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What else can we do with more data?

Big data

speedup runtime

training
runtime

prediction
runtime

compensate
for missing
information

reduce error

Traditional
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Agnostic PAC Learning

Hypothesis class H ⊂ YX

Loss function: ` : H× (X × Y)→ R
D - unknown distribution over X × Y
True risk: LD(h) = E(x,y)∼D[`(h, (x, y))]

Training set: S = (x1, y1), . . . , (xm, ym)
i.i.d.∼ Dm

Goal: use S to find hS s.t. with high probability,

LD(hS) ≤ min
h∈H

LD(h) + ε

ERM rule:

ERM(S) ∈ argmin
h∈H

LS(h) :=
1

m

m∑
i=1

`(h, (xi, yi))
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3-term

Error Decomposition

(Bottou & Bousquet’ 08)

h? = argmin
h∈H

LD(h) ; ERM(S) = argmin
h∈H

LS(h)

LD(hS) = LD(h?)︸ ︷︷ ︸
approximation

+LD(ERM(S))− LD(h?)︸ ︷︷ ︸
estimation

+ LD(hS)− LD(ERM(S))︸ ︷︷ ︸
optimization

Bias-Complexity tradeoff: Larger H decreases approximation error but
increases estimation error

What about optimization error ?

Two resources: samples and runtime
Sample-Computational complexity (Decatur, Goldreich, Ron ’98)
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Joint Time-Sample Complexity

Goal:
LD(hS) ≤ min

h∈H
LD(h) + ε

Sample complexity: How many examples are needed ?

Time complexity: How much time is needed ?

TH,ε(m) = how much time is needed when |S| = m ?

Time-sample complexity

TH,ε

m

sa
m

p
le

co
m

p
le

xi
ty

data-laden
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Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences

Learning margin-based halfspaces

Formally establishing the tradeoff

More data in partial information settings

Other things we can do with more data

Missing information

Testing time
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Agnostic learning Preferences

The Learning Problem:

X = [d]× [d], Y = {0, 1}
Given (i, j) ∈ X predict if i is preferable over j

H is all permutations over [d]

Loss function = zero-one loss

Method I:

ERMH

Sample complexity is d
ε2

Varun Kanade and Thomas Steinke (2011): If RP6=NP, it is not
possible to efficiently find an ε-accurate permutation

Claim: If m ≥ d2/ε2 it is possible to find a predictor with error ≤ ε in
polynomial time
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Agnostic learning Preferences

Let H(n) be the set of all functions from X to Y
ERMH(n) can be computed efficiently

Sample complexity: V C(H(n))/ε2 = d2/ε2

Improper learning

H

H(n)
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Sample-Computational Tradeoff

?Time

Samples

ERMH

ERMH(n)

Samples Time

ERMH d d!
ERMH(n) d2 d2
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Is this the best we can do?

Analysis is based on upper bounds

Is it possible to (improperly) learn efficiently with d log(d) examples ?
Posed as an open problem by:

Jake Abernathy (COLT’10)
Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)

Hazan, Kale, S. (COLT’12):

Can learn efficiently with d log3(d)
ε2 examples
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Sample-Computational Tradeoff

Time

Samples

ERMH

HKS ERMH(n)

Samples Time

ERMH d d!
HKS d log3(d) d4 log3(d)
ERMH(n) d2 d2
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HKS: Proof idea

Each permutation π can be written as a matrix, s.t.,

W (i, j) =

{
1 if π(i) < π(j)

0 o.w.

Definition: A matrix is (β, τ) decomposable if its symmetrization can
be written as P −N where P,N are PSD, have trace bounded by τ ,
and diagonal entries bounded by β

Theorem: There’s an efficient online algorithm with regret of√
τβ log(d)T for predicting the elements of (β, τ)-decomposable

matrices

Lemma: Permutation matrices are (log(d), d log(d)) decomposable.

Shai Shalev-Shwartz (Hebrew U) Sample-Computational Tradeoff OSL2013 13 / 32



Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences X

Learning margin-based halfspaces

Formally establishing the tradeoff

Other things we can do with more data

Missing information

Testing time
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Learning Margin-Based Halfspaces

Prior assumption: minw:‖w‖=1 P[y〈w, x〉 ≤ γ] is small.

γ
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Learning Margin-Based Halfspaces

Goal: Find hS : X → {±1} such that

P[hS(x) 6= y] ≤ (1 + α) min
w:‖w‖=1

P[y〈w, x〉 ≤ γ] + ε

Known results:

α Samples Time

Ben-David and Simon 0 1
γ2 ε2

exp(1/γ2)

SVM (Hinge-loss) 1
γ

1
γ2 ε2

poly(1/γ)

Trading approximation factor for runtime

What if α ∈ (0, 1/γ) ?

Shai Shalev-Shwartz (Hebrew U) Sample-Computational Tradeoff OSL2013 16 / 32



Learning Margin-Based Halfspaces

Goal: Find hS : X → {±1} such that

P[hS(x) 6= y] ≤ (1 + α) min
w:‖w‖=1

P[y〈w, x〉 ≤ γ] + ε

Known results:

α Samples Time

Ben-David and Simon 0 1
γ2 ε2

exp(1/γ2)

SVM (Hinge-loss) 1
γ

1
γ2 ε2

poly(1/γ)

Trading approximation factor for runtime

What if α ∈ (0, 1/γ) ?

Shai Shalev-Shwartz (Hebrew U) Sample-Computational Tradeoff OSL2013 16 / 32



Learning Margin-Based Halfspaces

Theorem (Birnbaum and S., NIPS’12)

Can achieve α-approximation using time and sample complexity of

poly(1/γ) · exp
(

4
(γ α)2

)
Corollary

Can achieve α = 1

γ
√

log(1/γ)
in polynomial time
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Proof Idea

SVM relies on the hinge-loss as a convex surrogate:

`(w, (x, y)) =
[
1− y 〈w,x〉γ

]
+

Compose the hinge-loss over a polynomial [1− yp(〈w, x〉)]+

-1 1γ

But now the loss function is non convex ...
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Proof Idea (Cont.)

Let p(x) =
∑

j βjx
j be the polynomial

Original class: H = {x 7→ p(〈w, x〉) : ‖w‖ = 1}
Define kernel: k(x, x′) =

∑
j |βj |(〈x, x′〉)j

New class: H(n) = {x 7→ 〈v,Ψ(x)〉 : ‖v‖ ≤ B} where Ψ is the
mapping corresponds to the kernel

ERMH(n) can be computed efficiently (due to convexity)

Sample complexity: B2/ε2

H

H(n)
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Can we do better ?

Theorem (Daniely, Lineal, S. 2012)

For every kernel, SVM cannot obtain α < 1
γ poly(log(γ)) with poly(1/γ)

samples. A similar lower bound holds for any feature-based mapping (not
necessarily kernel-based).

Open problem: lower bounds for other techniques / any technique ?
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Proof ideas

A one dimensional problem: D = (1− λ)D1 + λD2

xo

Every low degree polynomial with hinge-loss smaller than 1 must have
p(γ) ≈ p(−γ).

Pull back the distribution to high dimension

Use a characterization of Hilbert spaces corresponding to symmetric
kernels, from which we can write f using Legendre polynomials and
reduce to the 1-dim case

By averaging the kernel over the group of linear isometries of Rd, we
relax the assumption that the kernel is symmetric

Shai Shalev-Shwartz (Hebrew U) Sample-Computational Tradeoff OSL2013 21 / 32



Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences X

Learning margin-based halfspaces X

Formally establishing the tradeoff

Other things we can do with more data

Missing information

Testing time
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Formal Derivation of Gaps

Theorem (Shamir, S., Tromer 2012): Assume one-way permutations exist,
there exists an agnostic learning problem such that:

TH,ε(m)

2n + 1
ε2

> poly(n)

n3

ε6

m
n
ε2log(n)1

ε2
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Proof: One Way Permutations

P : {0, 1}n → {0, 1}n is one-way permutation if it’s one-to-one and

It is easy to compute w = P (s)

It is hard to compute s = P−1(w)

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

∃w s.t. P
r
[A(r, P (w)) = 〈r,w〉] < 1

2
+

1

poly(n)
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Proof: One Way Permutations
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What else can we do with more data?

More Data

speedup runtime

training
runtime X

prediction
runtime

compensate
for missing
information

reduce error

Traditional
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Online Bandit Multiclass Prediction

A hypothesis class H
For t = 1, 2, . . . , T

Receive xt ∈ Rd
Predict ŷt ∈ {1, . . . , k}
Pay 1[ŷt 6= h∗(xt)]

Goal: Minimize number of mistakes
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Online Bandit Multiclass Prediction

Consider H to be linear predictors with large margin

In the full information setting (i.e. learner observes h∗(xt)),
Perceptron achieves error rate of O(1/T )

In the bandit case:

Error rate of O(1/T ) is achievable in exponential time
Error rate of O(1/

√
T ) is achievable in linear time

Main idea: Exploration— Guess the label randomly with probability
Θ(1/

√
T ).
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More data can speedup prediction time

Semi-Supervised Learning: Many unlabeled examples, few labeled
examples

Most previous work: how unlabeled data can improve accuracy ?

Our goal: how unlabeled data can help constructing faster classifiers

Modeling: Proper-Semi-Supervised-Learning — we must output a
classifier from a predefined class H (of fast predictors)

A simple two phase procedure:

Use labeled examples to learn an arbitrary classifier (which is as
accurate as possible)

Apply the learned classifier to label the unlabeled examples

Feed the now-labeled examples to a proper supervised learning for H
Analysis is based on the simple inequality:

P [h(x) 6= f(x)] ≤ P [h(x) 6= g(x)] + P [g(x) 6= f(x)]
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Demonstration
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Summary

The Bias-Variance tradeoff is well understood

We study the Sample-Computational tradeoff

More data can reduce runtime (both training and testing)

More data can compensate for missing information

Open Questions

Other techniques to control the tradeoff

Stronger lower bounds for real-world problems
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