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Predicting the next element of a binary sequence

Prediction task
For t = 1,2, . . . ,T

Predict: ŷt ∈ {±1}
Get: yt ∈ {±1}

Suffer loss: `0−1(ŷt , yt ) =

{
1 yt 6= ŷt

0 yt = ŷt

Regret
Best in hindsight y? = sign(

∑
t yt )

Regret: RT =
T∑

t=1

`0−1(ŷt , yt )−
T∑

t=1

`0−1(ŷt , y?)
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Abstract Prediction Model

Set of decisions S
Set of loss functions L = {` : S → R}

Prediction Game
For t = 1, . . . ,T

Learner chooses a decision wt ∈ S
Environment chooses a loss function `t ∈ L
Learner suffers loss `t (wt )

Goal: Conditions on S, L, and the feedback the learner receives
that guarantee low regret

RT =
T∑

t=1

`t (wt )−
T∑

t=1

`t (w?)
!

= o(T )
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Outline

Part I: Full Information
Motivating example and an abstract online prediction model
Cover’s impossibility result and randomness
A modern view: revealing an underlying convexity
Using convex analysis tools for online prediction
Sufficient conditions for low regret
Tightness

Part II: Partial Feedback
(Based on Joint work with S. Kakade and A. Tewari)

Motivating application
The Banditron
Lower regret using inefficient algorithms
Open problems
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Impossibility Result

S = {±1}
L = {`0−1(wt ,1) , `0−1(wt ,−1)}
Adversary can make the cumulative loss of the learner to be T by
using `t (·) = `0−1(·,−wt )

The constant prediction w? = sign(
∑

t wt ) achieves loss of at most
T/2
Regret is at least T/2

Conclusion
In the above example, |S| = |L| = 2.
Small size does not guarantee low regret
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Solution: Randomized Predictions

Learner predicts ŷt = 1 with probability wt

Best in hindsight: y?t = 1 with probability w? where w? = |{t :yt=1}|
T

Analyze the expected regret:

T∑
t=1

E[ŷt 6= yt ]−
T∑

t=1

E[y?t 6= yt ]

There are algorithms that achieve expected regret of O(
√

T )
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A modern view: revealing an underlying convexity

Expected zero-one loss can be rewritten as

E[ŷt 6= yt ] =

{
1− wt if yt = 1
wt if yt = −1

Going back to our abstract model, we get that:
S = [0,1]
L = {`(w) = 1− w , `(w) = w}

Properties
All functions in L are linear (and thus are convex and Lipschitz)
S is convex and bounded
Sufficient conditions for low regret ?
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Are we just playing with formalities ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

Learner receives a vector (x t
1, . . . , x

t
d ) ∈ [−1,1]d of experts advice

Learner needs to predict a target ŷt ∈ R
Environment gives correct target yt ∈ R
Learner suffers loss |yt − ŷt |
Goal: Be almost as good as the best experts committee∑

t |yt − ŷt | −
∑

t |yt − 〈w?,xt〉| !
= o(T )

Can be modeled as follows:
S is the d-dimensional probabilistic simplex
L = {`x,y (w) = |y − 〈w,x〉| : x ∈ [−1,1]d , y ∈ [−1,1]}
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Sufficient Conditions for low regret

The Online Convex Programming (OCP) model
All functions in L are convex and L-Lipschitz
S is convex and max{‖w‖2 : w ∈ S} = D
Then, there exists an algorithm with regret O(L D

√
T )

Bibliography
The OCP model was presented by Gordon (1999)
Zinkevich (2003) introduced the term OCP and proved a regret
bound of O((L2 + D2)

√
T )

The slightly improved regret bound follows from our analysis below
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Tightness

For any prediction algorithm
Exists S and L s.t. L D = 1 and RT = Ω(LD

√
T ) = Ω(

√
T )

(Proof uses probabilistic method)
Exists S and L s.t. L D =

√
T and RT = Ω(LD

√
T ) = Ω(T )

(Proof assumes dimension can grow with T )
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Dimension independency ?

Yes !
The regret bound does not depend on the dimensionality of S
Similarly to Support Vector Machines, we can use Kernel functions

Yes ?
Consider again the prediction with expert advice problem
d experts, each of which gives an “advice” in [−1,1]

S is the probabilistic simplex and thus D = 1
Lipschitz constant is L =

√
d

Regret is Ω(
√

d T ).
Is this the best we can do ?
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Low regret algorithmic framework for OCP

A low regret algorithmic framework for OCP
Family of sufficient conditions for low regret
In particular – Alternatives to the Lipschitz condition
In the expert committee example – logarithmic dependence on
dimension
Derivation is based on tools from convex analysis
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Fenchel Conjugate

The Fenchel conjugate of the function f : S → R is f ? : Rd → R

f ?(λ) = max
w∈S

〈w,λ〉 − f (w)

If f is closed and convex then f ?? = f

f (w)
slope

=
λ

−f ?(λ)
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Fenchel Duality

max
λ
−f ?(−λ)− g?(λ) ≤ min

w
f (w) + g(w)

0

0

f(w)

g(w) f(w)+g(w)

-f*(-λ)
-g*(λ)

-f*(-λ)-g*(λ)

tangent  
slope λ tangent 

slope -λ
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Regret and Duality

Recall that our goal is:

∀w? ∈ S,
T∑

t=1

`t (wt )−
T∑

t=1

`t (w?) ≤ L D
√

T

Rewrite it in a ’silly’ way
T∑

t=1

`t (wt ) ≤ min
w∈S

L D
√

T +
T∑

t=1

`t (w)

Replace LD
√

T with a function f : S → R s.t. maxw f (w) ≤ LD
√

T .
E.g. f (w) = c ‖w‖2 for c = L

√
T/D. Obtaining:

T∑
t=1

`t (wt ) ≤ min
w∈S

f (w) +
T∑

t=1

`t (w)

Lower bound of a minimization problem. Duality ?
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Properties of the dual problem

max
λ1,...,λT

−f ?(−
∑

t

λt )−
∑

t

`?t (λt ) ≤ min
w∈S

f (w) +
T∑

t=1

`t (w)

Decomposability of the dual
There’s a different dual variable for each online round
Future loss functions do not affect dual variables of current and
past rounds
Therefore, the dual can be optimized incrementally
To optimize λ1, . . . ,λt , it is enough to know what the market did
until day t

Shalev-Shwartz (TTI-C) Online Prediction: Convexity & Randomness Huji’08 16 / 28



Primal-Dual Online Prediction Strategy

Algorithmic Framework
Initialize λ1 = . . . = λT = 0
For t = 1,2, . . . ,T

Construct wt from the dual variables
Receive `t
Update dual variables λ1, . . . ,λt

Lemma
Let Dt be the dual value at round t and w.l.o.g assume D1 = 0.

Assume that maxw∈S f (w) ≤ a
√

T
Assume that Dt+1 −Dt ≥ `t (wt )− a√

T

Then, the regret is bounded by 2a
√

T

The proof follows directly from the weak duality theorem
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Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm
A function f is σ-strongly convex over S w.r.t ‖ · ‖ if for all u,v ∈ S

f (u)+f (v)
2 ≥ f (u+v

2 ) + σ
8‖u− v‖2

Lemma (Sufficient Dual Increase)
Assume:

f is σ-strongly convex w.r.t. ‖ · ‖
`t is closed and convex
∇t is a sub-gradient of `t at wt

Then, there exists a simple dual update rule s.t.

Dt+1 −Dt ≥ `t (wt )−
‖∇t‖2?

2σ
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Generalized Boundedness-Lipschitz condition

Theorem
Assume:

Exists f : S → R which is 1-strongly convex w.r.t. ‖ · ‖
D = maxw∈S

√
f (w)

`t is closed and convex
‖∇t‖? ≤ L (Lipschitz w.r.t. norm ‖ · ‖?)

Then, there exists an algorithm with regret bound 2 D L
√

T

Example usage – back to expert problem
Take f to be the relative entropy
f is strongly convex w.r.t. ‖ · ‖1 and D =

√
log(d)

‖∇t‖? = ‖xt‖∞ ≤ 1
Regret bound becomes O(

√
log(d) T )

Shalev-Shwartz (TTI-C) Online Prediction: Convexity & Randomness Huji’08 19 / 28



Self Boundedness instead of Lipschitz

Theorem
Replacing Lipschitz condition with the following self-bounded property:

‖∇t‖ ≤ L
√
`t (wt )

Then,

RT ≤ O

L D
√∑

t

`t (w?) + L2 D2

 .

Examples

`(w) = 1
2(〈w,x〉 − y)2 is (

√
2‖x‖)-self-bounded

`(w) = log(1.26 + exp(−y〈w,x〉)) is (‖x‖)-self-bounded
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Part II
Online learning with partial feedback

Based on joint work with

S. Kakade and A. Tewari



Online learning with partial feedback

Motivating Application – Advertisement on webpages
k types of ads
On round t :

User submit a query
System (the learner) places an ad
User either ’clicks’ or ignores

A simple formal model – bandit multiclass categorization
On round t :

Environment presents a vector xt (encodes user and query)
Learner predicts an ad ŷt ∈ Y = {1, . . . , k}
Environment chooses current user interest yt ∈ Y
but only reveals 1[yt 6=ŷt ]
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Linear hypotheses and margin

Linear hypotheses:
h : Rd → Y s.t. exists a k × d matrix W s.t.

h(x) = argmax
r∈Y

(Wx)r

Separability with margin assumption:
Exists a matrix W ? with ‖W ?‖F ≤ D s.t. for all t , r 6= yt ,

(Wxt )yt ≥ (Wxt )r
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The multiclass Perceptron for the full information case

Initialize W 1 = 0 ∈ Rk×d

For t = 1,2, . . . ,T

Receive xt ∈ Rd

Predict ŷt = arg maxr∈[k ](W txt )r

Receive feedback yt

Define U t ∈ Rk×d such that: U t
r ,j = xt,j

(
1[r=yt ] − 1[r=ŷt ]

)
Update: W t+1 = W t + U t
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The Banditron

Exploration-Exploitation parameter: γ ∈ (0,0.5)

Initialize W 1 = 0 ∈ Rk×d

For t = 1,2, . . . ,T

Receive xt ∈ Rd

Define ŷt = arg maxr∈[k ](W txt )r

Exploit: w.p. 1− γ predict ỹt = ŷt

Explore: w.p. γ predict ỹt ∈ Y uniformly at random

Receive partial feedback 1[ỹt=yt ]

Define Ũ t ∈ Rk×d such that: Ũ t
r ,j = xt,j

(
1[yt =ỹt ]1[ỹt =r ]

P(r) − 1[ŷt=r ]

)
Update: W t+1 = W t + Ũ t
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The Banditron – Analysis

Theorem (Banditron – separable case)
The expected number of mistakes the Banditron makes on a separable
sequence is at most O(D

√
k T ).

Proof idea: show that the expected update of the Banditron (i.e.
Ũ t ) is the Perceptron’s update (i.e. U t )
We also have bounds for the non-separable case:

For ’low noise’ the bound is still O(D
√

k T ).
For ’high noise’. The dependence is on T 2/3.

Randomness is utilized for obtaining an estimator of the
Perceptron’s update.
In the full information case: multiclass Perceptron’s bound, O(D2),
does not depend on T
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Inefficient algorithms for the separable case

Theorem
There exists a deterministic algorithm with mistake bound
O(k2d log(D d))

There exists a randomized algorithm with mistake bound
O(k2D2 log(D) log(T + k)))

Proof sketch
Important observation: Halving algorithm works for multiclass
problems with partial feedback
1st result: Construct a grid that covers matrices with bounded
norm
2nd result: Use random projections and the JL lemma

Shalev-Shwartz (TTI-C) Online Prediction: Convexity & Randomness Huji’08 27 / 28



Open Problems

Achievable regret bounds with efficient and inefficient algorithms
(lower bounds?)
When is randomization a must (sometimes it’s not necessary; e.g.
Halving, Negatron)
Banditron with multiplicative updates
More sophisticated exploration vs. exploitation (e.g. self-tuned γ)
From single label to label ranking
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