Efficient Bandit Algorithms for Online Multiclass Prediction

Sham M. Kakade Shai Shalev-Shwartz Ambuj Tewari

Motivation

- Online web advertisement systems
 - User submits a query
 - System (the learner) places an ad
 - User either "clicks" or ignores
 - Goal: Maximize number of "clicks"
- Modeling ?
 - Not the common online learning setting -If user ignores, we don't get the "correct" ad
 - Not the common multi-armed bandit -- We are also provided with a query

Outline

- Online Bandit Multi-class Categorization
- Background: The Multi-class Perceptron
- The Banditron
- Analysis
- Experiments
- The Separable Case
- Extensions and Open Problems

Online Bandit Multiclass Categorization

For
$$t = 1, 2, ..., T$$

- Receive $\mathbf{x} \in \mathbb{R}^d$
- Predict $\hat{y}_t \in \{1, \dots, k\}$
- Pay $\mathbf{1}[y_t \neq \hat{y}_t]$
- y_t is not revealed

(query)

(ad)

(click feedback)

Linear Hypotheses

- A hypothesis is a mapping $h : \mathbb{R}^d \to \{1, \dots, k\}$
- Linear hypothesis: Exists $k \times d$ matrix W s.t.

$$h(\mathbf{x}) = \underset{r}{\operatorname{argmax}} (W \mathbf{x})_r$$

The Multiclass Perceptron

For
$$t = 1, 2, ..., T$$

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Predict $\hat{y}_t = \underset{r}{\operatorname{argmax}} (W^t \mathbf{x}_t)_r$
- Receive y_t
- Update: $W^{t+1} = W^t + U^t$ where $U^t =$

Perceptron in the Bandit Setting

- Problem: We're blind to value of y_t
- Solution: Randomization can help!

Exploration

- Explore: instead of predicting \hat{y}_t guess some \tilde{y}_t
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_t = y_t$
- Then, we know that
 - $\hat{y}_t \neq y_t$
 - $y_t = \tilde{y}_t$
- So, we can update W using the matrix U^t

Exploration vs. Exploitation

- But, if our current model is correct, i.e. $\hat{y}_t = y_t$
- And, we guess some other \tilde{y}_t
- Then, we both suffer loss and do not know how to update W
- In this case, it's better to Exploit the quality of current model
- We control the exploration-exploitation tradeoff using randomization

The Banditron

For
$$t = 1, 2, ..., T$$

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Set $\hat{y}_t = \underset{r}{\operatorname{argmax}} (W^t \mathbf{x}_t)_r$
- Define: $P(r) = (1 \gamma) \mathbf{1}[r = \hat{y}_t] + \frac{\gamma}{k}$
- Randomly sample \tilde{y}_t according to P
- Predict \tilde{y}_t and receive feedback $\mathbf{1}[\tilde{y}_t = y_t]$
- Update: $W^{t+1} = W^t + \tilde{U}^t$

The Banditron

For
$$t = 1, 2, ..., T$$

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Set $\hat{y}_t = \underset{r}{\operatorname{argmax}} (W^t \mathbf{x}_t)_r$
- Define: $P(r) = (1 \gamma)\mathbf{1}[r = \hat{y}_t]$
- Randomly sample \tilde{y}_t according
- Predict \tilde{y}_t and receive feedback $\mathbf{1}[\tilde{y}_t = y_t]$
- Update: $W^{t+1} = W^t + \tilde{U}^t$

The Banditron Expected Update

$$\mathbb{E}[\tilde{U}^t] = \sum_{r} P(r) \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 \\ \dots & \frac{\mathbf{1}[y_t = r]}{P(y_t)} \mathbf{x}_t & \dots \\ 0 & \dots & 0 \\ \vdots & & & \\ 0 & \dots & 0 \\ \dots & -\mathbf{x}_t & \dots \\ 0 & \dots & 0 \\ \vdots & & & \\ 0 & \dots & 0 \end{bmatrix} = U$$

Analysis: The Hinge-Loss

$$\ell_t(W) = \max_{r \neq y_t} 1 - (W \mathbf{x}_t)_{y_t} + (W \mathbf{x}_t)_r \ge \mathbf{1}[y_t \neq \hat{y}_t]$$

Analysis: The Hinge-Loss

$$\ell_t(W) = \max_{r \neq y_t} 1 - (W \mathbf{x}_t)_{y_t} + (W \mathbf{x}_t)_r \ge \mathbf{1}[y_t \neq \hat{y}_t]$$

The Separable Case:

Mistake Bounds

Perceptron:

$$M \leq L + D + \sqrt{LD}$$

Banditron:

$$\mathbb{E}[M] \leq L + \gamma T + 3 \max\left\{\frac{kD}{\gamma}, \sqrt{D\gamma T}\right\} + \sqrt{\frac{kDL}{\gamma}}$$

Symbol	Meaning
\overline{M}	# mistakes
L	competitor loss $\sum_{t} \ell_{t}(W^{\star})$
D	competitor margin $\ W^{\star}\ _F^2$
k	# classes
T	# rounds
γ	Exploration-Exploitation parameter

Mistake Bounds (cont.)

	Perceptron	Banditron
No noise: $L = 0$	D	\sqrt{kDT}
Low noise: $L = O(\sqrt{k D T})$	\sqrt{kDT}	$\sqrt{k D T}$
Noisy:	$L + T^{1/2}$	$L + T^{2/3}$

Symbol	Meaning
L	competitor loss $\sum_{t} \ell_t(W^*)$
D	competitor margin $ W^{\star} _F^2$
k	# classes
T	# rounds

Experiments

- Reuters RCVI
 - ~700k documents
 - Bag-of-words (d ~ 350k)
 - 4 labels {CCAT, ECAT, GCAT, MCAT}
- Synthetic separable data set
 - 9 classes, d=400, million instances
 - A simple simulation of generating text documents
- Synthetic non-separable data set
 - separable + 5% label noise

Experimental Results - Reuters

Experimental Results - Separable Data

Experimental Results – 5% label noise

Exploration-Exploitation Parameter

Reuters

The Separable Case

Halving

- Discretized hypothesis space
- Predict by majority vote
- Remove 'wrong' hypotheses
- Note: can be applied in Bandit setting
- Mistake Bound $O(k^2 d \log(D d))$
- Using JL lemma we can also obtain $O(k^2 D \log(\frac{T+k}{\delta}) \log(D))$

The Separable Case

Halving

- Discretized hypothesis space
- Predict by majority vote
- Remove 'wrong' hypotheses
- Note: can be applied in Bandit setting
- Mistake Bound $O(k^2 d \log(D d))$
- Using JL lemma we can also obtain $O(k^2 D \log(\frac{T+k}{\delta}) \log(D))$

The Separable Case

Halving

- Discretized hypothesis space
- Predict by majority vote
- Remove 'wrong' hypotheses
- Note: can be applied in Bandit setting
- Mistake Bound $O(k^2 d \log(D d))$
- Using JL lemma we can also obtain $O(k^2 D \log(\frac{T+k}{\delta}) \log(D))$

Extensions and Open Problems

- Label Ranking
 - Predicting a "label ranking"
 - How to interpret feedback ?
- Multiplicative and Margin-based updates
 - Bandit versions of "Winnow" and "Passive-Aggressive"
- Deterministic vs. Randomized strategies
- Achievable rates ?
 - Efficient algorithms for the separable case ?