Minimizing the Maximal Loss: Why and How?

Shai Shalev-Shwartz and Yonatan Wexler

The Hebrew University of Jerusalem and OrCam

ICML 2016

Typical vs. Rare Cases

Typical vs. Rare Cases

PAC Learning with Train/Test Mismatch

PAC learning

- ullet $\mathcal D$ is a distribution over $\mathcal X$
- A target labeling function $h^* \in \mathcal{H}$
- ullet Training set is sampled i.i.d. from ${\cal D}$
- Goal: find h s.t. $L_{\mathcal{D}}(h) < \epsilon$ where $L_D(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq h^*(x)]$

PAC Learning with Train/Test Mismatch

PAC learning

- ullet $\mathcal D$ is a distribution over $\mathcal X$
- A target labeling function $h^* \in \mathcal{H}$
- ullet Training set is sampled i.i.d. from ${\cal D}$
- Goal: find h s.t. $L_{\mathcal{D}}(h) < \epsilon$ where $L_D(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq h^*(x)]$

PAC Learning with Train/Test Mismatch

- ullet $\mathcal{D}_1, \mathcal{D}_2$ are two distributions over \mathcal{X}
- A target labeling function $h^* \in \mathcal{H}$
- Training set is sampled i.i.d. from $\mathcal{D} = \lambda_1 \mathcal{D}_1 + \lambda_2 \mathcal{D}_2$, $\lambda_1 \gg \lambda_2$
- ullet Goal: find h s.t. both $L_{\mathcal{D}_1}(h) < \epsilon$ and $L_{\mathcal{D}_2}(h) < \epsilon$
- ullet Note: Learner can only sample from ${\cal D}$

ullet Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n 1[h_w(x_i) \neq y_i]$$

ullet Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n 1[h_w(x_i) \neq y_i]$$

• Intuitively: this won't work if $\epsilon > \lambda_2$

ullet Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n 1[h_w(x_i) \neq y_i]$$

- Intuitively: this won't work if $\epsilon > \lambda_2$
- Sample complexity: what if we solve the ERM, i.e., find w for which $L_S(w)=0$?

ullet Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n 1[h_w(x_i) \neq y_i]$$

- **Intuitively**: this won't work if $\epsilon > \lambda_2$
- Sample complexity: what if we solve the ERM, i.e., find w for which $L_S(w)=0$?
- Intuitively: still not enough, because if we only see few examples from \mathcal{D}_2 we might overfit

• Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n 1[h_w(x_i) \neq y_i]$$

- **Intuitively**: this won't work if $\epsilon > \lambda_2$
- Sample complexity: what if we solve the ERM, i.e., find w for which $L_S(w)=0$?
- Intuitively: still not enough, because if we only see few examples from \mathcal{D}_2 we might overfit
- Theorem (informally): under some conditions, many examples from \mathcal{D}_1 and a few examples from \mathcal{D}_2 suffices to ensure small error on both \mathcal{D}_1 and \mathcal{D}_2

Refined Sample Complexity Analysis

Theorem

Define

- $\mathcal{H}_{1,\epsilon} = \{ h \in \mathcal{H} : L_{D_1}(h) \leq \epsilon \}$
- $c = \max\{c' \in [\epsilon, 1) : \forall h \in \mathcal{H}_{1,\epsilon}, L_{D_2}(h) \le c' \Rightarrow L_{D_2}(h) \le \epsilon\}.$

Then, it suffices to sample $\frac{\mathrm{VC}(\mathcal{H})}{\epsilon}$ examples from \mathcal{D}_1 and $\frac{\mathrm{VC}(\mathcal{H}_{1,\epsilon})}{c}$ examples from \mathcal{D}_2 .

Proof idea:

- Think about ERM as two steps: (1) find $\mathcal{H}_{1,\epsilon}$ based on examples from D_1 (2) find a hypothesis within $\mathcal{H}_{1,\epsilon}$ that is good on the examples from D_2
- "Shell analysis" (Haussler-Kearns-Seung-Tishby'96) for the 2nd step

Refined Sample Complexity Analysis

Theorem

Define

- $\mathcal{H}_{1,\epsilon} = \{h \in \mathcal{H} : L_{D_1}(h) \leq \epsilon\}$
- $c = \max\{c' \in [\epsilon, 1) : \forall h \in \mathcal{H}_{1,\epsilon}, L_{D_2}(h) \le c' \Rightarrow L_{D_2}(h) \le \epsilon\}.$

Then, it suffices to sample $\frac{\mathrm{VC}(\mathcal{H})}{\epsilon}$ examples from \mathcal{D}_1 and $\frac{\mathrm{VC}(\mathcal{H}_{1,\epsilon})}{c}$ examples from \mathcal{D}_2 .

Proof idea:

- Think about ERM as two steps: (1) find $\mathcal{H}_{1,\epsilon}$ based on examples from D_1 (2) find a hypothesis within $\mathcal{H}_{1,\epsilon}$ that is good on the examples from D_2
- "Shell analysis" (Haussler-Kearns-Seung-Tishby'96) for the 2nd step

Implication: to be good on \mathcal{D}_2 we must achieve zero training error

6 / 18

Two Equivalent Ways to Solve the ERM problem

Minimize average loss to accuracy < 1/n:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h_w(x_i) \neq y_i]$$

Minimize \max loss to accuracy < 1:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \max_{i \in [n]} 1[h_w(x_i) \neq y_i]$$

Oracle Assumption

Assumption: There exists an online learner for \boldsymbol{w} with a mistake bound \boldsymbol{C}

The Mistake Bound Model (Littlestone 1988)

• The Online Game: At each round t, learner picks w_t , adversary responds with i_t , and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$

The Mistake Bound Model (Littlestone 1988)

- The Online Game: At each round t, learner picks w_t , adversary responds with i_t , and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$
- Mistake Bound: The learner enjoys a mistake bound C if for any T and any sequence i_1, \ldots, i_T , it makes at most T mistakes

The Mistake Bound Model (Littlestone 1988)

- The Online Game: At each round t, learner picks w_t , adversary responds with i_t , and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$
- Mistake Bound: The learner enjoys a mistake bound C if for any T and any sequence i_1, \ldots, i_T , it makes at most T mistakes
- Example: The Perceptron (Rosenblatt 1958):
 - $h_w(x) = \operatorname{sign}(\langle w, x \rangle), y \in \{\pm 1\}$
 - The Perceptron rule: $w_{t+1} = w_t + \phi_{i_t}(w_t) x_{i_t} / \|x_{i_t}\|$
 - Theorem (Agmon 1954, Minsky, Papert 1969): If exists w^* s.t. for every $i,\ y_i\langle w^*,x_i\rangle/\|x_i\|\geq 1$, then Perceptron's mistake bound is $C=\|w^*\|^2$

Back to the ERM problem

Minimize average loss to accuracy < 1/n:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^n \phi_i(w)$$

Minimize \max loss to accuracy < 1:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \max_{i \in [n]} \phi_i(w)$$

Naive Approaches

Minimize average loss to accuracy < 1/n

- \bullet Apply the online learner with random examples from [n]
- \bullet Runtime to achieve zero error: Need C/T < 1/n so $T > n\,C$ and total time $> n\,C\,d$

Naive Approaches

Minimize average loss to accuracy < 1/n

- \bullet Apply the online learner with random examples from [n]
- \bullet Runtime to achieve zero error: Need C/T < 1/n so $T > n\,C$ and total time $> n\,C\,d$

Minimize \max loss to accuracy < 1:

- Apply the online learner while feeding it with the worst example at each iteration
- Runtime for zero error: C iterations, each cost $d\,n$, so total time $> n\,C\,d$

Naive Approaches

Minimize average loss to accuracy < 1/n

- \bullet Apply the online learner with random examples from [n]
- \bullet Runtime to achieve zero error: Need C/T < 1/n so $T > n\,C$ and total time $> n\,C\,d$

Minimize \max loss to accuracy < 1:

- Apply the online learner while feeding it with the worst example at each iteration
- Runtime for zero error: C iterations, each cost $d\,n$, so total time $> n\,C\,d$

Our approach: runtime is $\tilde{O}((n+C)d)$

Rewrite the Max-Loss problem:

$$\min_{w} \max_{i \in [n]} \phi_i(w) = \min_{w} \max_{p \in \mathbb{S}_n} \sum_{i=1}^n p_i \phi_i(w)$$

- ullet Zero-sum game between w player and p player
- ullet Use the online learner for the w player
- ullet Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002) for the p player
- \bullet Our variant explores w.p. $1/2\colon$ this leads to low-variance, and crucial for the analysis

- Initialize: $q = (1/n, \dots, 1/n)$
- For t = 1, 2, ..., T
 - Sample i_t according to $p=0.5\,q+0.5\,(1/n,\ldots,1/n)$
 - Feed i_t to the online learner
 - Update $q_{i_t} = q_{i_t} \, \exp(\phi_{i_t}(w_t) \, / (2np_{i_t}))$ and normalize

- Initialize: $q = (1/n, \dots, 1/n)$
- For t = 1, 2, ..., T
 - Sample i_t according to $p=0.5\,q+0.5\,(1/n,\ldots,1/n)$
 - ullet Feed i_t to the online learner
 - Update $q_{i_t} = q_{i_t} \, \exp(\phi_{i_t}(w_t) \, / (2np_{i_t}))$ and normalize

Observe: Using tree data-structure, each iteration costs $O(\log(n))$ plus the online learner time

- Initialize: $q = (1/n, \dots, 1/n)$
- For t = 1, 2, ..., T
 - Sample i_t according to $p=0.5\,q+0.5\,(1/n,\ldots,1/n)$
 - Feed i_t to the online learner
 - Update $q_{i_t} = q_{i_t} \, \exp(\phi_{i_t}(w_t) \, / (2np_{i_t}))$ and normalize

Observe: Using tree data-structure, each iteration costs $O(\log(n))$ plus the online learner time

Theorem

If $T \geq \tilde{\Omega}(n+C)$, and $k = \Omega(\log(n))$, and t_1, \ldots, t_k are sampled at random from [T], then with high probability

$$\forall i, \quad \phi_i \left(\text{Majority}(w_{t_1}, \dots, w_{t_k}) \right) = 0$$

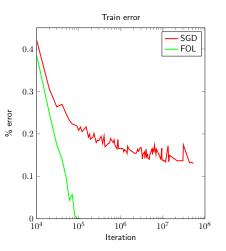
Proof Sketch

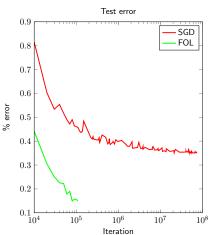
- The vector $z_t = \frac{\phi_{i_t}(w_t)}{p_{i_t}}e_{i_t}$ is an unbiased estimate of the gradient $(\phi_1(w_t),\dots,\phi_n(w_t))$
- \bullet The update of q is Mirror Descent w.r.t. Entropic regularization with z_t
- A certain generalized definition of variance of z_t is bounded by 2n because of the strong exploration
- A Bernstein's type inequality for Martingales leads to strong concentration
- Union bound over every i concludes the proof

Related Work

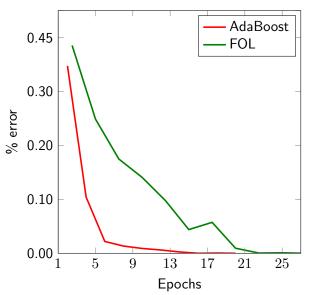
- Auer et al 2002: The main idea is there, but EXP3.P.1 costs $\Omega(n)$ per iteration
- Hazan, Clarckson, Woodruff 2012, Hazan, Koren, Srebro 2011: Only for linear classifiers, rate of (n+d)C. (Our rate is (n+C)d)
- AdaBoost (Freund & Schapire 1995): Only for binary classification, batch nature, similar rate.
 In practice: AdaBoost's predictor is an ensemble while ours is a single classifier

Illustration





FOL vs. AdaBoost



Summary

- Some applications call for 100% success
- Focused Learning means faster learning !