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The Fundamental Theorem of Learning Theory
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For general learning problems?
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For general learning problems?

Uniform trivial Learnable trivial [ ] o }
Convergence with ERM earnable

@ Not true even in multiclass classification !

@ What is learnable ? How to learn ?
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0 Definitions

© Leamability without uniform convergence
9 Characterizing Learnability using Stability
@ Characterizing Multiclass Learnability

© Open Questions
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The General Learning Setting

Vapnik's General Learning Setting
@ Hypothesis class H

@ Instance space Z with unknown distribution D

@ Loss function ¢ : H x Z — R

Given: Training set S ~ D™
Goal: Probably approximately solve

}Lléi?r_llL(h) where L(h):zLED[E(h’Z)]

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'1l 6 /34



@ Binary classification:
o Z=Xx{0,1}
o h € His a predictor h : X — {0,1}
o U(h, (x,y)) = 1[h(z) # y]
@ Multiclass categorization:
e Z=Xx)Y
e h € Hisa predictor h: X — Y
o U(h, (x,y)) = 1[h(z) # y]
@ k-means clustering:
o Z=R4
o H C (R%)F specifies k cluster centers
o L((p1s- -y pk), 2) = ming [[p; — 2|
@ Density Estimation:
e h is a parameter of a density py(z)
o U(h,z) = —logpn(2)
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Learnability, ERM, Uniform convergence

o Uniform Convergence:
For m > myc(e, d),

P [vheH, |Ls(h)— L(h)| < >1-4

~
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Learnability, ERM, Uniform convergence

o Uniform Convergence:
For m > myc(e, d),

P [vheH, |Ls(h)— L(h)| < >1-4

~

@ Learnable:
JA s.t. for m > mpac(e,9),

< mi >1—-
SNIE;m L(A(S)) < min Lh)+el>1-9¢
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Learnability, ERM, Uniform convergence

o Uniform Convergence:
For m > myc(e, d),

P [vheH, |Ls(h)— L(h)| < >1-4

~

@ Learnable:
JA s.t. for m > mpac(e,9),

< mi >1—-
SNI%m L(A(S)) < min Lh)+el>1-9¢

e ERM:
An algorithm that returns A(S) € argming, ¢y, Lg(h)

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'1l



Learnability, ERM, Uniform convergence

o Uniform Convergence:
For m > myc(e, d),
P [vheH, [Ls(h) — L(h)| < >1-5

~

@ Learnable:
JA s.t. for m > mpac(e,9),

< mi >1—-
SNI%m L(A(S)) < min Lh)+el>1-9¢

e ERM:
An algorithm that returns A(S) € argming, ¢y, Lg(h)

o Learnable by arbitrary ERM:
Like “Learnable” but A should be an ERM.
Denote sample complexity by mgrwu (€, d)
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For Binary Classification

Uniform el Learnable trivial
{ Convergence 3 { with ERM ):>[ Learnable j
ven Finite VC } NFL (W'96)

mUC(675) ~ mERM(€75) ~ mPAc(Ea(S) ~

VC(H) log(1/6)
€2
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Outline

© Leamability without uniform convergence
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First (trivial) Counter Example

Minorizing function:

o Let H' be a class of binary classifiers with infinite VC dimension
o Let H=H U{ho}
1 if h# hoANh(z)#y
o Let U(h,(z,y)) =4q1/2 ifh#hyAh(x)=y
0 if h = hg
@ No uniform convergence (myc = o0)
@ Learnable by ERM (mggy = 0)
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From Vapnik's book ...

This example shows that there exist trivial cases of consistency that depend
on whether a given set of functions contains a minorizing function.
Therefore, any theory of consistency that uses the classical definition needs

¢(z)

Qz, a), aeA

0

z

FIGURE 3.2. A case of trivial consistency. The ERM method is inconsistent on the set of
functions (z ), « € A, and is consistent on the set of functions qS(z)U z.a), a €A,
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Second Counter Example — Multiclass

o X —aset, Y =2V U {x}.
o H={hr:T C X} where

SICR
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Second Counter Example — Multiclass

o X —aset, V =2VU{x}.
o H={hr:T C X} where

i = 77

e Claim: No uniform convergence: myc > |X|/e
e Target function is hy
o For any training set S, take T = X'\ S
° Ls(hT) =0 but L(hT) = P[T]
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Second Counter Example — Multiclass

o X —aset, Y =2VU{x}.
o H={hr:T C X} where

o Claim: H is Learnable: mpyc < %

Let T be the target

A(S) =hp if (2, 7)€ S

A(S) =hg if S ={(z1,%),...,(Tm,*)}

In the 1st case, L(A(S)) =0.

In the 2nd case, L(A(S)) = P[T]

With high probability, if P[T'] > € then we'll be in the 1st case
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Second Counter Example — Multiclass

TUC g | X|.
mpAC

e If|X| — oo then the problem is learnable but there is no uniform
convergence!
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Third Counter Example — Stochastic Convex Optimization

Consider the family of problems:
e 7 is a convex set with maxpey ||h] <1

e For all z, ¢(h, z) is convex and Lipschitz w.r.t. h
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Third Counter Example — Stochastic Convex Optimization

Consider the family of problems:
e 7 is a convex set with maxpey ||h] <1

e For all z, ¢(h, z) is convex and Lipschitz w.r.t. h

Claim:

@ Problem is learnable by the rule:
m
oA 2 1
argmin 22| h||* + =y L(h, 2)
hem " ; '

@ No uniform convergence
@ Not learnable by ERM
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Third Counter Example — Stochastic Convex Optimization

Proof (of “not learnable by arbitrary ERM")

@ 1-Mean 4+ missing features

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'll 16 / 34



Third Counter Example — Stochastic Convex Optimization

Proof (of “not learnable by arbitrary ERM")
@ 1-Mean 4+ missing features

z=(a,r), a € {0,1}¢, z € R?, ||z|| <1

Uh, (0, 2)) = /32, cilhi — x:)?

Take Plo; = 1] =1/2, Plxa =] =1

Let A be s.t.
R _ Jl—n =i
J M O0.W.

If d is large enough, exists i such that h() is an ERM
But L(h)) > 1/y/2
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Third Counter Example — Stochastic Convex Optimization

Proof (of “not even learnable by a unique ERM")

Perturb the loss a little bit:

(h, (a,x)) = \/Z a;(hi — ;)% + EZ 27 (h; —1)2

@ Now loss is strictly convex — unique ERM

e But the unique ERM does not generalize (as before)
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Outline

e Characterizing Learnability using Stability
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Characterizing Learnability using Stability

A sufficient and necessary condition for learnability is the existence of
Asymptotic ERM (AERM) which is stable.

U f RI\}P'OS,MNPR'OS trivial
{ ConC;f’gre",lce —>( ERM is stable ==>~{ 3 stable AERM |

J

[ Learnable j

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'll 19 / 34



More formally

Definition (Stability)

We say that A is €gtaple (m)-uniform-replace-one stable if for all D,

E [6(A(SY);2") — L(A(S); 2')| < estable(m).

.
S,2! i
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More formally

Definition (Stability)

We say that A is €gtaple (m)-uniform-replace-one stable if for all D,

E [6(A(SY);2") — L(A(S); 2')| < estable(m).

!
Sz’ i

Definition (AERM)

We say that A is an AERM (Asymptotic Empirical Risk Minimizer) with
rate €erm(m) if for all D:

s L, ILs(A(5)) — min Ls(h)] < eerm(m)
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Proof sketch: (Stable AERM is sufficient and necessary for

Learnability)

Sufficient:
o For AERM: stability = generalization
o AERM+-generalization = consistency
Necessary:
e J consistent A =
3 consistent and generalizing A’ (using subsampling)
o Consistent+generalizing = AERM
o AERM+-generalizing = stable

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'll



Intermediate Summary

@ Learnability <= 3 stable AERM

@ But, how do we find one?

@ And, is there a combinatorial notion of learnability (like VC
dimension) ?

Julll 22 /34
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Outline

@ Characterizing Multiclass Learnability

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'll 23 /34



Why multiclass learning

@ Practical relevance

@ A simple twist of binary classification

@ In a sense, captures the essence of difficulty of the General Learning
Setting

Julll 24 /34
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The Graph Dimension

S is G-shattered by H if 3f € H s.t. for every T' C S exists h € H with

hz)=f(z) ifxeT
h(z) # f(z) ifx e S\T
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The Graph Dimension

S is G-shattered by H if 3f € H s.t. for every T' C S exists h € H with

hz)=f(z) ifxeT
h(z) # f(z) ifx e S\T

Graph dimension: Maximal size of G-shattered set
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The Graph Dimension

S is G-shattered by H if 3f € H s.t. for every T' C S exists h € H with

hz)=f(z) ifxeT
h(z) # f(z) ifx e S\T

Graph dimension: Maximal size of G-shattered set
Remark: When |Y| = 2, Graph dimension equals to VC dimension
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o Consider again our counter example: ) = 2% U {x} and
H={hp:T C X} with

x x¢T

M@ =\p ser
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o Consider again our counter example: ) = 2% U {x} and
H={hp:T C X} with

=y 77

e Claim: Graph dimension of H is | X|

@ Proof: Take f = hy and S = X. For each T' C S take hpe. So, for
x €T, hpe(x) =% = f(z) and for x ¢ T, hpe(x) =T # *.
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o Consider again our counter example: ) = 2% U {x} and
H={hp:T C X} with

=y 77

e Claim: Graph dimension of H is | X|

@ Proof: Take f = hy and S = X. For each T' C S take hpe. So, for
x €T, hpe(x) =% = f(z) and for x ¢ T, hpe(x) =T # *.

@ Conclusion: Graph dimension does not characterize multiclass
learnability (in fact, Graph dimension characterizes uniform
convergence)
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The Natarajan Dimension

S is N-shattered by H if 3f1, fo € H st. Ve € S, fi(x) # fa(x), and for
every T' C S exists h € H with

h(z) = {fl(x) %f$€T
fo(x) ifxeS\T
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The Natarajan Dimension

S is N-shattered by H if 3f1, fo € H st. Ve € S, fi(x) # fa(x), and for
every T' C S exists h € H with

h(z) = {fl(x) %f$€T
fo(x) ifxeS\T

Natarajan dimension: Maximal size of N-shattered set
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The Natarajan Dimension

S is N-shattered by H if 3f1, fo € H st. Ve € S, fi(x) # fa(x), and for
every T' C S exists h € H with

h(z) = {fl(m) %f$€T
fo(x) ifxeS\T

Natarajan dimension: Maximal size of N-shattered set

Remarks:

e When || = 2, Natarajan dimension also equals to VC dimension
@ Natarajan < Graph
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o Consider again our counter example: ) = 2% U {*} and
H={hr:T C X} with

x x¢T

@) =\p ser
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o Consider again our counter example: ) = 2% U {*} and
H={hr:T C X} with

i =y 747

@ Claim: Natarajan dimension of H is 1

@ Proof:
o Take S = {z1,z2}. The only possible labelings of S by H are
hi | he | hs | hy
z1 | 1,2 1 * *
To | 12| * 2 *

o Constraints on f1, fa are that fi(z) # fa(z) for all z, and exists h with

h(z1) = fi(z) and ha(z) = fo(x).

e No (f1, f2) satisfies these two constraints.
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o Consider again our counter example: ) = 2% U {*} and
H={hr:T C X} with

i =y 747

@ Claim: Natarajan dimension of H is 1

@ Proof:
o Take S = {z1,z2}. The only possible labelings of S by H are
hi | he | hs | hy
z1 | 1,2 1 * *
To | 12| * 2 *

o Constraints on f1, fa are that fi(z) # fa(z) for all z, and exists h with

h(z1) = fi(z) and ha(z) = fo(x).

e No (f1, f2) satisfies these two constraints.

@ Does Natarajan dimension characterize multiclass learnability ?
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Multiclass Learnability of Symmetric Classes

If H is a class of symmetric functions with Natarajan dimension d then

d+1n(1/4) < mpacle,d) < dIn(d/€) + In(1/9) .

€ €
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Multiclass Learnability of Symmetric Classes

If H is a class of symmetric functions with Natarajan dimension d then

d+1n(1/4) < mpacle,d) < dIn(d/€) + In(1/9) .

€ €

Open Question

Is the above also true for non-symmetric hypotheses classes?
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Proof: The Learning Algorithm

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis,
considers a small number of hypotheses
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Proof: The Learning Algorithm

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis,
considers a small number of hypotheses

e Given a target hypothesis h*, let S(h*) = {S : errg(h*) = 0}
o Let A(S(h*)) ={A(S):S5eS(h")}
e Claim: If |A(S(h*))| is small then A is consistent.
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Proof: The Learning Algorithm

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis,
considers a small number of hypotheses

Given a target hypothesis h*, let S(h*) = {S : errg(h*) = 0}
Let A(S(h*)) = {A(S):S e S(h")}

Claim: If JA(S(h*))| is small then A is consistent.

Obviously, |A(S(h*))| < |#H| but can be much smaller

Example: Recall our counter example, then [Ap,q(S(0))| = 2/*1 while
for all h*, [Agood(S(h*))| < 2
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Proof: Natarajan+Symmetric = small | A(S(h*))]

o Lemma: |A(S(h*))| < m?- (Max Range)??
@ Lemma: If H is symmetric and has Natarajan dimension d, then the
Max Range of each h € H is at most 2d + 1.
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Sample Complexity of Specific classes

@ We show how to calculate sample complexity of popular hypothesis
classes — particularly, multiclass-to-binary reductions

@ Enables a rigorous comparison of known multiclass algorithms

e Previous analysis (e.g. SS'01,BL'07): how the binary error translates to
multiclass error

e Our analysis: Direct calculation of the sample complexity of the
multiclass classifier
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Specific classes

@ Multiclass-to-binary reductions:

o l-vs-rest
o Linear multiclass construction: arg max;(Wz);
o Filter trees

@ Use linear predictors in R? as the binary classifiers

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Jul'll 33 /34



Specific classes

@ Multiclass-to-binary reductions:

o l-vs-rest
o Linear multiclass construction: arg max;(Wz);
o Filter trees

@ Use linear predictors in R? as the binary classifiers

The Natarajan dimension of all the above classes is ©(d |Y|).

@ All these reductions have the same estimation error. To compare
them, one should analyze approximation error.
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Summary and Open Questions

Equivalence between uniform convergence and learnability breaks even
in multiclass problems

What characterizes multiclass learnability ?
What is the corresponding learning rule ?
What characterizes learnability in the general learning setting 7

What is the corresponding learning rule ?
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Summary and Open Questions

Equivalence between uniform convergence and learnability breaks even
in multiclass problems

What characterizes multiclass learnability ?
What is the corresponding learning rule ?
What characterizes learnability in the general learning setting 7

What is the corresponding learning rule ?

THANKS
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