Weak Learnability = Linear Separability New Relaxations and Efficient Boosting Algorithms

Shai Shalev-Shwartz

Yoram Singer

Outline

- Weak Learnability = Linear separability
 - Follows directly from Von-Neumann's minimax theorem
- Relaxations
 - The equivalence yields a family of relaxations to the separability assumption
 - Proof technique: Fenchel duality & Infimal Convolution
- Boosting Algorithms
 - A primal-dual algorithm
 - Applicable to entire family of relaxations
 - Rate of convergence analysis

Boosting

Input:

- m training examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$
- n base hypotheses h_1, \ldots, h_n

Boosting

Input:

- m training examples $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$
- n base hypotheses h_1, \ldots, h_n

$$A = \begin{pmatrix} y_1 h_1(\mathbf{x}_1) & \dots & y_1 h_n(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ y_m h_1(\mathbf{x}_m) & \dots & y_m h_n(\mathbf{x}_m) \end{pmatrix}$$

Boosting

Input:

- m training examples $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$
- n base hypotheses h_1, \ldots, h_n

$$A = \begin{pmatrix} y_1 h_1(\mathbf{x}_1) & \dots & y_1 h_n(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ y_m h_1(\mathbf{x}_m) & \dots & y_m h_n(\mathbf{x}_m) \end{pmatrix}$$

Output:

• 'strong' hypothesis $H_{\mathbf{w}}(\cdot) = \sum_{i=1}^{n} w_i h_i(\cdot)$

Weak Learnability

Definition: γ -weak-learnability

A matrix A is γ -weak-learnable if

$$\gamma = \min_{\mathbf{d} \in \mathbb{S}^m} \max_{j \in [n]} |(d^{\dagger}A)_j|.$$

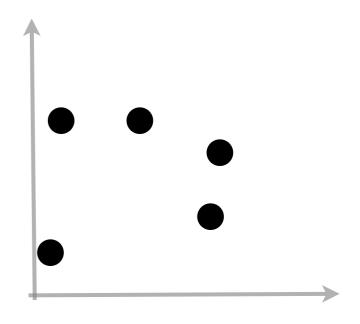
Probability simplex (distributions over examples)

'edge' of j'th hypothesis

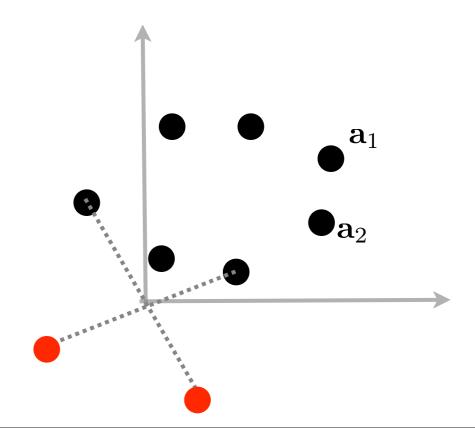
$$(d^{\dagger}A)_j = \sum_i d_i y_i h_j(\mathbf{x}_i)$$

(dagger for transpose)

Schapire: Weak learnablity implies separability

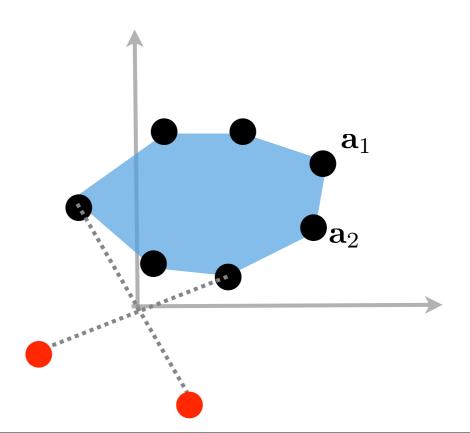


Schapire: Weak learnablity implies separability



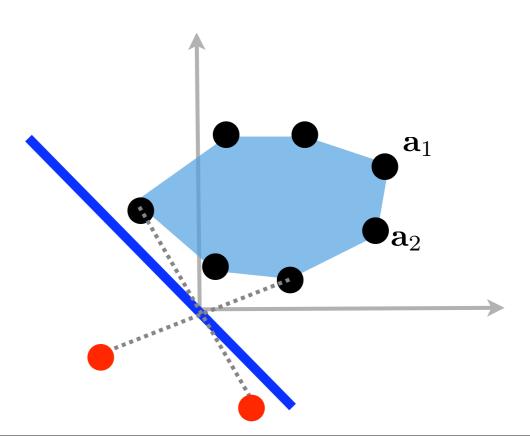
Schapire: Weak learnablity implies separability

• Weak learnability: Convex hull of rows of A does not contain the origin



Schapire: Weak learnablity implies separability

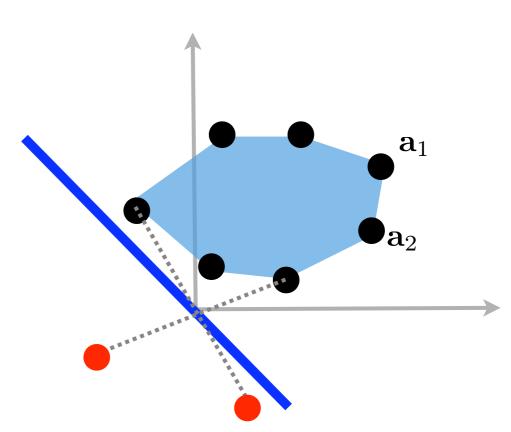
- Weak learnability: Convex hull of rows of A does not contain the origin
- **Separability**: Exists hyperplane that goes through origin s.t. all rows of A resides in one side



Schapire: Weak learnablity implies separability

- Weak learnability: Convex hull of rows of A does not contain the origin
- **Separability**: Exists hyperplane that goes through origin s.t. all rows of A resides in one side

Quantification?



Linear Separability

Definition: separability with ℓ_1 margin γ

A matrix A is linearly separable with ℓ_1 margin γ if

$$\gamma = \max_{\mathbf{w} \in \mathbb{B}_1^n} \min_{i \in [m]} (A\mathbf{w})_i$$

unit ℓ_1 ball (weights over features)

'margin' of i^{th} example

$$(Aw)_i = y_i \sum_j w_j h_j(\mathbf{x}_i)$$

Weak Learnability = Linear Separability

Theorem

The following properties are equivalent:

- matrix A is γ -weak-learnable
- matrix A is linearly separable with ℓ_1 margin of γ

In other words,

$$\max_{\mathbf{w}\in\mathbb{B}_1^n} \min_{i\in[m]} (A\mathbf{w})_i = \min_{\mathbf{d}\in\mathbb{S}^m} \max_{j\in[n]} |(d^{\dagger}A)_j|$$

Proof: Equivalence follows from Von-Neumann's minimax theorem

Relaxations -- Main Idea

$$\max_{\mathbf{w}\in\mathbb{B}_1^n} \min_{i\in[m]} (A\mathbf{w})_i = \min_{\mathbf{d}\in\mathbb{S}^m} \max_{j\in[n]} |(d^{\dagger}A)_j|$$

Relaxations -- Main Idea

$$\max_{\mathbf{w} \in \mathbb{B}_1^n} \min_{i \in [m]} (A\mathbf{w})_i = \min_{\mathbf{d} \in \mathbb{S}^m} \max_{j \in [n]} |(d^\dagger A)_j|$$

Relaxations -- Main Idea

$$\max_{\mathbf{w} \in \mathbb{B}^n_1} \min_{i \in [m]} (A\mathbf{w})_i = \min_{\mathbf{d} \in \mathbb{S}^m} \max_{j \in [n]} |(d^\dagger A)_j|$$

$$\max_{\mathbf{w} \in \mathbb{B}_1^n} \quad \mathbf{?} \quad = \min_{\mathbf{d} \in \mathbb{S}^m \cap C}$$

$$= \min_{\mathbf{d} \in \mathbb{S}^m \cap C} \max_{j \in [n]} |(d^{\dagger}A)_j|$$

Relaxed weak-learnability

Relaxations -- Theorem

$$\max_{\mathbf{w} \in \mathbb{B}_1^n} \min_{i \in [m]} (A\mathbf{w})_i = \min_{\mathbf{d} \in \mathbb{S}^m} \max_{j \in [n]} |(d^\dagger A)_j|$$

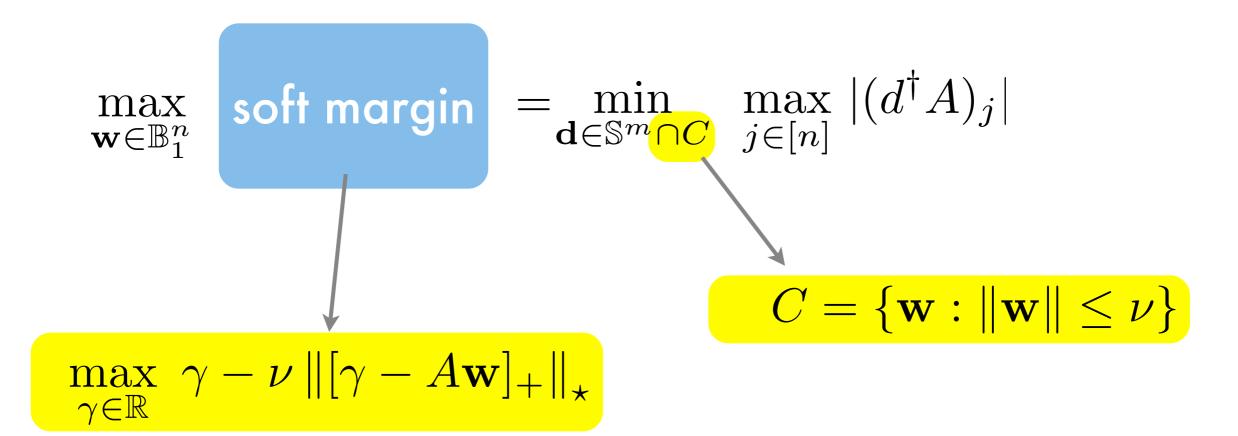
$$\max_{\mathbf{w} \in \mathbb{B}_1^n} \ \, \mathbf{soft\ margin} = \min_{\mathbf{d} \in \mathbb{S}^m \cap C} \ \, \max_{j \in [n]} |(d^\dagger A)_j|$$

$$C = \{\mathbf{w} : \|\mathbf{w}\| \le \nu\}$$

$$\max_{\gamma \in \mathbb{R}} \ \, \gamma - \nu \, \|[\gamma - A\mathbf{w}]_+\|_\star$$

Relaxations -- Theorem

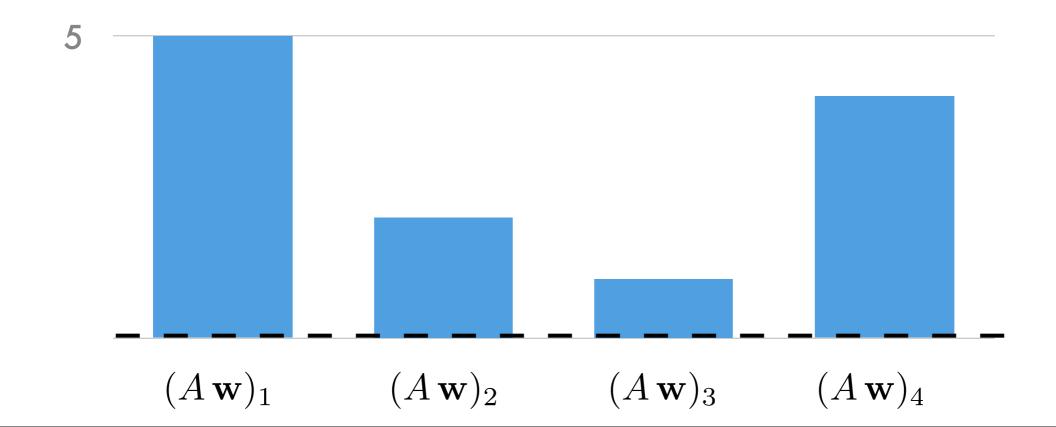
$$\max_{\mathbf{w} \in \mathbb{B}^n_1} \min_{i \in [m]} (A\mathbf{w})_i = \min_{\mathbf{d} \in \mathbb{S}^m} \max_{j \in [n]} |(d^\dagger A)_j|$$



Relaxations -- Example

• If $C = \{\mathbf{w} : ||\mathbf{w}||_{\infty} \le \frac{1}{k}\}$ soft margin is:

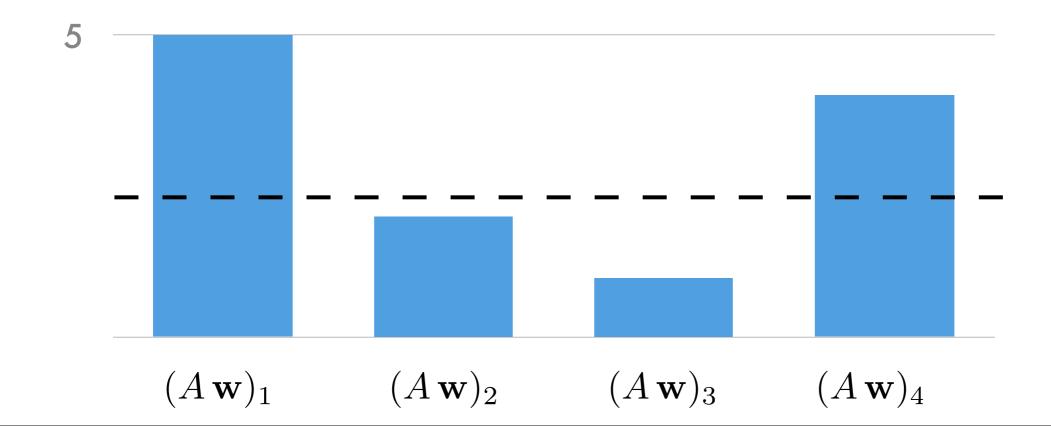
$$\max_{\gamma} \gamma - \frac{1}{k} \| [\gamma - A\mathbf{w}]_{+} \|_{1} = \operatorname{AvgMin}_{k}(A\mathbf{w})$$



Relaxations -- Example

• If $C = \{\mathbf{w} : ||\mathbf{w}||_{\infty} \le \frac{1}{k}\}$ soft margin is:

$$\max_{\gamma} \gamma - \frac{1}{k} \| [\gamma - A\mathbf{w}]_{+} \|_{1} = \operatorname{AvgMin}_{k}(A\mathbf{w})$$



Proof Technique

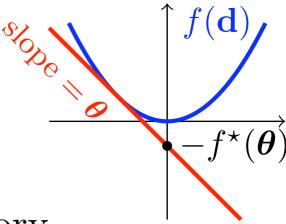
$$\min_{\mathbf{d} \in \mathbb{S}^m \cap C} \max_i |(\mathbf{d}^{\dagger} A)_i| = \min_{\mathbf{d}} f(\mathbf{d}) + g(\mathbf{d}^t A) = \max_{\mathbf{w}} -f^{\star}(-A\mathbf{w}) - g^{\star}(\mathbf{w})$$

$$\operatorname{supp}(\mathbb{S}^m \cap C)$$

$$\|\cdot\|_{\infty}$$

Fenchel Duality

- In our case:
 - $g^{\star}(\cdot) = \operatorname{supp}(\mathbb{B}_1^n)$
 - The tricky part is to show that $f^{\star}(\boldsymbol{\theta}) = -\max_{\gamma \in \mathbb{R}} (\gamma \nu \| [\gamma + \theta]_{+} \|_{\star})$



• We show that using **infimal convolution** theory

$$f_1^{\star} + f_2^{\star} = (f_1 \otimes_{\inf} f_2)^{\star}$$

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \ \beta = \frac{\epsilon}{2 \log(m)}$$

For $t = 1, 2, ..., T$

$$\mathbf{d}_t = \underset{\mathbf{d} \in \mathbb{S}^m \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A \mathbf{w}_t)_i\right)$$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger} A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_t^{\dagger} A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t \mathbf{e}^{j_t}$$

desired accuracy

Initialize:
$$\mathbf{w}_{1} = \mathbf{0}, \ \beta = \frac{\epsilon}{2 \log(m)}$$

For $t = 1, 2, ..., T$

$$\mathbf{d}_{t} = \underset{\mathbf{d} \in \mathbb{S}^{m} \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A \mathbf{w}_{t})_{i}\right)$$

$$j_{t} \in \arg\max_{j} |(\mathbf{d}_{t}^{\dagger} A)_{j}|$$

$$\eta_{t} = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_{t}^{\dagger} A(\mathbf{e}^{j_{t}} - \mathbf{w}_{t})}{\|A(\mathbf{e}^{j_{t}} - \mathbf{w}_{t})\|_{\infty}^{2}}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_{t})\mathbf{w}_{t} + \eta_{t} \mathbf{e}^{j_{t}}$$

'algorithmic relaxation'

Initialize:
$$\mathbf{w}_{1} = \mathbf{0}, \ \beta = \frac{\epsilon}{2 \log(m)}$$

For $t = 1, 2, ..., T$

$$\mathbf{d}_{t} = \underset{\mathbf{d} \in \mathbb{S}^{m} \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A \mathbf{w}_{t})_{i}\right)$$

$$j_{t} \in \arg\max_{j} |(\mathbf{d}_{t}^{\dagger} A)_{j}|$$

$$\eta_{t} = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_{t}^{\dagger} A(\mathbf{e}^{j_{t}} - \mathbf{w}_{t})}{\|A(\mathbf{e}^{j_{t}} - \mathbf{w}_{t})\|_{\infty}^{2}}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_{t})\mathbf{w}_{t} + \eta_{t} \mathbf{e}^{j_{t}}$$

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \; \beta = \frac{\epsilon}{2\log(m)}$$
For $t = 1, 2, \dots, T$

$$\mathbf{d}_t = \underset{\mathbf{d} \in \mathbb{S}^m \cap C}{\operatorname{argmin}} \; D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \; \text{where} \; \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A \, \mathbf{w}_t)_i\right)$$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger} A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta \, \mathbf{d}_t^{\dagger} A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t \, \mathbf{e}^{j_t}$$

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \ \beta = \frac{\epsilon}{2\log(m)}$$

Entropic 1, 2, ..., T

$$\mathbf{d}_t = \underset{\mathbf{d} \in \mathbb{S}^m \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A\,\mathbf{w}_t)_i\right)$$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger}A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta\,\mathbf{d}_t^{\dagger}A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t\,\mathbf{e}^{j_t}$$

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \ \beta = \frac{\epsilon}{2\log(m)}$$

FOR
$$t = 1, 2, ..., T$$

Weal learner argmin $D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}})$ where $\hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A\mathbf{w}_t)_i\right)$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger} A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_t^{\dagger} A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t \,\mathbf{e}^{j_t}$$

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \ \beta = \frac{\epsilon}{2\log(m)}$$

FOR
$$t = 1, 2, ..., T$$

$$\mathbf{d}_t = \underset{\mathbf{d} \in \mathbb{S}^m \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A\mathbf{w}_t)_i\right)$$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger} A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_t^{\dagger} A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t \,\mathbf{e}^{j_t}$$

learning rate

Initialize:
$$\mathbf{w}_1 = \mathbf{0}, \ \beta = \frac{\epsilon}{2 \log(m)}$$

For $t = 1, 2, ..., T$

$$\mathbf{d}_t = \underset{\mathbf{d} \in \mathbb{S}^m \cap C}{\operatorname{argmin}} \ D_{\mathrm{KL}}(\mathbf{d}, \hat{\mathbf{d}}) \text{ where } \hat{d}_{t,i} \propto \exp\left(-\frac{1}{\beta}(A \mathbf{w}_t)_i\right)$$

$$j_t \in \arg\max_j |(\mathbf{d}_t^{\dagger} A)_j|$$

$$\eta_t = \max\left\{0, \min\left\{1, \frac{\beta \mathbf{d}_t^{\dagger} A(\mathbf{e}^{j_t} - \mathbf{w}_t)}{\|A(\mathbf{e}^{j_t} - \mathbf{w}_t)\|_{\infty}^2}\right\}\right\}$$

$$\mathbf{w}_{t+1} = (1 - \eta_t)\mathbf{w}_t + \eta_t \mathbf{e}^{j_t}$$

update

Convergence Rate

Theorem

- For any $m \times n$ matrix A over [-1, 1]
- For any relaxation set $C = \{\mathbf{d} : ||\mathbf{d}|| \le \nu\}$
- The number of iterations required by the algorithm to find an ϵ -accurate solution is

$$T \leq O\left(\frac{\log(m)}{\epsilon^2}\right)$$

Remarks:

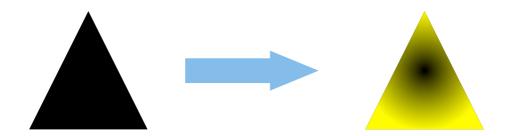
- Matches rate of AdaBoost_⋆ [RW05] and SoftBoost [WLR06]
- Also bounds the sparseness of solution

Proof Technique

• Step 1: If loss function has β Lipschitz continuous derivative:

$$\epsilon_t - \epsilon_{t+1} \ge \eta \, \epsilon_t - \frac{2\eta^2}{\beta} \quad \Rightarrow \quad \epsilon_t \le \frac{8}{\beta(t+1)}$$

- Proof uses duality
- Step 2: Approximate any 'soft-margin' loss by 'nicely behaved' loss
 - Domain of conjugate of the loss is a subset of the simplex
 - Add a bit relative entropy
 - Use infimal convolution theorem



Efficient Implementation

- The most expensive operations are the Entropic projection on C and the call to weak learner
- For $C = \{ \mathbf{w} : \|\mathbf{w}\|_{\infty} \le \nu \}$ projection can be performed in O(m)
- The trick: similar to median search
- Proof can be extended to approximated weak learners

Summary

- Weak Learnability = Linear Separability
- Relaxing separability using relaxed weak learnability
- 'Algorithmic' relaxations

- Current and Future Work
 - Use equivalence for generalization bounds?
 - Other intuitive relaxations
 - Other algorithmic relaxations
 - Relation between L_I and sparsity in a more general setting