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PAC Learning with Train/Test Mismatch

PAC learning

D is a distribution over X
A target labeling function h∗ ∈ H
Training set is sampled i.i.d. from D
Goal: find h s.t. LD(h) < ε where LD(h) = Px∼D[h(x) 6= h∗(x)]

PAC Learning with Train/Test Mismatch

D1,D2 are two distributions over X
A target labeling function h∗ ∈ H
Training set is sampled i.i.d. from D = λ1D1 + λ2D2, λ1 � λ2

Goal: find h s.t. both LD1(h) < ε and LD2(h) < ε

Note: Learner can only sample from D
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How to learn ?

Most popular approach: Minimize the average error to accuracy ε

min
w∈Rd

LS(w) :=
1

n

n∑
i=1

1[hw(xi) 6= yi]

Intuitively: this won’t work if ε > λ2

Sample complexity: what if we solve the ERM, i.e., find w for which
LS(w) = 0 ?

Intuitively: still not enough, because if we only see few examples
from D2 we might overfit

Theorem (informally): under some conditions, many examples from
D1 and a few examples from D2 suffices to ensure small error on both
D1 and D2
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Refined Sample Complexity Analysis

Theorem

Define

H1,ε = {h ∈ H : LD1(h) ≤ ε}
c = max{c′ ∈ [ε, 1) : ∀h ∈ H1,ε, LD2(h) ≤ c′ ⇒ LD2(h) ≤ ε}.

Then, it suffices to sample VC(H)
ε examples from D1 and

VC(H1,ε)
c

examples from D2.

Proof idea:

Think about ERM as two steps: (1) find H1,ε based on examples
from D1 (2) find a hypothesis within H1,ε that is good on the
examples from D2

“Shell analysis” (Haussler-Kearns-Seung-Tishby’96) for the 2nd step

Implication: to be good on D2 we must achieve zero training error
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Two Equivalent Ways to Solve the ERM problem

Minimize average loss to accuracy < 1/n:

min
w∈Rd

LS(w) :=
1

n

n∑
i=1

1[hw(xi) 6= yi]

Minimize max loss to accuracy < 1:

min
w∈Rd

LS(w) := max
i∈[n]

1[hw(xi) 6= yi]
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Oracle Assumption

Assumption: There exists an online learner for w with a mistake bound C
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The Mistake Bound Model (Littlestone 1988)

The Online Game: At each round t, learner picks wt, adversary
responds with it, and learner pays φit(wt) = 1[hwt(xit) 6= yit ]

Mistake Bound: The learner enjoys a mistake bound C if for any T
and any sequence i1, . . . , iT , it makes at most T mistakes

Example: The Perceptron (Rosenblatt 1958):

hw(x) = sign(〈w, x〉), y ∈ {±1}
The Perceptron rule: wt+1 = wt + φit(wt)xit/‖xit‖
Theorem (Agmon 1954, Minsky, Papert 1969):
If exists w∗ s.t. for every i, yi〈w∗, xi〉/‖xi‖ ≥ 1, then Perceptron’s
mistake bound is C = ‖w∗‖2
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Back to the ERM problem

Minimize average loss to accuracy < 1/n:

min
w∈Rd

LS(w) :=
1

n

n∑
i=1

φi(w)

Minimize max loss to accuracy < 1:

min
w∈Rd

LS(w) := max
i∈[n]

φi(w)
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Naive Approaches

Minimize average loss to accuracy < 1/n

Apply the online learner with random examples from [n]

Runtime to achieve zero error: Need C/T < 1/n so T > nC and
total time > nC d

Minimize max loss to accuracy < 1:

Apply the online learner while feeding it with the worst example at
each iteration

Runtime for zero error: C iterations, each cost dn, so total time
> nC d

Our approach: runtime is Õ((n+ C) d)
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Our Approach: Focused Online Learning

Rewrite the Max-Loss problem:

min
w

max
i∈[n]

φi(w) = min
w

max
p∈Sn

n∑
i=1

piφi(w)

Zero-sum game between w player and p player

Use the online learner for the w player

Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002)
for the p player

Our variant explores w.p. 1/2: this leads to low-variance, and crucial
for the analysis
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Our Approach: Focused Online Learning

Initialize: q = (1/n, . . . , 1/n)

For t = 1, 2, . . . , T

Sample it according to p = 0.5 q + 0.5 (1/n, . . . , 1/n)
Feed it to the online learner
Update qit = qit exp(φit(wt) /(2npit)) and normalize

Observe: Using tree data-structure, each iteration costs O(log(n)) plus
the online learner time

Theorem

If T ≥ Ω̃ (n+ C), and k = Ω(log(n)), and t1, . . . , tk are sampled at
random from [T ], then with high probability

∀i, φi (Majority(wt1 , . . . , wtk)) = 0
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Proof Sketch

The vector zt =
φit (wt)

pit
eit is an unbiased estimate of the gradient

(φ1(wt), . . . , φn(wt))

The update of q is Mirror Descent w.r.t. Entropic regularization with
zt

A certain generalized definition of variance of zt is bounded by 2n
because of the strong exploration

A Bernstein’s type inequality for Martingales leads to strong
concentration

Union bound over every i concludes the proof
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Related Work

Auer et al 2002: The main idea is there, but EXP3.P.1 costs Ω(n) per
iteration

Hazan, Clarckson, Woodruff 2012, Hazan, Koren, Srebro 2011: Only
for linear classifiers, rate of (n+ d)C.
(Our rate is (n+ C)d)

AdaBoost (Freund & Schapire 1995): Only for binary classification,
batch nature, similar rate.
In practice: AdaBoost’s predictor is an ensemble while ours is a single
classifier
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Illustration
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FOL vs. AdaBoost
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Summary

Some applications call for 100% success

Focused Learning means faster learning !
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