
 - Lack of interesting examples
 - Lack of margin-based theory
- Coming Next Generalizing to:
 - Agnostic case (noise is allowed)
 - Fat dimension and margin-based bounds
 - Linear separators
 - $\bullet \ \Rightarrow {\sf new \ algorithms/bounds}$

- Make no assumptions on origin of labels
- Analyze regret of not following best predictor in \mathcal{H} :

$$\sum_{t=1}^{T} |\hat{y}_t - y_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |h(\mathbf{x}_t) - y_t|$$

• When can we guarantee low regret ?

Cover's impossibility result

- $\mathcal{H} = \{h(x) = 1, h(x) = 0\}$
- $\operatorname{Ldim}(\mathcal{H}) = 1$
- Environment will output $y_t = \neg \hat{y}_t$
- Learner makes T mistakes
- Best in $\mathcal H$ makes at most T/2 mistakes
- Regret is at least T/2

Corollary: Online learning in the non-realizable case is impossible ?!?

Randomized Prediction and Expected Regret

- Let's weaken the environment it should decide on y_t before seeing \hat{y}_t
- For deterministic learner, environment can simulate learner so there's no difference
- For learner that randomizes his predictions big difference
- We analyze expected regret

$$\sum_{t=1}^{T} \mathbb{E}[|\hat{y}_t - y_t|] - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |h(\mathbf{x}_t) - y_t|$$

- This enables to sidestep Cover's impossibility result
- Online learning in the non-realizable case becomes possible !

Weighed Majority

WM for learning with d experts

initialize: assign weight $w_i = 1$ for each expert for t = 1, 2, ..., Teach expert predicts $f_i \in \{0, 1\}$ environment determines y_t without revealing it to the learner predict $\hat{y}_t = 1$ w.p. $\propto \sum_{i:f_i=1} w_i$ receive label y_t for each wrong expert: $w_i \leftarrow \eta w_i$

Weighed Majority

WM for learning with d experts

initialize: assign weight $w_i = 1$ for each expert for t = 1, 2, ..., Teach expert predicts $f_i \in \{0, 1\}$ environment determines y_t without revealing it to the learner predict $\hat{y}_t = 1$ w.p. $\propto \sum_{i:f_i=1} w_i$ receive label y_t for each wrong expert: $w_i \leftarrow \eta w_i$

Theorem

WM achieves expected regret of at most: $\sqrt{\ln(d) T}$

イロト イポト イヨト イヨト

- WM regret bound \Rightarrow a finite ${\cal H}$ is learnable with regret $\sqrt{\ln(|{\cal H}|)\,T}$
- Is this the best we can do ? And, what if $\mathcal H$ is infinite ?
- Solution: Combing WM with SOA

- WM regret bound \Rightarrow a finite ${\cal H}$ is learnable with regret $\sqrt{\ln(|{\cal H}|)\,T}$
- Is this the best we can do ? And, what if $\mathcal H$ is infinite ?
- Solution: Combing WM with SOA

Theorem

- Exists learner with expected regret $\sqrt{\operatorname{Ldim}(\mathcal{H}) T \log(T)}$
- No learner can have expected regret smaller than $\sqrt{\operatorname{Ldim}(\mathcal{H})T}$

Therefore: \mathcal{H} is agnostic online learnable \iff $Ldim(\mathcal{H}) < \infty$

Proof idea

$\mathsf{Expert}(i_1,\ldots,i_L)$

initialize: $V_1 = \mathcal{H}$ for t = 1, 2, ...receive \mathbf{x}_t for $r \in \{0, 1\}$ let $V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}$ define $\hat{y}_t = \arg \max_r \operatorname{Ldim}(V_t^{(r)})$ if $t \in \{i_1, ..., i_L\}$ flip prediction: $\hat{y}_t \leftarrow \neg \hat{y}_t$ update $V_{t+1} = V_t^{(\hat{y}_t)}$

Lemma

If $Ldim(\mathcal{H}) < \infty$, then for any $h \in \mathcal{H}$ exists i_1, \ldots, i_L , $L < Ldim(\mathcal{H})$, s.t. *Expert* (i_1, \ldots, i_L) agrees with h on the entire sequence.

イロト イヨト イヨト イヨト

- Previous theorem holds for any noise
- For stochastic noise better results
- Assume: $y_t = h(x_t) +_2 \nu_t$, where $\mathbb{P}[\nu_t = 1] \leq \gamma < \frac{1}{2}$
- Then, there exists learner with:

$$\mathbb{E}\left[\sum_{t=1}^{T} |\hat{y}_t - h(x_t)|\right] \leq \frac{1}{1 - 2\sqrt{\gamma(1-\gamma)}} \operatorname{Ldim}(\mathcal{H}) \ln(T)$$

• Learner is better than teacher: Learner makes $O(\ln(T))$ mistakes while teacher makes $\gamma\,T$ mistakes

Fat Littlestone's dimension

- Consider hypotheses of the form $h:\mathcal{X}\to\mathbb{R},$ where actual prediction is $\mathrm{sign}(h(\mathbf{x}))$
- Fat Littlestone's dimension: Maximal depth of tree such that each path is explained by some $h \in \mathcal{H}$ with margin γ
- Importance: Can apply analysis tools for bounding a combinatorial object

Theorem

- Let M be expected #mistakes of online learner
- Let $M_{\gamma}(\mathcal{H})$ be #margin-mistakes of optimal $h \in \mathcal{H}$

$$M \leq M_{\gamma}(\mathcal{H}) + \sqrt{\operatorname{Ldim}_{\gamma}(\mathcal{H}) \ln(T) T}$$

Fat Littlestone's dimension of linear separators

Linear predictors: $\mathcal{H} = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \|\mathbf{w}\| \leq 1\}$

Fat Littlestone's dimension of linear separators

Linear predictors: $\mathcal{H} = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \|\mathbf{w}\| \le 1\}$

Lemma

If \mathcal{X} is the unit ball of a σ -regular Banach space $(B, \|\cdot\|_{\star})$, then $\operatorname{Ldim}_{\gamma}(\mathcal{H}) \leq \frac{\sigma}{\gamma^2}$

Fat Littlestone's dimension of linear separators

Linear predictors:
$$\mathcal{H} = \{ \mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \| \mathbf{w} \| \le 1 \}$$

Lemma

If \mathcal{X} is the unit ball of a σ -regular Banach space $(B, \|\cdot\|_*)$, then $\operatorname{Ldim}_{\gamma}(\mathcal{H}) \leq \frac{\sigma}{\gamma^2}$

Examples:

$$\begin{array}{c|c} \mathcal{X} & \mathcal{H} & \operatorname{Ldim}_{\gamma}(\mathcal{H}) \\ \\ \{\mathbf{x} : \|\mathbf{x}\|_{2} \leq 1\} & \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \|\mathbf{w}\|_{2} \leq 1\} & \frac{1}{\gamma^{2}} \\ \\ \{\mathbf{x} : \|\mathbf{x}\|_{\infty} \leq 1\} & \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \|\mathbf{w}\|_{1} \leq 1\} & \frac{\log(n)}{\gamma^{2}} \end{array}$$

(Surprising) Corollary: Regret with non-convex loss

$$M \leq M_{\gamma}(\mathcal{H}) + \frac{1}{\gamma} \sqrt{\ln(T) T}$$

- Freund and Schapire'99 Quadratic loss
- Gentile 02 hinge loss
- No result with non-convex loss

Feb'09 20 / 21

- $\bullet~{\rm Ldim}$ and fat-Ldim calculus
- Bridging the $\log(T)$ gap between lower and upper bounds
- Other noise conditions (Tsybakov, Steinwart)
- Multiclass prediction with *bandit* feedback: Efficient algorithms? Lower bounds ?
- $\bullet \ \mathsf{Low} \ \mathsf{Ldim} \Rightarrow \mathsf{Compression} \ \mathsf{scheme} \Rightarrow \mathsf{Low} \ \mathsf{VCdim}$
- Low $\operatorname{Ldim} \stackrel{?}{\leftarrow} \operatorname{Compression}$ scheme $\stackrel{?}{\leftarrow}$ Low VCdim