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Typical vs. Rare Cases
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PAC Learning with Train/Test Mismatch

PAC learning
@ D is a distribution over X
o A target labeling function h* € H
@ Training set is sampled i.i.d. from D
e Goal: find h s.t. Lp(h) < € where Lp(h) = Pyplh(x) # h*(x)]
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e Goal: find h s.t. Lp(h) < € where Lp(h) = Pyplh(x) # h*(x)]

PAC Learning with Train/Test Mismatch
@ D1, Dy are two distributions over X
@ A target labeling function h* € H
@ Training set is sampled i.i.d. from D = A1Dy + AoD2, A1 > Ao
e Goal: find h s.t. both Lp,(h) < e and Lp,(h) <€
@ Note: Learner can only sample from D
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How to learn 7

@ Most popular approach: Minimize the average error to accuracy ¢

min Lg(w) := %Z huw(wi) # il

d
weR i—1
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How to learn 7

@ Most popular approach: Minimize the average error to accuracy ¢
1 n
min Lg(w) := — 1Ay (25 ;
weRd s(w) n; [how (i) # Yi]
o Intuitively: this won't work if € > A9
o Sample complexity: what if we solve the ERM, i.e., find w for which
Lg(w)=07
o Intuitively: still not enough, because if we only see few examples

from Dy we might overfit

@ Theorem (informally): under some conditions, many examples from
Dy and a few examples from D5 suffices to ensure small error on both
D1 and Doy

Shalev-Shwartz and Wexler (OrCam) FOL ICML'16 5/18



Refined Sample Complexity Analysis

Define

o Hic={heH:Lp,(h)<e}

o c=max{cd €[e1):Vh € Hi,, Lp,(h) < = Lp,(h) <€}
Then, it suffices to sample %(H) examples from Dy and %
examples from Ds.

Proof idea:

@ Think about ERM as two steps: (1) find H; . based on examples
from D; (2) find a hypothesis within #; . that is good on the
examples from Do

@ “Shell analysis” (Haussler-Kearns-Seung-Tishby'96) for the 2nd step
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Two Equivalent Ways to Solve the ERM problem

Minimize average loss to accuracy < 1/n:

Zl (w; #yz]

min Lg(w
weRd

:\*—‘

Minimize max loss to accuracy < 1:

J}rglgil/ s(w) == Erelﬁ]il[hw(*fi) # Yil
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Oracle Assumption

Assumption: There exists an online learner for w with a mistake bound C
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The Mistake Bound Model (Littlestone 1988)

@ The Online Game: At each round ¢, learner picks w;, adversary
responds with i;, and learner pays ¢;, (w;) = 1[hw, (zi,) # Yi,]
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The Mistake Bound Model (Littlestone 1988)

@ The Online Game: At each round ¢, learner picks w;, adversary
responds with i;, and learner pays ¢;, (w;) = 1[hw, (zi,) # Yi,]
@ Mistake Bound: The learner enjoys a mistake bound C' if for any T’
and any sequence iy, ..., %7, it makes at most T" mistakes
e Example: The Perceptron (Rosenblatt 1958):
o hy(z) = sign((w,z)), y € {£1}
o The Perceptron rule: w1 = wy + ¢y, (we) @i, /|| 24, |
o Theorem (Agmon 1954, Minsky, Papert 1969):

If exists w* s.t. for every 4, y;(w*, z;)/||x;|| > 1, then Perceptron’s
mistake bound is C' = |lw*||?
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Back to the ERM problem

Minimize average loss to accuracy < 1/n:
min Lg(w Z ¢i(w
weR?

Minimize max loss to accuracy < 1:

Ls(w) := max ;
f&@ s(w) = 11161%(/5()
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Naive Approaches

Minimize average loss to accuracy < 1/n
@ Apply the online learner with random examples from [n]

@ Runtime to achieve zero error: Need C/T < 1/nso T > nC and
total time >nCd
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each iteration
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Our Approach: Focused Online Learning

Rewrite the Max-Loss problem:

n

min max ¢;(w) = min max Zplfbi(w)
w  j€[n] w  peS, i1

@ Zero-sum game between w player and p player

@ Use the online learner for the w player

@ Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002)
for the p player

@ Our variant explores w.p. 1/2: this leads to low-variance, and crucial
for the analysis
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Our Approach: Focused Online Learning

e Initialize: ¢ = (1/n,...,1/n)

e Fort=1,2,...,T
o Sample i; accordingto p=0.5¢+0.5(1/n,...,1/n)
o Feed i; to the online learner
o Update ¢;, = ¢, exp(¢s, (w:) /(2np;,)) and normalize
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Our Approach: Focused Online Learning

e Initialize: ¢ = (1/n,...,1/n)

e Fort=1,2,...,T
o Sample i; accordingto p=0.5¢+0.5(1/n,...,1/n)
o Feed i; to the online learner
o Update ¢;, = ¢, exp(¢s, (w:) /(2np;,)) and normalize

Observe: Using tree data-structure, each iteration costs O(log(n)) plus
the online learner time

IfT > Q(n+C), and k = Q(log(n)), and ty, ..., t; are sampled at
random from [T'], then with high probability

Vi, ¢; (Majority (wy,,...,we,)) =0
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Proof Sket

(m;(wt)eit is an unbiased estimate of the gradient

The vector z; = _
K2

(1(wt), ..., dn(wr))

The update of ¢ is Mirror Descent w.r.t. Entropic regularization with
2t

A certain generalized definition of variance of z; is bounded by 2n
because of the strong exploration

@ A Bernstein's type inequality for Martingales leads to strong
concentration

@ Union bound over every i concludes the proof
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Related Work

© Auer et al 2002: The main idea is there, but EXP3.P.1 costs §2(n) per
iteration

@ Hazan, Clarckson, Woodruff 2012, Hazan, Koren, Srebro 2011: Only
for linear classifiers, rate of (n+ d)C.
(Our rate is (n + C)d)

@ AdaBoost (Freund & Schapire 1995): Only for binary classification,
batch nature, similar rate.
In practice: AdaBoost's predictor is an ensemble while ours is a single
classifier
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[llustration
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FOL vs. AdaBoost
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Summary

@ Some applications call for 100% success

@ Focused Learning means faster learning !
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