Online Prediction:

The Role of Convexity and Randomization

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

Learning Club, The Hebrew University, 2008

Shalev-Shwartz (TTI-C) Online Prediction: Convexity & Randomness Huji'08



Predicting the next element of a binary sequence

Prediction task

Fort=1,2,.... T

@ Predict: y; € {£1}

@ Get: y; € {£1}

T n# n
0 yi=r

@ Best in hindsight y* = sign(>", yr)

o Suffer loss: ¢o_1(¥1, 1) = {

T T
® Regret: Rr = > lo_1(J1,y0) — > Lo—1(71,¥*)
t=1 t=1
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Abstract Prediction Model

@ Set of decisions S
@ Set of loss functions £ = {¢: S — R}

Prediction Game
Fort=1,...,T
@ Learner chooses a decision w; € S

@ Environment chooses a loss function ¢; € £
@ Learner suffers loss ¢;(w;)

@ Goal: Conditions on S, £, and the feedback the learner receives
that guarantee low regret

T

T
Rr = Zﬁt(wt)—zft(W*) = o(T)
t=1

t=1
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@ Part I: Full Information
e Motivating example and an abstract online prediction model
Cover’s impossibility result and randomness
A modern view: revealing an underlying convexity
Using convex analysis tools for online prediction
Sufficient conditions for low regret
e Tightness

@ Part II: Partial Feedback
(Based on Joint work with S. Kakade and A. Tewari)
Motivating application
The Banditron
Lower regret using inefficient algorithms
Open problems
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Impossibility Result

o S={+1}

o L= {f(),l(Wt, 1) s fofl(Wt, *1)}

@ Adversary can make the cumulative loss of the learner to be T by
using £¢(-) = lo—1(-, —wr)

@ The constant prediction w* = sign(}_, w;) achieves loss of at most
T/2

@ Regretis at least T/2

@ In the above example, |S| = |£] = 2.
@ Small size does not guarantee low regret
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Solution: Randomized Predictions

@ Learner predicts y; = 1 with probability w;
@ Best in hindsight: y; = 1 with probability w* where w* = {/=11
@ Analyze the expected regret:

T T
S B[R # vl - Y Elyt # vl
=1 =1

@ There are algorithms that achieve expected regret of O(v/'T)
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A modern view: revealing an underlying convexity

@ Expected zero-one loss can be rewritten as

N 1 — Wt if yt = 1
E =
[Vt # il {Wt iy = 1
@ Going back to our abstract model, we get that:
e S=10,1]
o L={l(w)=1—-w, {(W)=w}

Properties
@ All functions in £ are linear (and thus are convex and Lipschitz)
@ Sis convex and bounded

@ Sufficient conditions for low regret ?
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Are we just playing with formalities ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

@ Learner receives a vector (xi,...,x%) € [-1,1]9 of experts advice
@ Learner needs to predict a target j; € R
@ Environment gives correct target y; € R
@ Learner suffers loss |y; — |
@ Goal: Be almost as good as the best experts committee
S lve = 31l = S lye — (W, xt)| = o(T)
Can be modeled as follows:
@ Sis the d-dimensional probabilistic simplex
0 L= {lxy(w)=y—(wx)|:xe[-1,1]%ye[-1,1]}
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Sufficient Conditions for low regret

The Online Convex Programming (OCP) model
@ All functions in £ are convex and L-Lipschitz
@ Sis convex and max{|w|z:we S} =D
@ Then, there exists an algorithm with regret O(L D/T)

v

Bibliography

@ The OCP model was presented by Gordon (1999)

@ Zinkevich (2003) introduced the term OCP and proved a regret
bound of O((L2 + D?)v/T)

@ The slightly improved regret bound follows from our analysis below
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For any prediction algorithm
@ Exists Sand £s.t. LD =1and Ry = Q(LDVT) = Q(v/T)
@ (Proof uses probabilistic method)
@ Exists Sand £ st. LD =+/T and Ry = Q(LDVT) = Q(T)
@ (Proof assumes dimension can grow with T)
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Dimension independency ?

@ The regret bound does not depend on the dimensionality of S

@ Similarly to Support Vector Machines, we can use Kernel functions
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Dimension independency ?

@ The regret bound does not depend on the dimensionality of S
@ Similarly to Support Vector Machines, we can use Kernel functions

@ Consider again the prediction with expert advice problem
d experts, each of which gives an “advice” in [—1, 1]

S is the probabilistic simplex and thus D = 1
Lipschitz constant is L = v/d

Regret is Q(v/d T).

Is this the best we can do ?

A\
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Low regret algorithmic framework for OCP

@ A low regret algorithmic framework for OCP
@ Family of sufficient conditions for low regret
@ In particular — Alternatives to the Lipschitz condition

@ In the expert committee example — logarithmic dependence on
dimension

@ Derivation is based on tools from convex analysis
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Fenchel Conjugate

The Fenchel conjugate of the function f: S — Ris f* : R? — R

F(A) = max (w,x) — f(w)

If fis closed and convex then f** = f

60\6
=
=

N\

%)
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Fenchel Duality

max —(=A) =g (\) < m“i,n f(w) + g(w)
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Fenchel Duality

slope A tangent
slope -A

tangent/' | X \
. -
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1

t=1
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a ’silly’ way

T T
Z&(Wt) < vr\l,’lelg LDﬁJrZEt(W)

t=1 t=1
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Regret and Duality

@ Recall that our goal is:
T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a ’silly’ way
T T
> t(wy) < min LDVT +>" £(w)
t=1 wes =1
@ Replace LDV/T with a function f : S — R s.t. maxy f(w) < LDVT.
E.g. f(w) = c||w|? for ¢ = Lv/T/D. Obtaining:

T T
> li(wy) < min f(w) + > l(w)
t=1 t=1
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a 'silly’ way
T T
D li(wr) < min LDVT +> " ti(w)
t—1 wes =1
@ Replace LDV/T with a function f : S — R s.t. maxy f(w) < LDVT.
E.g. f(w) = c||w]|® for ¢ = L/T/D. Obtaining:
T T
> l(wy) < min f(w) + > Li(w)
t—1 wes t—1

@ Lower bound of a minimization problem. Duality ?
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Properties of the dual problem

max. —f*(— Z ZKI(A,) < min f(w —|—Z£t(w

Decomposability of the dual

@ There’s a different dual variable for each online round

@ Future loss functions do not affect dual variables of current and
past rounds

@ Therefore, the dual can be optimized incrementally

@ To optimize Ay, ..., A, itis enough to know what the market did
until day t
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Primal-Dual Online Prediction Strategy

Algorithmic Framework

@ Initialize A1 =...=A7=0
@ Fort=1,2,..., T
@ Construct w; from the dual variables

o Receive ¢;
o Update dual variables A1, ..., A;
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Primal-Dual Online Prediction Strategy

@ Initialize A1 =...=A7=0
@ Fort=1,2,..., T
@ Construct w; from the dual variables

o Receive ¢;
o Update dual variables A1, ..., A;

| A\

Lemma
Let D; be the dual value at round t and w.l.o.g assume D1 = 0.

@ Assume that maxyes f(W) < av'T
@ Assume that Dy, 1 — Dt > {i(Wy) — %

Then, the regret is bounded by 2av'T

The proof follows directly from the weak duality theorem
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Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm

A function f is o-strongly convex over Sw.r.t | - | if forallu,ve S

O > 1(45Y) + lu — v

A\

Lemma (Sufficient Dual Increase)
Assume:
@ fis o-strongly convex w.r.t. || - ||
@ /; is closed and convex
@ V; is a sub-gradient of ¢; at wW;
Then, there exists a simple dual update rule s.t.

V]2

Dir1 — Dt > L(wy) — 5o

\
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Generalized Boundedness-Lipschitz condition

Theorem

Assume:

@ Exists f: S — R which is 1-strongly convex w.r.t. || - ||

@ D = maxyes /f(W)

@ /; is closed and convex
@ ||Vill« < L (Lipschitz w.r.t. norm || - ||«)
Then, there exists an algorithm with regret bound 2 D L /T

v

Example usage — back to expert problem
@ Take f to be the relative entropy

@ fis strongly convex w.r.t. || - ||{ and D = +/log(d)
O [[Vills = [[Xfloc <1

@ Regret bound becomes O(/log(d) T)

\
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Self Boundedness instead of Lipschitz

Theorem

Replacing Lipschitz condition with the following self-bounded property:

Vil < L+/Li(wi)

Rr < O(LD Iy e(wr) + L2 D2) :
t

o ((w) = I((w,x) — y)?is (v2||x]))-self-bounded
@ /(w) =log(1.26 + exp(—y(w,X))) is (||x||)-self-bounded

Then,

Examples
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Part Il
Online learning with partial feedback

Based on joint work with

S. Kakade and A. Tewari



Online learning with partial feedback

Motivating Application — Advertisement on webpages

@ k types of ads
@ On round t:

o User submit a query
e System (the learner) places an ad
o User either ’clicks’ or ignores

A simple formal model — bandit multiclass categorization

@ On round t:
e Environment presents a vector x; (encodes user and query)
o Learnerpredictsanad j; € Y ={1,...,k}
e Environment chooses current user interest y; € Y
but only reveals 1,5,
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Linear hypotheses and margin

@ Linear hypotheses:
h:RY — Y s.t. exists a k x d matrix W s.t.

h(x) = argmax (Wx),
rey

@ Separability with margin assumption:
Exists a matrix W* with | W*||r < D s.t. for all , r # yi,

(Wxt),Vt > (Wxt)r
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The multiclass Perceptron for the full information case

o Initialize W' = 0 € Rkxd
@ Fort=1,2,....T

e Receive x; € R?

Predict j; = arg max,cpq (W),

Receive feedback y;

Define U' € R**? such that: U} ; = Xt (1= — 1)
Update: W' = Wt 4 Ut
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The Banditron

@ Exploration-Exploitation parameter: v € (0,0.5)
@ Initialize W' = 0 ¢ Rkxd

@ Fort=1,2,.... T

e Receive x; € R?

Define §; = arg max < (W),

Exploit: w.p. 1 — v predict j; =

Explore: w.p. ~ predict j; € Y uniformly at random

Receive partial feedback 1,—
o Define U' € R**? suchthat: U, = xi; (M% — 1y ,]>
Update: Wttt = wt + Ut
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The Banditron — Analysis

Theorem (Banditron — separable case)

The expected number of mistakes the Banditron makes on a separable
sequence is at most O(D vk T).

@ Proof idea: show that the expected update of the Banditron (i.e.
U') is the Perceptron’s update (i.e. U')
@ We also have bounds for the non-separable case:
e For’low noise’ the bound is still O(D vk T).
e For ’high noise’. The dependence is on T2/3,
@ Randomness is utilized for obtaining an estimator of the
Perceptron’s update.

@ In the full information case: multiclass Perceptron’s bound, O(D?),
does notdependon T
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Inefficient algorithms for the separable case

@ There exists a deterministic algorithm with mistake bound
O(k?dlog(D d))

@ There exists a randomized algorithm with mistake bound
O(k?D?log(D) log(T + k)))

v

Proof sketch

@ Important observation: Halving algorithm works for multiclass
problems with partial feedback

@ 1stresult: Construct a grid that covers matrices with bounded
norm

@ 2nd result: Use random projections and the JL lemma
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Open Problems

@ Achievable regret bounds with efficient and inefficient algorithms
(lower bounds?)

@ When is randomization a must (sometimes it's not necessary; e.g.
Halving, Negatron)

@ Banditron with multiplicative updates
@ More sophisticated exploration vs. exploitation (e.g. self-tuned ~)
@ From single label to label ranking
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