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Outline

e Weak Learnablility = Linear separability
e Follows directly from Von-Neumann’s minimax theorem
e Relaxations

e The equivalence yields a family of relaxations to the
separability assumption

e Proof technique: Fenchel duality & Infimal Convolution
e Boosting Algorithms
e A primal-dual algorithm

e Applicable to entire family of relaxations

e Rate of convergence analysis



Boosting

Input:
@ m training examples (Xl, y1), Ce s (Xm, ym)

® n base hypotheses hq,..., Ay,




Boosting

Input:
@ m training examples (Xl, yl), Ce (Xma ym)

® n base hypotheses hq,..., A,

yrhi(x1) ... y1hp(X1)

Ym h1(Xm) o Ym b (Xin)




Boosting

Input:
@ m training examples (Xl, yl), Ce (Xma ym)

® n base hypotheses hq,..., A,

yrhi(x1) .. y1ha(x1)

Ym h1(Xm) o Ym b (Xin)

Output:

@ ’strong’ hypothesis Hy (1) = > , wihi(+)




Weak Learnability

Definition: ~y-weak-learnability

A matrix A is y-weak-learnable if

— dTA);| .
y = min %ﬁ\( );|

Probability simplex
(distributions over examples) ‘edge’ of j'th hypothesis

(dTA); Z diyih;

(dagger for transpose)
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Weak-to-strong learnablity

Schapire: Weak learnablity implies separability

* Weak learnability: Convex hull of rows of A does not contain the
origin

* Separability: Exists hyperplane that goes through origin s.t. all rows
of A resides in one side

Quantification ?




Linear Separability

Definition: separability with £; margin

A matrix A is linearly separable with ¢; margin v if

— max min (Aw);
i weB? 'LE[m]( )

unit ¢; ball 'margin’ of ' example

(weights over features) (Aw); = v; Z wih; (x;)
T — Yt g lTog\(Xq
J




Weak Learnability = Linear Separability

Theorem

The following properties are equivalent:
@ matrix A is y-weak-learnable
@ matrix A is linearly separable with ¢; margin of ~

In other words,

max min (Aw); = min max |(d'A);
wEB?  ie[m] deS™  j€(n]

Proof: Equivalence follows from Von-Neumann’s minimax theorem
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weB”  ie[m) deS™  je(n]
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hard margin

_ : dT A).
nin %%\( )i

_ - TAY.
adbihe jein A

Relaxed
weak-learnability




Relaxations -- Theorem

hard margin

_ : dT A).
Inin %?%\( )i

adbihg jeiny A

¢_ C = {w: |w| <)
_W_AW]-I-”*




Relaxations -- Theorem

in (Aw); = mi dTA);
Z.gl[gl]( w) Inin %%‘( )i

— min _ max |[(d"A);
deSmNC je[n]

; C=1{w:|w| <v}

_vl[v= A
max y vy — Aw]4 ]|,




Relaxations -- Example

@ If C ={w: | W] < +} soft margin is:

~ Il = Awlill, = AvgMing(Aw)

5
I | l _
(AwW); (AwW)s (Aw)s (AW)y



Relaxations -- Example

@ If C ={w: | W] < +} soft margin is:

~ Il = Awlill, = AvgMing(Aw)

(A W)g



Proof Technique

. T | — . t _ e Y %
Jin max|(d'A);| = minf(d) +g(d°4) = max—f*(-Aw) - g"(w)

supp(S™ N C) | ]| oo Fenchel Duality

@ In our case:

o g*(+) = supp(BY)
o The tricky part is to show that

F*(6) = —max(y — vy + 0+ .

® We show that using infimal convolution theory

T4 13 = (f1 Qint f2)"




A Boosting Algorithm

INITIALIZE: W1 =0, (= 57550
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d; = argmin Dyy,(d, (?l) where azm- X exp (—%(A Wt)i)
deSm™NC
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A Boosting Algorithm
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relaxation’

INITIALIZE: W1 =0, = 57550

Fort=1,2,...,T

A

d; = argmin Dy, (d,d) where azm- X exp (—%(A wt)i)

deS™m™NC

9; € arg max |(dZA)j|
. TA ejt — W
N = max {O, min {17 ﬁj(teﬂ't(—m)llij }}

wWirr = (1 — n)wy + 1 e’t




A Boosting Algorithm

INITIALIZE: W1 =0, (= 57550

Fort=1,2,...,T

Similar to ‘AdaBoost’

d; = argmin Dyy,(d, (?l) where aim X exp (—l(A Wt)i>

deSmNC &

9; € arg max |(dZA)j|
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A Boosting Algorithm

INITIALIZE: W1 =0, (= 51550

Entropic |
projection = > - 1

A
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A Boosting Algorithm

INITIALIZE: W1 =0, (= 57550

Fort=1,2,...,T

A

d; = argmin Dy, (d,d) where azm- X exp (—%(A wt)i)

deS™m™NC

9; € arg max |(dZA)j|
. TA ejt — W
N = max {O, min {17 ﬁj(teﬂ't(—m)llij }}

Wir1 = (1 — n)wy + 1y e’t




Convergence Rate

@ For any m x n matrix A over [—1,1]
@ For any relaxation set C' = {d : ||d| < v}

@ The number of iterations required by the
algorithm to find an e-accurate solution is

T < O(log(m)>

€2

Remarks:

@ Matches rate of AdaBoost, |RWO05] and SoftBoost [WLRO06)

@ Also bounds the sparseness of solution



Proof Technique

@ Step 1: If loss function has 3 Lipschitz continuous derivative:

2 n? 3
€t — €11 = M€ =

E = BaT )

@ Proof uses duality

@ Step 2: Approximate any ’soft-margin’ loss by 'nicely behaved’
loss

e Domain of conjugate of the loss is a subset of the simplex
o Add a bit relative entropy

@ Use infimal convolution theorem

A A




Efficient Implementation

The most expensive operations are the En-
tropic projection on C' and the call to weak
learner

For C' = {w : ||W]||sc < v} projection can be
performed in O(m)

The trick: similar to median search

Proof can be extended to approximated weak
learners




Summary

® Weak Learnability = Linear Separability
® Relaxing separability using relaxed weak learnability

® ‘Algorithmic’ relaxations

® Current and Future Work
® Use equivalence for generalization bounds !
® Other intuitive relaxations
® Other algorithmic relaxations

® Relation between L and sparsity in a more general setting




