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Outline

How can more data speedup training runtime?

Learning using Stochastic Optimization (S. & Srebro 2008)
Will not talk about this today

Injecting Structure (S., Shamir, Sirdharan 2010)

How can more data speedup prediction runtime?

Proper Semi-Supervised Learning (S., Ben-David, Urner 2011)

How can more data compensate for missing information?

Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010)
Technique: Rely on Stochastic Optimization
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Injecting Structure – Main Idea

Replace original hypothesis class with a larger hypothesis class

On one hand: Larger class has more structure ⇒ easier to optimize

On the other hand: Larger class ⇒ larger estimation error ⇒ need
more examples

Original
Hypothesis

Class

New Hypothesis Class
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Example — Learning 3-DNF

Goal: learn a 3-DNF Boolean function h : {0, 1}d → {0, 1}
DNF is a simple way to describe a concept (e.g. ”computer nerd”)

Variables are attributes. E.g.

x1 = can read binary code
x2 = runs Unix as the operating system on his home computer
x3 = has a girlfriend
x4 = blush whenever tells someone how big his hard drive is

h(x) = (x1 ∧ ¬x3) ∨ (x2 ∧ ¬x3) ∨ (x4 ∧ ¬x3)
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Example — Learning 3-DNF

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently learn an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Shai Shalev-Shwartz (Hebrew U) What else can we do with more data? Feb’11 6 / 37



Example — Learning 3-DNF

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently learn an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Shai Shalev-Shwartz (Hebrew U) What else can we do with more data? Feb’11 6 / 37



Proof

Observation: 3-DNF formula can be rewritten as
∧u∈T1,v∈T2,w∈T3(u ∨ v ∨ w) for three sets of literals T1, T2, T3

Define: ψ : {0, 1}d → {0, 1}2(2d)3 s.t. for each triplet of literals
u, v, w there are two variables indicating if u ∨ v ∨ w is true or false

Observation: Each 3-DNF can be represented as a single conjunction
over ψ(x)

Easy to learn single conjunction (greedy or LP)

3-DNF over x

conjunction over ψ(x
)
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Trading samples for runtime

Algorithm samples runtime

3-DNF over x d
ε 2d

Conjunction over ψ(x) d3

ε poly(d)

Runtime

m

3-DNF

Conjunction
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Disclaimer

Analysis is based on upper bounds

Open problem: establish gaps by deriving lower bounds

Studied by:
”Computational Sample Complexity” (Decatur, Goldreich, Ron 1998)

Very few (if any) results on ”real-world” problems, e.g.
Rocco Servedio showed gaps for 1-decision lists
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Agnostic learning of Halfspaces with 0− 1 loss

Agnostic PAC:

D - arbitrary distribution over X × Y
Training set: S = (x1, y1), . . . , (xm, ym)

Goal: use S to find hS s.t. w.p. 1− δ,

err(hS) ≤ min
h∈H

err(h) + ε
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Hypothesis class

H = {x 7→ φ(〈w,x〉) : ‖w‖2 ≤ 1}, φ(z) = 1
1+exp(−z/µ)

-1 1

1

Probabilistic classifier: Pr[hw(x) = 1] = φ(〈w,x〉)

Loss function: err(w; (x, y)) = Pr[hw(x) 6= y] =
∣∣∣φ(〈w,x〉)− y+1

2

∣∣∣
Remark: Dimension can be infinite (kernel methods)
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First approach — sub-sample covering

Claim: exists 1/(εµ2) examples from which we can efficiently learn
w? up to error of ε

Proof idea:

S′ = {(xi, y
′
i) : y

′
i = yi if yi〈w?,xi〉 < −µ and else y′i = −yi}

Use surrogate convex loss 1
2 max{0, 1− y〈w, x〉/γ}

Minimizing surrogate loss on S′ ⇒ minimizing original loss on S
Sample complexity w.r.t. surrogate loss is 1/(εµ2)

Analysis

Sample complexity: 1/(εµ)2

Time complexity: m1/(εµ2) =
(

1
εµ

)1/(εµ2)
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Second Approach – IDPK (S, Shamir, Sridharan)

Learning fuzzy halfspaces using Infinite-Dimensional-Polynomial-Kernel

Original class: H = {x 7→ φ(〈w,x〉)}

Problem: Loss is non-convex w.r.t. w

Main idea: Work with a larger hypothesis class for which the loss
becomes convex

x 7→ φ(〈w,x〉)

x 7→ 〈v
, ψ(x

)〉
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Step 2 – Learning fuzzy halfspaces with IDPK

Original class: H = {x 7→ φ(〈w,x〉) : ‖w‖ ≤ 1}
New class: H′ = {x 7→ 〈v, ψ(x)〉 : ‖v‖ ≤ B} where ψ : X → RN s.t.
∀j, ∀(i1, . . . , ij), ψ(x)(i1,...,ij) = 2j/2 xi1 · · ·xij

Lemma (S, Shamir, Sridharan 2009)

If B = exp(Õ(1/µ)) then for all h ∈ H exists h′ ∈ H′ s.t. for all x,
h(x) ≈ h′(x).

Remark: The above is a pessimistic choice of B. In practice, smaller B
suffices. Is it tight? Even if it is, are there natural assumptions under
which a better bound holds ?
(e.g. Kalai, Klivans, Mansour, Servedio 2005)
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Proof idea

Polynomial approximation: φ(z) ≈
∑∞

j=0 βjz
j

Therefore:

φ(〈w,x〉) ≈
∞∑
j=0

βj(〈w,x〉)j

=
∞∑
j=0

∑
k1,...,kj

2−j/2βj2
j/2wk1 · · ·wkjxk1 · · · ·xkj

= 〈vw, ψ(x)〉

To obtain a concrete bound we use Chebyshev approximation
technique: Family of orthogonal polynomials w.r.t. inner product:

〈f, g〉 =
∫ 1

x=−1

f(x)g(x)√
1− x2

dx
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Infinite-Dimensional-Polynomial-Kernel

Although the dimension is infinite, can be solved using the kernel trick

The corresponding kernel (a.k.a. Vovk’s infinite polynomial):

〈ψ(x), ψ(x′)〉 = K(x,x′) =
1

1− 1
2〈x,x′〉

Algorithm boils down to linear regression with the above kernel

Convex! Can be solved efficiently

Sample complexity: (B/ε)2 = 2Õ(1/µ)/ε2

Time complexity: m2
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Trading samples for time

Algorithm sample time

Covering 1
ε2µ2

(
1
εµ

)1/(εµ2)

� �

IDPK
(

1
εµ

)1/µ
1
ε2

(
1
εµ

)2/µ
1
ε4
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Agnostic learning of Halfspaces with 0− 1 loss

Runtime

m

Covering

S., Shamir, Sridharan (2010)
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Outline

How can more data speedup training runtime?

Learning using Stochastic Optimization (S. & Srebro 2008)

Injecting Structure (S., Shamir, Sirdharan 2010) X

How can more data speedup prediction runtime?

Proper Semi-Supervised Learning (S., Ben-David, Urner 2011)

How can more data compensate for missing information?

Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010)
Technique: Rely on Stochastic Optimization
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More data can speedup prediction time

Semi-Supervised Learning: Many unlabeled examples, few labeled
examples

Most previous work: how unlabeled data can improve accuracy ?

Our goal: how unlabeled data can help constructing faster classifiers

Modeling: Proper-Semi-Supervised-Learning — we must output a
classifier from a predefined class H
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Proper Semi-Supervised Learning

A simple two phase procedure:

Use labeled examples to learn an arbitrary classifier (which is as
accurate as possible)

Apply the learned classifier to label the unlabeled examples

Feed the now-labeled examples to a proper supervised learning for H

Lemma

Agnostic learners are robust with respect to small changes in the input
distribution:

P [h(x) 6= f(x)] ≤ P [h(x) 6= g(x)] + P [g(x) 6= f(x)]
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Demonstration
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Outline

How can more data speedup training runtime?
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Attribute efficient regression

Each training example is a pair (x, y) ∈ Rd × R
Partial information: can only view O(1) attributes of each individual
example
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How more data helps?

Three main techniques:

1 Missing information as noise

2 Active Exploration — try to “fish” the relevant information

3 Inject structure — problem hard in the original representation but
becomes simple in another representation (different hypothesis class)

More data helps because:

1 It reduces variance — compensates for the noise

2 It allows more exploration

3 It compensates for larger sample complexity due to using larger
hypotheses classes
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Attribute efficient regression

Formal problem statement:

Unknown distribution D over Rd × R
Goal: learn a linear predictor x 7→ 〈w,x〉 with low risk:

Risk: LD(w) = ED[(〈w,x〉 − y)2]
Training set: (x1, y1), . . . , (xm, ym)

Partial information: For each (xi, yi), learner can view only k
attributes of xi

Active selection: learner can choose which k attributes to see

Similar to “Learning with restricted focus of attention” (Ben-David &

Dichterman 98)
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Dealing with missing information

Usually difficult — exponential ways to complete the missing
information

Popular approach — Expectation Maximization (EM)

Previous methods usually do not come with guarantees
(neither sample complexity nor computational complexity)
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Partial information as noise

Observation:

x =


x1
x2
...
xd

 =
1

d


dx1
0
...
0

+ . . .+
1

d


0
...
0
dxd


Therefore, choosing i uniformly at random gives

E
i
[dxie

i] = x .

If ‖x‖ ≤ 1 then ‖dxiei‖ ≤ d (i.e. variance increased)

Reduced missing information to unbiased noise

Many examples can compensate for the added noise
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A Stochastic Optimization Approach

Our goal: minimize over w the true risk
LD(w) = E(x,y)∼D[(〈w,x〉 − y)2]
We can only obtain i.i.d. samples from D

Goal: minw LD(w)

minw
1
m

∑m
i=1(〈w,xi〉 − yi)2

ERM
(traditional)

w ← w − ηv where
E[v] = ∇LD(w)

SGD
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A Stochastic Optimization Approach

How to construct an unbiased estimate of the gradient:

Sample (x, y) ∼ D
Sample j uniformly from [d]

Sample i from [d] based on P [i] = |wi|/‖w‖1
Set v = 2(sign(wi)‖w‖1xj − y)dxjej

Claim: E[v] = ∇LD(W )
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A Stochastic Optimization Approach

Theorem (Cesa-Bianchi, S, Shamir)

Let ŵ be the output of AER and let w? be a competing vector. Then,
with high probability

LD(ŵ) ≤ LD(w?) + Õ

(
d ‖w?‖2 ‖w?‖1√

m

)
,

where d is dimension and m is number of examples.

Corollary

Factor of d2 additional examples compensates for the lack of full
information on each individual example.
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Demonstration

Full information classifiers (top line) ⇒ error of ∼ 1.1%

Our algorithm (bottom line) ⇒ error of ∼ 3.5%
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Demonstration
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What to do with other loss functions?

General question: Given r.v. X and function f : R→ R, how to
construct an unbiased estimate of f(E[X]) ?

Claim (Paninski 2003): In general, not possible

Claim (Singh 1964, The Indian Journal of Statistics): Possible if
sample size is also a random number !
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The key idea

Can construct Qn(x) =
∑n

i=0 γn,ix
i n→∞−→ f(x)

Let Q′n(x1, . . . , xn) =
∑n

i=0 γn,i
∏i
j=1 xj

Estimator:

draw a positive integer N according to Pr(N = n) = pn
sample i.i.d. x1, x2, . . . , xN
return 1

pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)
,

Claim: This is an unbiased estimator of f(E[X])

E
N,x1,...,xN

[
1

pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)]
=

∞∑
n=1

pn
pn

E
x1,...,xn

[
Q′n(x1, . . . , xn)−Q′n−1(x1, . . . , xn−1)

]
=
∞∑
n=1

(
Qn(E[X])−Qn−1(E[X])

)
= f(E[X]).
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Summary

Learning theory: Many examples ⇒ smaller error

This work: Many examples ⇒
Speedup training time
Speedup prediction time
Compensating for missing information

Techniques:
1 Stochastic optimization
2 Inject structure
3 Missing information as noise
4 Active Exploration
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