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Abstract

Classical mechanics is all about the analysis of motion: how and why the positions of objects in the three-dimensional
space are changed over time. Motion is the essence of life — a world without motion is a dead world.

We choose to present classical mechanics by relying on three fundamental physical units: Length, Time, and Mass.
The position of an object relies on the Length unit, and the movement of an object is described as a mathematical
function, mapping time to position. The mass of an object is some measure of quantity — how much matter does the
object have (indeed, the mass of two identical objects is twice the mass of the single object). The meaning of these
fundamental physical units is taken for granted (similarly to ”axioms” in mathematics). All the other quantities in
classical mechanics (such as velocity, acceleration, momentum, force, energy, and more) are not fundamental: they
can be defined, or derived mathematically, from the Length-Mass-Time (LMT) fundamental quantities.

The main source I have used to write this summary is Raz Kupferman’s lecture notes 1.

1http://math.huji.ac.il/˜razk/Teaching/LectureNotes/LectureNotesMechanics.pdf
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Chapter 1

Introduction

The most basic notion in mechanics is the position function, r : t → R3. That is, r(t) is the position of some object
in the three-dimensional space at time t. Basic kinematics define ”velocity” and ”acceleration” as first and second
derivatives of the position function. Newton’s laws define what causes objects to change their velocity. E.g., Newton’s
first law states that the momentum (which is the product of the object’s velocity with its mass) can only be changed by
applying a force.

1.1 Units of Measurments

Units of measurements are divided to fundamental units and derived units. The choice of which measurements are
fundamental is arbitrary. Once we picked them, then we should be able to express other measurements as combina-
tion of the fundamental units. For example, if we picked meters and seconds as fundamental units, then velocity is
expressed by m/s and acceleration by m/s2.

A system of units is a set of fundamental units which is sufficient to express all the measurements we are interested
in to describe some class of phenomena.

A class of system of units is determined by setting the types of fundamental units we want to have. E.g., LMT stands
for Length-Mass-Time, and it contains the system of units meter-kg-second and cm-gram-second as two members of
the class.

Throughout this book, we will mainly use the LMT class.

1.2 Dimensional Analysis of Physics Laws

1.2.1 Dimensions of physical quantities

Suppose we pick the class LMT, and then we change the units by dividing each by L,M, T respectively. E.g., moving
from meter-kg-second to cm-gram-second means picking L = 100,M = 1000, T = 1. As a result, length measure-
ments will be multiplied by L (e.g. 1m becomes 100cm), mass will be multiplied by M , and time by T . Furthermore,
every physical quantity is scaled by some f(L,M, T ). E.g., velocity will be changed by f(L,M, T ) = L/T . Indeed,
if the velocity is 1 m/s then, after the change, the velocity will be 100cm/s, which satisfies 100 = 1 · 100/1. We
call the function f(L,M, T ) the dimension of the physical quantity. If f(L,M, T ) = 1 for some quantity (i.e., it has
dimension 1), we call this physical quantity dimensionless. Note that the dimension depends on the choice of the class
of system of units.

1.2.2 The Fundamental Principle of the Laws of Physics

The laws of physics are invariant under the choice of system of units.
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Laws of physics are often expressed as an equation: expression 1 = expression 2. It follows that both expressions must
have the same dimension, otherwise they won’t be invariant to change of system of units.

1.2.3 Dimension is always a power-law monomial

Consider the LMT class as an example, and let a be some quantity. Its dimension is

[a] := f(L,M, T )

where [a] is our notation for dimension, and we defined it as some function f . Consider change of units defined by
constants L1,M1, T1, let a ∈ R be the value of the quantity before the change and let a1 be its value after the change.
Then, a1 = f(L1,M1, T1) a. Let’s repeat the same with different constants L2,M2, T2, then a2 = f(L2,M2, T2) a.
Dividing both equations, it follows that

a2
a1

=
f(L2,M2, T2)

f(L1,M1, T1)

But, we can equivalently look at the change of units from system 1 to system 2, which is defined by the constants
L2/L1,M2/M1, T2/T1. So, we also have

a2 = f(L2/L1,M2/M1, T2/T1) a1

It follows that the following functional equation holds

f(L2,M2, T2)

f(L1,M1, T1)
= f(L2/L1,M2/M1, T2/T1)

Differentiate both sides w.r.t. L2, and evaluate the expression for L1 = L2 = L,M2 = M1 = M,T2 = T1 = T , we
get the equation

1

f(L,M, T )

∂f

∂L
f(L,M, T ) =

1

L

∂f

∂L
f(1, 1, 1) :=

1

L
α

where α is some constant that doesn’t depend on L. For any fixed M,T , define h(L) = f(L,M, T ), and note that
h′(L) = ∂f

∂Lf(L,M, T ). So, the above equation takes the form

h′(L)

h(L)
=
α

L
⇒ h′(L) = h(L)

α

L
⇒ h(L) = Lα c

for some constant c that depends on M,T but not on L. This is true because for such h(L) we have h′(L) =
αLα−1 c = αLα c/L = h(L)α/c. It follows that there’s a function g(M,T ) such that

f(L,M, T ) = Lα g(M,T )

Substituting this in the functional equation where we set L1 = L2 = L, we get

g(M2, T2)

g(M1, T1)
= 1α g(M2/M1, T2/T1)

If α 6= 0, we can get rid of the term 1α. Following similar rational one can show that g(M,T ) = Mβq(T ) and that
q(T ) = cT γ . So, we obtain

f(L,M, T ) = cLαMβT γ

and since f(1, 1, 1) = 1 we get that c = 1. So, the bottom line is that we always have

f(L,M, T ) = LαMβT γ
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1.2.4 The Π theorem
A physical relationship between some dimensional parameter and several dimensional governing parameters
can be rewritten as a relation between some dimensional parameter and several dimensionless products of the

governing parameters.

Before proving the Π theorem, let us give an example. Consider an L system (only length). A right triangle is fully
determined by the length of the hypotenuse, c, and its smallest angle, φ. Hence, its area can be written as S = f(c, φ).
Indeed, if the legs of the triangle are a, b, then its area is ab/2 which can be rewritten as c sin(φ) c cos(φ)/2, so
S = c2 sin(φ) cos(φ)/2. The dimensions are [S] = L2, [c] = L, [φ] = 1. Consider a new variable α = S/c2. It is
dimensionless. So, we can rephrase the formula as α = g(φ), where in our case, g(φ) = sin(φ) cos(φ)/2. In this new
formula, all variables are dimensionless. The Π theorem is a systematic way to achieve a new formula in which all
variables are dimensionless.

Let’s turn to the formal statement and proof of the Π theorem. Consider a physical relation of the form

c = f(a1, . . . , ak, b1, . . . , bm)

Here, the distinction between the a’s and the b’s is through the assumption that there exists matrix α ∈ Rm,k s.t.
for each bj , its dimension can be written as [bj ] =

∏
i[ai]

αj,i . This is not true for the ai, that is, their dimensions
are independent. BTW, going to log scale, we can rewrite it as log([bj ]) =

∑
i αj,i log([ai]), and the meaning of

independence is the same as in linear algebra. We define the dimensionless quantities

Πj =
bj∏

i[ai]
αj,i

The first claim is that [c] =
∏
i[ai]

βi for some vector β. This must be true, otherwise we could change units s.t. c
is changed while all the ai remains the same, contradicting the physical law. So, define the dimensionless quantity

Π =
c∏

i[ai]
βi

Now, the Π theorem states that there is some function g which gives a rephrasing of the physical law as

Π = g(Π1, . . . ,Πm)

That is, the law is rephrased using dimensionless quantities.
To prove the above, rewrite the law while replacing bj = Πj

∏
i[ai]

αj,i and c = Π
∏
i[ai]

βi and rearrange terms
to get

Π =
1∏

i[ai]
βi
f(a1, . . . , ak,Π1

∏
i

[ai]
α1,i , . . . ,Πm

∏
i

[ai]
αm,i)

The right-hand side is some function h(a1, . . . , ak,Π1, . . . ,Πm). Since the left-hand side is dimensionless, h cannot
actually use any of the ai, as otherwise, we could change units so that only a1 will change while the rest of the
arguments in the equation are dimensionless, leading to contradiction. From this the Π theorem follows.

Why is it any good? It is sometimes convenient to switch to dimensionless formulas in order to ease the computa-
tion. Consider for example the following: a mass m is thrown vertically from the ground with initial velocity v. What
will be its maximal height? We start with writing

h = f(m, v, g)

The dimensions are [h] = L, [m] = M, [v] = L/T, [g] = L/T 2. Note that all the arguments to f has independent
dimensions. Hence, in the Π theorem, the right-hand side is a constant (because there are no b’s, only a’s). In addition,
the definition of Π for the left-hand side transforms h into a dimensionless parameter Π = h

v2/g . This yields

Π =
h

v2/g
= const

The constant here happens to be 1/2, but the fact that some quantity is a constant can help ease the calculations in
many cases.
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Chapter 2

Newton Mechanics

2.1 Kinematics
If r(t) ∈ R3 is the position of a particle in space at time t, then v(t) = r′(t) and a(t) = v′(t). Throughout this book,
for every function of time, f(t), where f : R → Rd, we use the notation f ′(t) to denote the derivative of f with
respect to time. That is, for i ∈ [d], f ′i(t) = d

dtfi(t). For the position function, we often use r(t) = (x(t), y(t), z(t)).

2.1.1 Radial and Tangential Acceleration

From the definition of derivative, it is easy to see that the direction of v(t) is tangent to the curve r(t). Observe that if
the speed size ‖v(t)‖ is constant, then a(t) · v(t) = 0, because

0 = (‖v(t)‖2)′ = 2v(t) · v′(t) = 2v(t) · a(t)

In the general case, we can always decompose a(t) = α(t)v(t)/‖v(t)‖+ β(t)v†(t), where v†(t) has a unit norm and
is orthogonal to v(t). The α(t) is often called tangential acceleration (because it points to the direction of the tangent
of the curve on which the particle moves) and β(t) is often called radial acceleration (because when ‖v(t)‖ is constant,
and the particle moves on a circle, then v†(t) points to the center of the circle). We can find α(t) = a(t) · v(t)/‖v(t)‖
by observing that

(‖v(t)‖)′ = (
√
‖v(t)‖2)′ =

2v(t) · a(t)

2‖v(t)‖
= α(t)

That is, the tangential acceleration is the derivative of the size of the velocity vector.
When a particle moves on a plane (2 dimensions), we can write v(t) in polar coordinates as

v(t) = (R(t) cos(θ(t)), R(t) sin(θ(t)))

Using the derivative of product, we obtain

v′(t) = R′(t) (cos(θ(t)), sin(θ(t)))︸ ︷︷ ︸
v(t)/‖v(t)‖

+R(t) θ′(t) (− sin(θ(t)), cos(θ(t)))︸ ︷︷ ︸
v†(t)

That is, we see again that the tangential acceleration is R′(t) = (‖v(t)‖)′. We also see that the radial acceleration is
R(t) θ′(t). Observe that here, θ(t) is the angle of the vector v(t), and not of the position of the particle.

When a particle moves at a constant speed ‖v(t)‖ = ν on a circle of radius ρ, its angular velocity is ν/ρ radians
per second (since it completes a full circle in 2πρ/ν seconds). Note that this is the angular velocity of the position of
the particle. However, at a circular motion, the angle θ(t) of the velocity vector is 90 degrees rotation of the angle of
the position vector, so θ′(t) = ν/ρ as well. It follows that the radial acceleration is R(t) θ′(t) = ‖v(t)‖ ν/ρ = ν2/ρ.
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2.2 Dynamics: Newton’s Laws
We will be working with the Length-Mass-Time (LMT) class as our fundamental quantities.

Momentum and Force: The momentum of a particle is defined as

p(t) := m(t) v(t)

We sometimes omit the dependence on t and simply write p = mv, but the precise meaning always involve a function
of time. Momentum is a vector, and each of its components has dimension ML/T . The Force on a particle at time t
is defined as

f(t) := p′(t)

By the derivative of product, we can write

f(t) = m′(t) v(t) +m(t) a(t)

If the mass is constant we get the popular form of Newton’s second law

f(t) = ma(t)

The dimension of the force is ML/T 2. The unit of force 1 Newton is the amount of force needed to change the
momentum of a 1kg particle by 1m/s.

Newton’s laws are in fact definitions: Historically, Newton’s first law states that the momentum of a particle will
remain constant unless a force is act upon it, and Newton’s second law states that force is defined as the change of
momentum. Even Newton realized that he could only give a circular definition to momentum and force: Force is what
causes momentum to change, and momentum is fixed unless a force is applied to it. In fact, momentum and force are
”definitions” and not ”rules”, in the same manner that velocity and acceleration are definitions and not rules.

2.2.1 Force due to a vector field
Often, the force on a point particle is a function of its position, meaning we can write f(t) = g(r(t)), for some
g : R3 → R3. We call g a vector field. In this case, Newton’s second law becomes a second-order differential equation

mr′′(t) = g(r(t))

Example 2.2.1 Consider a mass m particle on a vertical spring. The force is given by

f(t) = (−mg − kz(t))e3

where r(t) = (x(t), y(t), z(t)), g = 9.8 is the gravity on earth, and k is a constant associated with the spring.
Therefore, r(t) satisfies the equation

mz′′(t) = −mg − kz(t)
This can be rewritten as

z′′(t) = − k
m

(
z(t) +

mg

k

)
Define w(t) = z(t) +mg/k, then the above yields

w′′(t) = − k
m
w(t)

The solution is

w(t) = w(0) cos(ω t) +
w′(0)

ω
sin(ω t)

where ω =
√
k/m. That is, a mass suspended by a string will perform a harmonic motion around the point z =

−mg/k.
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2.3 Work and Energy
The work exerted on a body at a time interval [t1, t2] is defined as

W :=

∫ t2

t1

f(t) · v(t)dt

When the mass is constant, f(t) = ma(t), so it follows that

W =

∫ t2

t1

ma(t) · v(t)dt

Define the scalar function g(t) = ma(t) · v(t) and observe that for E(t) = 0.5m ‖v(t)‖2 we have

E′(t) = mv(t) · v′(t) = mv(t) · a(t) = g(t)

Define T (v) = 1
2m‖v‖

2, we obtain that

W =

∫ t2

t1

g(t)dt = E(t2)− E(t1) = T (v(t2))− T (v(t1))

The function T (v) is called the kinetic energy of the particle, so we obtained that the work is the difference of kinetic
energy.

Next, suppose that the force is due to a force field φ : R3 → R3, namely, for every time t, f(t) = φ(r(t)). Suppose
also that there exists a function Φ such that φ = −∇Φ. Such function Φ is called the potential field or the potential
energy. Observe that

(−Φ(r(t)))′ = −φ(r(t)) · r′(t) = φ(r(t)) · v(t) = f(t) · v(t)

Hence, in such case the work can also be rewritten as a difference in potential energy:

W = −Φ(r(t2)) + Φ(r(t1))

Comparing the two expressions for the work we conclude that

−Φ(r(t2)) + Φ(r(t1)) = T (v(t2))− T (v(t1)) ⇒ T (v(t1)) + Φ(r(t1)) = T (v(t2)) + Φ(r(t2))

This is an ”energy preservation” result: the total mechanical energy, Φ(r) + T (v), remains constant.

Example 2.3.1 A body is dropped (at rest) from a height h to the ground. At what speed will it hit the ground? We
could solve it using equations of motion. But, we can also solve it by energies. The force applied on the body is
−mge3, so we’ll take Φ(z) = mgz. Take t1 = 0 and t2 the time the body hits ground, then from the conservation of
energy we get

T (0) + Φ(h e3) = T (v(t2)) + Φ(0) ⇒ 1

2
m ‖v(t2)‖2 = mgh ⇒ ‖v(t2)‖ =

√
2gh

2.4 Angular momentum and Torque
The angular momentum is

L(t) = r(t)× p(t)

where p(t) = m(t)v(t) is the momentum, and for vectors a, b, the vector a× b is their cross product.
Recall that the cross product of a, b is the vector whose direction is orthogonal to a and b (and the sign is by the

”right-hand-rule”), and whose size is ‖a‖ ‖b‖ sin(θ), where θ is the angle between a and b. The product rule applies
to the derivative of cross product.
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The torque is the derivative of the angular momentum, and equals to:

τ(t) := L′(t) = r′(t)× p(t) + r(t)× p′(t) = v(t)× (mv(t)) + r(t)× f(t) = r(t)× f(t)

where the last equality is because the cross product of two vectors of the same direction is 0.
The relation between torque and angular momentum is the same as the relation between force and momentum: the

former is a derivative of the latter.
To get some intuition, consider a fixed mass particle that moves on a circle at a constant speed. Its regular mo-

mentum vector has fixed length but its angle changes, hence the momentum is not constant, and a force is applied
on the particle (since the force is the derivative of momentum). However, its angular momentum is fixed (because
‖r(t)‖, ‖p(t)‖, and r(t) · p(t) are all constants, and the plane r(t), p(t) defines is also constant). Hence, there is zero
torque.

2.5 Modeling interactions between several objects
So far, we’ve taken an egocentric view with respect to a single object. For example, when a body is dropped from
height h to the ground, we analyzed the forces acting upon it as some external vector field (e.g. the gravity due to
earth), and we didn’t care about the forces the body applies on other objects.

We can choose to add additional objects to our model, and directly analyze the interactions between the objects
we model. The choice of which objects to add to the model and which forces are external is somewhat an arbitrary
modeling choice.

So, let’s consider a system comprising n particles of mass m1, . . . ,mn. We denote the trajectory of the i-th
particle by ri(t) = (xi(t), yi(t), zi(t)). For other vector quantities, such as velocity, we will use the notation vi(t) =
(v1,i(t), v2,i(t), v3,i(t)). We denote by fei (t) the ”external” force acting on object i and by fj,i(t) the ”internal force”
that object j applies on object i. The total force acting on object i is therefore

fi(t) = fei (t) +
∑
j 6=i

fj,i(t)

Using this notation, Newton’s third law (action and reaction) is

fj,i(t) = −fi,j(t)

We make the following assumptions:

Assumption 2.5.1 fei (t) only depends on ri(t), vi(t), and fj,i(t) only depends on rj(t), ri(t), vj(t), vi(t).

We therefore slightly overload notation and use fei to denote both the function from t to R3 representing the external
force on particle i at time t, and the function from R3 × R3 to R3 representing the dependence of fei (t) on ri(t) and
vi(t). That is, fei (t) = fei (ri(t), vi(t)) Similarly, fj,i(t) = fj,i(ri(t), vi(t), rj(t), vj(t)).

Under the above assumptions, if our system consists of all bodies in the universe then the present state fully
determines the future and past by solving the second order differential equations of how positions of all bodies evolve.
This observation was made by Laplace.

2.5.1 Conservation of Momentum
Consider a system of n particles. The center of mass of the system is the weighted average of the position, where the
weighting is by the mass:

R(t) :=

∑n
i=1miri(t)∑n
i=1mi

The velocity of the system is the derivative

V (t) := R′(t) =

∑n
i=1mivi(t)∑n
i=1mi
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Denote the total mass by

M =

n∑
i=1

mi

The total momentum is

P (t) := MV (t) =

n∑
i=1

mivi(t) =

n∑
i=1

pi(t)

That is, the total momentum equals to the sum of individual momentum. The rate of change of the total momentum is

P ′(t) =

n∑
i=1

p′i(t) =

n∑
i=1

fei (t) +
∑
j 6=i

fj,i(t)

 =

n∑
i=1

fei (t)

where the last equality follows from the law of action and reaction. We conclude the law of Preservation of Momentum:
in the absence of external force, the total momentum of the system is conserved.

2.5.2 Conservation of Angular Momentum
The total angular momentum of the system is ∑

i

ri(t)× pi(t)

The derivative is ∑
i

ri(t)×

fei (t) +
∑
j 6=i

fj,i(t)


Using fj,i = −fi,j we have (where we omitted the dependence on t for simplicity)∑

i

ri ×
∑
j 6=i

fj,i =
1

2

∑
i 6=j

(ri − rj)× fj,i

The Strong law of action and reaction states that the direction of fj,i is parallel to ri − rj , hence the above sum is
zero, and we obtain that the derivative of angular momentum becomes∑

i

ri(t)× fei (t)

We conclude the Law of preservation of Angular Momentum: in the absence of external torque, the total angular
momentum of the system is conserved.

2.5.3 Conservation of Mechanical Energy
The total work done by all forces at time interval [t1, t2] is

W =

n∑
i=1

∫ t2

t1

fi(t) · vi(t)dt

As in the case of a single particle, it can be shown that this equals to diff of total kinetic energy, defined as

T (v(t)) =

n∑
i=1

T (vi(t)) =

n∑
i=1

1

2
m‖vi(t)‖2
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We usually assume that all the forces are conservative, i.e.

fei (t) = fei (ri(t)) = −∇Φei (ri(t))

and
fj,i(t) = −∇1Φi,j(ri(t), rj(t)) , fi,j(t) = −∇2Φi,j(ri(t), rj(t))

where ∇1 is gradient w.r.t. the first 3-dim vector and ∇2 is gradient w.r.t. the second 3-dim vector. By the law of
action and reaction, we get that

∇1Φi,j(ri(t), rj(t)) = −∇2Φi,j(ri(t), rj(t))

By the chain rule, this implies that the potential depends on the difference between ri and rj , that is,

Φi,j(ri(t), rj(t)) = Φi,j(ri(t)− rj(t))

In fact, by the strong law of action and reaction it is not hard to see that Φi,j only depends on the distance between ri
and rj , that is,

Φi,j(ri(t), rj(t)) = Φi,j(‖ri(t)− rj(t)‖)

Anyway, back to energy calculations, it is not too hard to show that

W = −Φ(r(t2)) + Φ(r(t1))

where

Φ(r(t)) =

n∑
i=1

Φei (ri(t)) +
∑
i6=j

Φi,j(‖ri(t)− rj(t)‖)

is called the total potential energy. Comparing the two expressions for the Work, we conclude the law of conservation
of total mechanical energy, defined as,

E(r, v) = Φ(r) + T (v)
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Chapter 3

The Lagrangian and Euler-Lagrange
Equations

3.1 Adding Constraints
The presentation we’ve layout so far is seemingly sufficient to describe systems of particles. There are two missing
things:

• Friction: Friction is a force that converts mechanical energy into thermal energy. Thermal energy is a term
describing the microscopic motion of the molecules that form a physical body. Conceptually, if we included in
our model every single molecule (ignoring the laws of quantum mechanics), there would be no such thing as
thermal energy. Friction is outside the scope of this write-up.

• Constraints: Often, external forces constrain the movement of particles in some manner. For example, consider
a train moving on some tracks. The structure of the tracks constrain the train’s movement to a particular curve in
the surface. Another example is a simple pendulum. Yet another example is the movement of a rigid body, where
the distance between different particles must remain constant. While we could work with the original Euclidean
coordinates and explicitly model the external forces that impose the constraints, it is highly non-convenient.
This section shows how to impose constraints in a more convenient manner.

Holonomic Constraints: A holonomic constraint is any constraint that can be written as

h(r, t) = 0

where h : R3 × R → R. The function h constrain the position r(t) at time t to be on the set {r : h(r, t) = 0}. Some
examples:

• A simple pendulum: A bead is attached to a rod. At any time t, the position must be on a circle whose center
is at the pivot and whose radius is the length of the rod. So, h(r, t) = ‖r − c‖2 − ρ for some fixed c ∈ R3 and
ρ ∈ R.

• A rigid body: for any two particles we have hi,j(r, t) = ‖ri − rj‖ − di,j

3.2 Generalized Coordinates
A system of n particles in R3 is described by 3n functions of the time (the x(t), y(t), z(t) of the n particles). With k
holonomic constraints of the form hi(r, t) = 0, the position at time t is restricted to a (3n− k)-dimensional Manifold,
M(t). We can therefore re-parameterize r(t) by a vector q(t) ∈ U(t) ⊆ R3n−k such that at time t, there exists a
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one-to-one mapping ϕ(t) : U(t) → M(t). Mathematicians call the pair (U,ϕ) local coordinates for the manifold
M. Physicists call the coordinates q generalized coordinates (because, unlike regular coordinates which has units of
length, generalized coordinates may have other units).

As an example, consider two particles that are connected by a rod of length `. The regular representation is
by (r1, r2) ∈ R6, but if we take into account the constraint, then we can represent the positions as r1 ∈ R3 and
(α, β) ∈ [−π, π]2 representing the polar angles of r2 w.r.t. a center of circle whose center is r1. The generalized
coordinates in this case are the vector q ∈ R3 × [−π, π]2.

The goal is to come up with a new formulation of mechanics that will not require the knowledge of forces whose
sole goal is to keep the constraints, but instead, we will inject the constraint in another way and focus on the other
forces.

3.3 d’Alembert’s Principle of Virtual Work leads to Euler-Lagrange Equa-
tions

The positions at time t of the n particles is denoted by r(t) ∈ R3n and in generalized coordinates we define it by
q(t) ∈ Rd for d < 3n. The relation between the regular coordinates and generalized coordinates are by

r(t) = ϕ(q(t), t) (3.1)

It is convenient to define q̂(t) = (q(t), t) ∈ Rd+1. Hence,

r(t) = ϕ(q̂(t))

We denote by Jϕ(q̂(t)) ∈ R3n,d+1 the Jacobian matrix of ϕ at q̂(t), that is, the i, j element of this matrix is the partial
derivative of ϕi w.r.t. the j’th element of q̂, evaluated at q̂(t). We denote by Jϕj (q̂(t)) the j’th column of the matrix
and use Jϕ:−1(q̂(t)) to denote the matrix obtained by removing the last column of Jϕ(q̂(t)).

d’Alembert’s Principle of Virtual Work states that at any time t, the velocity vector is constrained to be in a
d-dimensional hyper-plane. The ”forces of constrains”, according to d’Alembert’s principle, are normal to this hyper-
plane. From mathematician’s perspective, the first part of d’Alembert’s principle is a physicist’s interpretation of the
geometric statement that the first d columns of Jϕ(q̂(t)) are tangent to the constrained manifold,M(t).

The second part of d’Alembert’s principle is that the force, f(r(t), t), can be decomposed into two orthogonal
forces, one is on the d-dimensional subspace spanned by the columns of Jϕ:−1(q̂(t)), and the other one is the orthogonal
complement. The first vector is denoted fa(r(t), t), and summarizes the ”applied” forces, and the second vector is
denoted f c(r(t), t), and summarizes the ”forces of constraints”. So, f(r(t), t) = fa(r(t), t) + f c(r(t), t).

We can write Newton’s second law as

M r′′(t) = fa(r(t), t) + f c(r(t), t), where M = diag(m1,m1,m1,m2,m2,m2, . . . ,mn,mn,mn) (3.2)

Multiply both sides from left by Jϕ:−1(q̂(t))>, and Using d’Alembert’s principle, we obtain

Jϕ:−1(q̂(t))>M r′′(t) = Jϕ:−1(q̂(t))> fa(r(t), t) (3.3)

where we have omitted f c(r(t), t) because it is orthogonal to every column of Jϕ:−1(q̂(t)). This gives a set of d
equations.

Deriving Euler-Lagrange Equations Our next step is to take the d equations given by (3.3) and rewrite them using
q alone (without r). This will give us the analog of Newton laws but with the generalized coordinates.

Comment about notation: In the following, when a function’s input is divided into several variable names, e.g.
g(a, b, c) for vectors a, b, c of arbitrary dimension, when we write ∇b g(α, β, γ) we refer to the vector containing the
partial derivatives of g(a, b, c) w.r.t. the elements of the vector b, evaluated at (α, β, γ).

18



We assume that fa takes the form fa(r, t) = −∇rF a(r, t) for some F a : R3n × R→ R. Denote,

Φ(q, t) = F a(ϕ(q, t), t) (3.4)

Then, using the chain rule,

−∇qΦ(q, t) = −Jϕ:−1(q, t)>∇rF a(ϕ(q, t), t) = Jϕ:−1(q, t)>fa(ϕ(q, t), t)

So, the right-hand side of the Newton equation becomes

−∇qΦ(q(t), t) (3.5)

Next, introduce the functions ν : Rd × Rd × R→ R3n and T : Rd × Rd × R→ R such that

ν(q, ξ, t) = Jϕ:,−1(q, t)> ξ + Jϕ:,d+1(q, t) (3.6)

and
T (q, ξ, t) =

1

2
ν(q, ξ, t)>Mν(q, ξ, t) (3.7)

Observe that
v(t) =

d

dt
ϕ(q(t), t) = Jϕ:,−1(q(t), t)> q′(t) + Jϕ:,d+1(q(t), t) = ν(q(t), q′(t), t) (3.8)

and from this we also get that T (q(t), q′(t), t) is the kinetic energy of the system.

Lemma 3.3.1 The left-hand side of (3.3) equals to

d

dt
∇ξT (q(t), q′(t), t)−∇qT (q(t), q′(t), t)

Proof To see this, first observe that using the chain rule,

∇qT (q, ξ, t) = ν(q, ξ, t)>M ∇qν(q, ξ, t)

Second, observe that
∇ξ ν(q, ξ, t) = Jϕ:−1(q, t)> ∈ R3n,d

and so
∇ξT (q, ξ, t) = ν(q, ξ, t)>M ∇ξν(q, ξ, t) = ν(q, ξ, t)>M Jϕ:−1(q, t)>

Third,

d

dt
∇ξT (q(t), q′(t), t) =

(
d

dt
ν(q(t), q′(t), t)>

)
M Jϕ:−1(q, t)> + ν(q(t), q′(t), t)>M

(
d

dt
Jϕ:−1(q(t), t)

)>
= r′′(t)>M Jϕ:−1(q̂(t))> + ν(q(t), q′(t), t)>M

(
d

dt
Jϕ:−1(q(t), t)

)>
Observing that the (i, j) element of Jϕ:−1(q(t), t) is ∂ϕi(q(t),t)

∂qj
, we get that the (i, j) element of d

dtJ
ϕ
:−1(q(t), t) is

d

dt

∂

∂qj
ϕi(q(t), t) =

∂

∂qj

d

dt
ϕi(q(t), t) =

∂

∂qj

d

dt
ri(t) =

∂

∂qj
vi(t) = ∇qjνi(q(t), q′(t), t)

so we get that
d

dt
∇ξT (q(t), q′(t), t) = r′′(t)>M Jϕ:−1(q̂(t))> +∇qT (q(t), q′(t), t)

Rearranging the above yields

r′′(t)>M Jϕ:−1(q̂(t)) =
d

dt
∇ξT (q(t), q′(t), t)−∇qT (q(t), q′(t), t)
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Based on (3.5) and the above lemma, (3.3) can be rewritten as

d

dt
∇ξT (q(t), q′(t), t)−∇qT (q(t), q′(t), t)) = −∇qΦ(ϕ(q̂(t)), t) (3.9)

Finally, define the function
L(q, ξ, t) = T (q, ξ, t)− Φ(q, t) (3.10)

we can rewrite (3.9) as
d

dt
(∇ξL(q, q′(t), t))−∇qL(q, q′(t), t) = 0 (3.11)

The function L is called the Lagrangian, and (3.11) is called the Lagrange-Euler equations.

Corollary 3.3.1 Consider a system with n objects where the relation between general coordinates and real coordi-
nates is given by r(t) = ϕ(q(t), t), where ϕ : Rd × R → R3n. Assume that all the applied forces in the system only
depend on the position vector, and let Φ(q, t) be defined as in (3.4). Let the functions ν, T be defined as in (3.6), (3.7),
respectively. The Lagrangian function is defined in (3.10), and the d Euler-Lagrange equations given in (3.11) must
be satisfied.

Example 3.3.1 Cart on a Slope: Consider a mass m cart on a friction-less slope of a constant angle α.

α

q

The position of the car is fully determined by the distance of the cart from the bottom of the slope, denoted q(t). That is,
ϕ(q) = q (cos(α), 0, sin(α)). The force acting on the cart is (0, 0,−mg), which equals to−∇rF (r) for F (r) = mgz.
Hence, the potential energy is

Φ(q(t), t) = mg sin(α) q(t)

So the Lagrangian becomes

L(q, ξ, t) =
m

2
(ξ)2 −mg sin(α) q

The Euler-Lagrange equation is therefore

d

dt
(mq′(t)) +mg sin(α) = 0

or
q′′(t) = −g sin(α)

That is, the acceleration is multiplied by the sine of the slope. We could arrive to the same equation by decomposing
the gravitation force to a component perpendicular to the slope (which is cancelled out due to the law of action and a
reaction) and a component tangent to the slope (which is −mg sin(α)).

Example 3.3.2 Simple Pendulum: A mass m is attached to a rigid rod of length `, whose upper side is stick to a fixed
position. The position of the mass is therefore fully described by a single generalized coordinate — the angle the rod
makes with the vertical axis.
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θ

The ϕ function is:
ϕ(θ) = (` sin(θ), 0,−` cos(θ))

The velocity vector is
v(t) = v(θ(t)) = (` cos(θ(t)) θ′(t), 0, ` sin(θ(t)) θ′(t))

and the kinetic energy becomes

T =
m`2

2
(θ′(t))2

The force acting on the mass is (0, 0,−mg), which equals to −∇rF (r) for F (r) = mgz. Hence, the potential energy
is

Φ(θ(t), t) = mg · (−` cos(θ(t))) = −mg ` cos(θ(t))

So the Lagrangian becomes

L(q, ξ, t) =
m`2

2
ξ2 +mg` cos(q)

The Euler-Lagrange equation is therefore

d

dt
(m`2 θ′(t))−mg` sin(θ(t)) = 0

or
θ′′(t) =

g

`
sin(θ(t))

3.4 Deriving Euler-Lagrange Equations from Hamilton’s Principle of Least
Action via Variational Calculus

3.4.1 Hamilton’s Principle of Least Action
Let q : R → Rd be some function that describes the value of the generalized coordinates as a function of time. Let
f : R× Rd × Rd → R be some arbitrary function. The action of q w.r.t. f is defined as,

I[q] =

∫ t2

t=t1

f(t, q(t), q′(t))dt

Note that I is a functional: it is a function over a space of functions.

Theorem 3.4.1 The function q that minimizes the action functional I[q] satisfies the Euler-Lagrange equations:

d

dt
∇(d+1):2df(q(t), q′(t), t)−∇1:df(q(t), q′(t), t) = 0

where∇i:jf is the vector of partial derivatives w.r.t. elements i, (i+ 1), ..., j of the input to f .

Note that picking f to be the Lagrangian function, the above yields the Euler-Lagrange equations. That is, among all
possible q functions, the ”real one” is the one that minimizes the action w.r.t. the Lagrangian function.
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3.4.2 Proof of Theorem 3.4.1 by Variational Calculus
Variational Calculus

Variational Calculus deals with necessary conditions on a function to be a minimizer of a functional. In a sense, we
are going to generalize the notion of ”derivative” from functions to functionals, as well as to show that this derivative
vanishes at a minimal point.

Definition 3.4.1 Let H be some set of functions. The Gâteaux Differential of a functional I : H → R at a function
q ∈ H is the (continuous and linear) functional δI(q) s.t.

∀g ∈ H, δI(q)[g] := lim
ε→0

I[q + ε g]− I[q]

ε

To get some intuition on the definition, supposeH is a set of functions from Rk to Rd, and let us approximate this set
by the set of functions Ĥ = {

∑n
i=1 αigi : α ∈ Rn}, where g1, . . . , gn are n functions, each of which from Rk to Rd.

Since every g ∈ Ĥ emerged from α ∈ Rn, we can define Î : Rn → R s.t. Î(α) = I[g(α)], where g(α) =
∑n
i=1 αigi.

The gradient of Î at q ∈ Ĥ is an n-dimensional vector whose i’th element is

lim
ε→0

I[q + ε gi]− I[q]

ε

In other words,

∀i ∈ [n], ∇Î(q)[i] = lim
ε→0

I[q + ε gi]− I[q]

ε

We immediately see the similarity to the Gauteaux differential.

Lemma 3.4.1 Let I : H → R be a functional and assume that it is Gauteaux differentiable at some q. Assume that q
is a local minimum of I . Then, for every h ∈ H we have that δI(q)[h] = 0.

Proof Assume the contrary, that is, assume that q is a local minimum, but there is some h ∈ H s.t. δI(q)[h] 6= 0. That
is, there is some β 6= 0 s.t.

lim
ε→0

I[q + ε g]− I[q]

ε
= β

Suppose first that β < 0. Then, there should be ε < 0 such that∣∣∣∣I[q + ε g]− I[q]

ε
− β

∣∣∣∣ ≤ −β ⇒ β − I[q + ε g]− I[q]

ε
≤ −β ⇒ I[q + ε g]− I[q] ≤ 2 ε β < 0

We got a contradiction to I[q] being a minimum. A similar argument holds for the case β > 0.

Proof of Theorem 3.4.1

We are now ready to prove Theorem 3.4.1. The Gauteaux differential of the action functional is

δI(q)[g] = lim
ε→0

I[q + ε g]− I[q]

ε

= lim
ε→0

∫ t2
t=t1

f(t, q(t) + ε g(t), q′(t) + ε g′(t))dt−
∫ t2
t=t1

f(t, q(t), q′(t))dt

ε

=

∫ t2

t=t1

lim
ε→0

f(t, q(t) + ε g(t), q′(t) + ε g′(t))− f(t, q(t), q′(t))

ε
dt

=

∫ t2

t=t1

[∇1:df(q(t), q′(t), t) · g(t) +∇d:2df(q(t), q′(t), t) · g′(t)] dt
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Since Theorem 3.4.1 assumes that q minimizes the action functional we must have that δI(q)[g] = 0 for every g. In
particular, it equals 0 for every g for which g(t1) = g(t2) = 0 ∈ Rd. Therefore, using integration by parts on the
second term above, we have∫ t2

t=t1

∇d:2df(q(t), q′(t), t) · g′(t)dt

= [∇d:2df(q(t), q′(t), t) · g(t)]
t2
t1
−
∫ t2

t=t1

(
d

dt
∇d:2df(q(t), q′(t), t)

)
· g(t)dt

= −
∫ t2

t=t1

(
d

dt
∇d:2df(q(t), q′(t), t)

)
· g(t)dt

Combining all the above we obtain that

0 = δI(q)[g]

=

∫ t2

t=t1

[
∇1:df(q(t), q′(t), t) · g(t)−

(
d

dt
∇d:2df(q(t), q′(t), t)

)
· g(t)

]
dt

=

∫ t2

t=t1

[
∇1:df(q(t), q′(t), t)− d

dt
∇d:2df(q(t), q′(t), t)

]
· g(t) dt

Since this should hold for every g that satisfies the boundary condition, we need that for every t the vector inside
the parentheses must equal to the zero vector. This yields the Euler-Lagrange equations and concludes the proof of
Theorem 3.4.1.
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Chapter 4

Hamilton’s Mechanics

4.1 Generalized Momentum and Phase Space
Recall that the generalized coordinates of a system at time t is the vector q(t) ∈ Rd such that r(t) = ϕ(q(t), t). We
have defined the Lagrangian function as a function L : Rd × Rd × R → R, where we use the notation L(q, ξ, t) to
denote the inputs of L.

Definition 4.1.1 The generalized momentum is the vector function p : Rd × Rd × R → Rd defined as p(q, z, t) =
∇ξL(q, ξ, t).

The following lemma shows that the generalized momentum is indeed a generalization of the vanilla definition of
momentum.

Lemma 4.1.1 Suppose that ϕ(q, t) = q, that is q(t) = r(t) for every t. Then, p(q(t), q′(t), t) = M v(t).

Proof Since L(q, ξ, t) = T (q, ξ, t) − Φ(q, t), we have that ∇ξL(q, ξ, t) = ∇ξT (q, ξ, t). In our particular case,
T (q, ξ, t) = 1

2ξ
>Mξ hence∇ξT (q, ξ, t) = M ξ. The claim follows by noting that q′(t) = v(t).

In the Hamiltonian formulation of the laws of mechanics, we describe the state of the system with the pair of
variables (q, p). This pair is called the phase space of the system. Our goal is therefore to rewrite the equations of
motion as equations of the functions q(t), p(t). To do so, we will rely on the Fenchel-Legendre Transform, which is
the topic of the next section.

4.2 Fenchel-Legendre Transform
Given a function f : Rd → R, its Fenchel-Legendre conjugate is the function f∗ : Rd → R defined as

f∗(m) = max
x

x>m− f(x)

Obviously, for every x, f∗(m) ≥ x>m− f(x), which yields Fenchel-Young inequality,

x>m ≤ f(x) + f∗(m)

The function f∗ is a convex function (since it is a maximum of affine functions).
If f is differentiable, then the maximizer x in the definition of f∗ must satisfy m − ∇f(x) = 0 or m = ∇f(x).

If the gradient is invertible, this can be rewritten as x = (∇f)−1(m). Plugging this value in the objective in the
definition of f∗(m) yields f∗(m) = (∇f)−1(m)>m− f((∇f)−1(m)).

If f is one dimensional, there is a simple geometrical interpretation to the conjugate function: it maps a slope of a
tangent of f to the point it intersects the y-axis. An illustration is given below.
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f(x)
slope =

m

−f?(m)

4.3 Hamiltonian and Hamilton’s Equations
The Hamiltonian is the Fenchel-Legendre conjugate of the Lagrangian with respect to the variable ξ, that is,

H(q, p, t) = max
ξ
ξ>p− L(q, ξ, t) (4.1)

Denote ξ(q, p, t) = argmaxξ ξ
>p− L(q, ξ, t) and note that

p = ∇ξL(q, ξ(q, p, t), t) (4.2)

or in other words, ξ(q, p, t) is the inverse relation to p = ∇ξL(q, ξ, t). We can therefore rewrite the Hamiltonian as

H(q, p, t) = p>ξ(q, p, t)− L(q, ξ(q, p, t), t) (4.3)

Observe that the Hamiltonian is a function of the phase space of the system. Next, the following theorem shows
an analogue of the Euler-Lagrange equations.

Theorem 4.3.1 (Hamilton’s Equations) The dynamics of the system should satisfy the following equations:

q′(t) = ∇pH(q(t), p(t), t)

p′(t) = −∇qH(q(t), p(t), t)

Proof Using (4.3) we have,

∇pH(q, p, t) = ξ(q, p, t) + p>∇pξ(q, p, t)−∇ξL(q, ξ(q, p, t), t)>∇pξ(q, p, t)

Using (4.2), the second and third terms cancel, which gives ∇pH(q, p, t) = ξ(q, p, t). But since ξ(q, p, t) is the
inverse relation to p = ∇ξL(q, ξ, t), by plugging the arguments q = q(t), p = p(t) = ∇ξL(q(t), q′(t), t), we get that
ξ(q(t), p(t), t) = q′(t), which proves the first equation in the theorem. For the second equation, observe that

∇qH(q, p, t) = p>∇qξ(q, p, t)−∇qL(q, ξ(q, p, t), t)−∇ξL(q, ξ(q, p, t), t)>∇qξ(q, p, t)

Again, using (4.2), the first and third terms cancel, and we get ∇qH(q, p, t) = −∇qL(q, ξ(q, p, t), t), which again
gives ∇qH(q(t), p(t), t) = −∇qL(q(t), q′(t), t). Using Euler-Lagrange equations and the definition of the general-
ized momentum, we have

∇qL(q(t), q′(t), t) =
d

dt
(∇ξL(q(t), q′(t), t)) =

d

dt
p(t) = p′(t)

and therefore
−∇qH(q(t), p(t), t) = p′(t)

which concludes our proof.
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4.4 Conservation Quantities
A quantity is called conserved if it does not depend on the time t. We have seen the laws of conservation of momentum
and energy. We now show a more general way to derive conservation theorems. We start with a law of preservation of
generalized momentum.

Theorem 4.4.1 (Preservation of Generalized Momentum) Assume that L(q(t), q′(t), t) does not depend on its j’th
input (that is, L(q(t), q′(t), t) = L(q(t) + αej , q

′(t), t) for every α). Then, the j’th element of the generalized
momentum, pj(t) = ∇d+jL(q(t), q′(t), t), is conserved.

Proof By the j’th Euler-Lagrange equation

d

dt
∇d+jL(q(t), q′(t), t) = ∇jL(q(t), q′(t), t)

The left-hand side of the above is p′j(t) and the right-hand side of the above is obviously 0.

The above theorem generalizes the law of preservation of momentum. To see this, recall that the momentum is
p(t) = M v(t), where M is the mass matrix as in (3.2). Consider the Lagrangian w.r.t. the original coordinates, that
is, q(t) = r(t). Suppose also that there are no applied forces, hence, L(q(t), q′(t), t) = T (q(t), q′(t), t), and in our
formulation, T (q(t), q′(t), t) = 1

2q
′(t)>Mq′(t) = 1

2v(t)>Mv(t). In this case, the Lagrangian does not depend on
q(t) and t, but only on q′(t). Hence, the momentum is preserved.

A generalized coordinate qj that satisfies the conditions of Theorem 4.4.1 is called a cyclic coordinate. From the
definition of the Hamiltonian, it is easy to see that if qj is a cyclic coordinate then H does not depend on qj . In this
case, the number of Hamilton’s equations is reduced by 1.

Noether’s theorem states that any differentiable symmetry of the action of a physical system has a corresponding
conservation law.
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Appendix A

Appendix

A.1 Derivatives and Their Notation in this Note

A.1.1 Derivative, partial derivative, gradient, and total derivative

For a function f : R→ R, the derivative at point x is denoted

df

dx
(x) := lim

ε→0

f(x+ ε)− f(x)

ε

For a function f : Rd → R, the partial derivative w.r.t. the i’th input at vector x is denoted

∂f

∂xi
(x) := lim

ε→0

f(x+ ε ei)− f(x)

ε

where ei is the all zeros vector except 1 at the i’th coordinate. We also use the gradient notation

∇f(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)

)
and

∇if(x) :=
∂f

∂xi
(x)

It is sometimes convenient to write functions as f(x, y) where x ∈ Rd and y ∈ Rn. That is, f : Rd × Rn → R. In
such cases, we also write

∇yf(x, y) :=

(
∂f

∂y1
(x, y), . . . ,

∂f

∂yn
(x, y)

)
and similarly for∇xf(x, y).

For a function f : Rn → Rm, we can refer to it as m functions, f1, . . . , fm, each one from Rn to R, and calculate
the gradient for each one, which yields a Jacobian matrix ∇f(x) whose i’th row is∇fi(x).

The total derivative of a function f : Rn → Rm at x ∈ Rn is defined as the function dfx : Rn → Rm that satisfies

lim
ε→0

‖f(x+ ε)− (f(x) + dfx(ε))‖
‖ε‖

= 0

Note that in the above, ε is an n-dimensional vector. If a function f : Rn → R has partial derivatives, then it is
possible to show that we can take dfx(ε) = ∇f(x) · ε. That is, the total derivative function is a linear function defined
by the gradient of f .
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A.1.2 Chain Rule
The chain rule has a particularly elegant statement for the total derivative:

d(g ◦ f)a = dgf(a) · dfa

If f : Rn → Rm and g : Rm → R then

∇(g ◦ f)(a) = ∇g(f(a)) · ∇f(a)

A.1.3 Derivative with Direct Dependencies
Suppose that h(x) = f(g(x), y(x)). Then, we can write it as h(x) = f(γ(x)) where γ(x) = (g(x), y(x)). Therefore,

d(f ◦ γ)x0 = dfγ(x0) · dγx0

= dfg(x0),y(x0) · dγx0

= ∇f(g(x0), y(x0)) · ∇γ(x0)

= ∇fy(x0)(g(x0)) · ∇g(x) +∇fg(x0)(y(x0)) · ∇y(x)

where fb(a) = f(a, b) and fa(b) = f(a, b). In particular, in the special case in which g(x) = x and x ∈ R, we obtain
that the derivative is

dh

dx
(x0) = ∇af(x0, y(x0)) +∇bf(x0, y(x0)) · ∇y(x)

Here, ∇af is the partial derivative of f w.r.t. its first argument and ∇bf is the vector of partial derivatives of f w.r.t.
its second argument.
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