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Abstract

Trace-norm regularization is a widely-used and successful approach for collaborative filter-
ing and matrix completion. However, its theoretical understanding is surprisingly weak,
and despite previous attempts, there are no distribution-free, non-trivial learning guaran-
tees currently known. In this paper, we bridge this gap by providing such guarantees, under
mild assumptions which correspond to collaborative filtering as performed in practice. In
fact, we claim that previous difficulties partially stemmed from a mismatch between the
standard learning-theoretic modeling of collaborative filtering, and its practical applica-
tion. Our results also shed some light on the issue of collaborative filtering with bounded
models, which enforce predictions to lie within a certain range. In particular, we provide
experimental and theoretical evidence that such models lead to a modest yet significant
improvement.

1 Introduction

We consider the problem of matrix-based collaborative filtering, where the goal is to predict entries
of an unknown matrix based on a subset of its observed entries. An increasingly popular approach
to achieve this is via trace-norm regularization, where one seeks a matrix which agrees well with
the observed entries, while constraining its complexity in terms of the trace-norm. The trace-
norm is well-known to be a convex surrogate to the matrix rank, and has repeatedly shown good
performance in practice (see for instance Srebro et al. (2004), Salakhutdinov and Mnih (2007), Bach
(2008), Candès and Tao (2009)).

However, in terms of distribution-free guarantees, the current learning-theoretic understanding
of trace-norm regularization is surprisingly weak. Most non-trivial guarantees currently known (e.g.,
Srebro and Shraibman (2005), Candès and Tao (2009), Candès and Recht (2009)) assume that the
observed entries are sampled uniformly at random. In collaborative filtering, this is an extremely
unrealistic assumption. For example, in the Netflix challenge dataset, where the matrix contains the
ratings of users (rows) for movies (columns), the number and distribution of ratings differ drastically
between users. Modeling such data as a uniform sample is not a reasonable assumption. Recently,
Negahban and Wainwright (2010) studied the problem of matrix completion under a non-uniform
distribution. However, the analysis is still not distribution-free, and requires strong assumptions on
the underlying matrix. Moreover, the results do not apply to standard trace-norm regularization,
but rather to a carefully re-weighted version of trace-norm regularization.

In practice, we know that standard trace-norm regularization works well even for data which
is very non-uniform. Moreover, we know that in other learning problems, one is able to derive
distribution-free guarantees, and there is no a-priori reason why this should not be possible here.
Nevertheless, obtaining a non-trivial guarantee for trace-norm regularization has remained elusive.
As a result, some works suggested to use other complexity measures for collaborative filtering, such
as the max-norm (Srebro et al. (2004), Lee et al. (2010)) and weighted trace-norm (Salakhutdinov
and Srebro (2010)).

In this paper, we bridge this gap between our theoretical understanding and practical performance
of trace-norm regularization. We show that by adding very mild assumptions, which correspond to
collaborative filtering as performed in practice, it is possible to obtain non-trivial, distribution-free
guarantees on learning with the trace norm. In fact, we claim that the difficulties in providing



such guarantees partially stemmed from a mismatch between the standard theoretical modeling of
collaborative filtering, and its practical application.

First, we show that one can obtain such guarantees, if one takes into account that the values to be
predicted are usually bounded in practice. For example, in predicting movie ratings, it is known in
advance that the ratings are on a scale of (say) 1 to 5, and practitioners usually clip their predictions
to be inside this range. While this seems like an almost trivial operation, we show that taking it
into account has far-reaching implications in terms of the theoretical guarantees. The proof relies
on a decomposition technique which might also be useful for regularizers other than the trace-norm.

Second, we argue that the standard inductive model of learning, where the training data is as-
sumed to be sampled i.i.d. from some distribution, may not be the best way to analyze collaborative
filtering. Instead, we look at the transductive model, where sampling of the data is done without
replacement. In the context of collaborative filtering, we show this makes a large difference in terms
of the attainable guarantees.

Our results show that a transductive model, and boundedness assumptions, play an important
role in obtaining distribution-free guarantees. This relates to a line of recent works, which suggest to
incorporate prior knowledge on the range of predicted values into the learning process, by explicitly
bounding the predictions. We provide an empirical study, which indicates that this indeed provides
a modest, yet significant, improvement in performance, and corroborates our theoretical findings.

2 Setting

Our goal is to predict entries of an unknown m×n matrix X, based on a random subset of observed
entries of X. A common way to achieve this, following standard learning approaches, is to find an
m×n matrix W from a constrained class of matricesW, which minimizes the discrepancy from X on
the observed entries. More precisely, if we let S = {iα, jα} denote the set of (row,column) observed
entries, and ` is a loss function measuring the discrepancy between the predicted and actual value,
then we solve the optimization problem

min
W∈W

1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα), (1)

An important and widely used class of matrices W are those with bounded trace-norm. Given a
matrix W , its trace-norm ‖W‖tr is defined as the sum of the singular values. The class of matrices
with bounded trace-norm has several useful properties, such as it being a convex approximation
of the class of rank-bounded matrices (see e.g. Srebro and Shraibman (2005)). The trace-norm of
m × n matrices with bounded entries is typically on the order of

√
mn, and thus we will focus on

classes with trace norm bounded by t = Θ(
√
mn).

For now, we will consider the inductive model of learning, which parallels the standard agnostic-
PAC learnability framework. The model is defined as follows: We assume there exists an unknown
distribution D over {1, . . . ,m} × {1, . . . , n}. Each instantiation (i, j) provides the value Xi,j of an
entry at a randomly picked row i and column j. An i.i.d. sample S = {iα, jα} of indices is chosen,
and the corresponding entries {Xiα,jα} are revealed. Our goal is to find a matrix W ∈ W such
that its risk (or generalization error), E(i,j)∼D [`(Wi,j , Xi,j)], is as close as possible to the smallest
possible risk over all W ∈ W. It is well-known that this can be achieved by solving the optimization
problem in Eq. (1), if we can provide a non-trivial uniform sample complexity bound, namely a
bound on

sup
W∈W

Ei,j [`(Wi,j , Xi,j)]−
1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα)

 . (2)

A major focus of this paper is studying the difficulties and possibilities of obtaining such bounds.

3 Sample Complexity Bounds for the Trace-Norm

Consider the class of trace-norm constrained matrices, W = {W : ‖W‖tr ≤ t}, where we assume
t = Θ(

√
mn). Although learning with respect to this class is widely used in collaborative filtering,

understanding its generalization and sample-complexity properties has proven quite elusive. In
Srebro and Shraibman (2005), sample complexity bounds of the form O(

√
(m+ n)/|S|) (ignoring

logarithmic factors) were obtained under the strong assumption of a uniform distribution over the
matrix entries. However, this assumption does not correspond to real-world collaborative filtering
datasets, where the distribution of the revealed entries appears to be highly non-uniform. Other
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works, which focused on exact matrix completion, such as Candès and Tao (2009), Candès and Recht
(2009), also assume a uniform sampling distribution.

While the bounds in Srebro and Shraibman (2005) can be adapted to a non-uniform distribution,

they lead to bounds which are no better than O((m + n)/
√
|S|). This implies a required sample

size comparable or larger than the total number of entries in the matrix. It is a trivial bound, since
the entire goal of collaborative filtering is prediction based on observing just a small subset of the
matrix entries.

The analysis mentioned above used Rademacher complexity to quantify the richness of the hy-
pothesis class W, and will be utilized in our analysis as well. Formally, we define the Rademacher
complexity of a hypothesis class W combined with a loss function `, with respect to a sample S, as

RS(` ◦W) = Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σα`(Wiα,jα , Xiα,jα)

 , (3)

where σ1, . . . , σ|S| are i.i.d. random variables taking the values −1 and +1 with equal probability.
Rademacher complexities play a key role in obtaining sample complexity bounds, either in expec-

tation or in high probability. The following is a typical example (based on (Boucheron and Lugosi,
2005, Theorem 3.2)):

Theorem 1 The expected value of Eq. (2) is at most 2RS(`◦W). Moreover, if there is a constant b`
such that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`, then for any δ ∈ (0, 1), Eq. (2) is bounded with probability

at least 1− δ by 2RS(` ◦W) + b`
√

2 log(2/δ)/|S|.

Thus, to get non-trivial learning guarantees, one can focus on effectively bounding the Rademacher
complexity RS(` ◦W).

Unfortunately, for the class W = {W : ‖W‖tr ≤ t} and general distributions and losses, the
analysis of RS(` ◦W) performed in Srebro and Shraibman (2005) appears to be tight, yet still leads
to vacuous results. The main drive of our paper is that by modifying the setting in some very simple
ways, which often correspond to collaborative filtering as done in practice, one can obtain non-trivial
learning guarantees.

4 Results for the Inductive Model

In this section, we show that by introducing boundedness conditions into the learning problem, one
can obtain non-trivial bounds on the Rademacher complexity, and hence on the sample complexity
of learning with trace-norm constraints.

We will start with the case where we actually learn with respect to the hypothesis class of trace-
norm-constrained matrices, W = {W : ‖W‖tr ≤ t}, and the only boundedness is in terms of the loss
function:

Theorem 2 Consider the hypothesis class W = {W : ‖W‖tr ≤ t}. Suppose that for all i, j
the loss function `(·, Xi,j) is both b`-bounded and l`-Lipschitz in its first argument: Namely, that

`(Wi,j , Xi,j)| ≤ b` for any W, i, j, and that
|`(Wi,j ,Xi,j)−`(W ′

i,j ,Xi,j)|
|Wi,j−W ′

i,j |
≤ l` for any W,W ′, i, j. Then

RS(` ◦W) ≤

√
9Cl`b`

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Thm. 7.

Assuming t = Θ(
√
mn), the theorem implies that a sample of size O(n

√
m+m

√
n) is sufficient to

obtain good generalization performance. We note that the boundedness assumption is non-trivial,
since the trace-norm constraint does not imply entries of constant magnitude (the entries can be
as large as t for a matrix whose trace norm is t). On the other hand, as discussed earlier, the
obtainable bound on the Rademacher complexity without a boundedness assumption is no better
than O((m+ n)/

√
|S|), which leads to a trivial required sample size of O((m+ n)2). Moreover, we

emphasize that the result makes no assumptions on the underlying distribution from which the data
was sampled. The proof is presented in Subsection 7.1. We note that it relies on a decomposition
technique which might also be useful for regularizers other than the trace-norm.

An alternative way to introduce boundedness, and get a non-trivial guarantee, is by composing
the entries of a matrix W with a bounded transfer function. In particular, rather than just learning a
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matrix W with bounded trace-norm, we can learn a model φ◦W , where W has bounded trace-norm,
and φ : R 7→ I is a fixed mapping of each entry of W into some bounded interval I ⊆ R. This model
is used in practice, and is useful in the common situation where the entries of X are known to be
in a certain bounded interval. In Sec. 6, we return to this model in greater depth. In terms of the
theoretical guarantee, one can provide a result substantially similar to Thm. 2, without assuming
boundedness of the loss function. The proof is provided in the appendix - it uses similar techniques
to the one of Thm. 2, but applies them somewhat differently.

Theorem 3 Consider the hypothesis class W = {φ ◦W : ‖W‖tr ≤ t}. Let φ : R 7→ [−bφ, bφ] be a
bounded lφ-Lipschitz function, and suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on the domain
[−bφ, bφ]. Then

RS(` ◦W) ≤ l`

√
9Clφbφ

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Thm. 7.

The bound in this theorem scales similar to Thm. 2, in terms of its dependence on m,n. Another
possible variant is directly learning a matrix W with both a constraint on the trace-norm, as well
as an ∞-norm constraint (i.e. maxi,j |Wi,j |) which forces the matrix entries to be constant. This
model has some potential benefits which shall be further discussed in Sec. 8.

Theorem 4 Consider the hypothesis class W = {W : ‖W‖tr ≤ t, ‖W‖∞ ≤ b}, where ‖W‖∞ =
maxi,j |Wi,j |. Suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on the domain [−b, b]. Then

RS(` ◦W) ≤ l`

√
9Cb

t(
√
n+
√
m)

|S|
,

where C is the universal constant appearing in Thm. 7.

Assuming b is a constant (which is the reasonable assumption here), we get a similar bound as
before.

So, we see that by inserting mild boundedness assumptions on the loss function or the matrix
entries, it is possible to derive non-trivial guarantees for learning with trace norm constraints. These
were all obtained under the standard inductive model, where we assume that our data is an i.i.d.
sample from an underlying distribution. In the next section, we will discuss a different learning
model, which we argue to more closely resemble collaborative filtering as done in practice, and leads
to better bounds on the Rademacher complexity, without making boundedness assumptions.

5 Improved Results for the Transductive Model

In the inductive model we have considered so far, the goal is to predict well with respect to an
unknown distribution over matrix entries, given an i.i.d. sample from that distribution. The trans-
ductive learning model (see for instance Vapnik (1998)) is different, in that our goal is to predict well
with respect to a specific subset of entries, whose location is known in advance. More formally, we fix
an arbitrary subset of S entries, and then split it uniformly at random into two subsets Strain∪Stest.
We are then given the values of the entries in Strain, and our goal is to predict the values of the
entries in Stest. For simplicity, we will assume that |Strain| = |Stest| = |S|/2, but our results can be
easily generalized to more general partitions.

We note that this procedure is exactly the one often performed in experiments reported in the
literature: Given a dataset of entries, one randomly splits it into a training set and a test set,
learns a matrix on the training set, and measures its performance on the test set (e.g., Toh and
Yun (2009), Jaggi and Sulovský (2010)). Even for other train-test split methods, such as holding
out a certain portion of entries from each row, the transductive model seems closer to reality than
the inductive model. Moreover, the transductive model captures another important feature of real-
world collaborative filtering: the fact that no entry is repeated in the training set. In contrast, in
the inductive model the training set is collected i.i.d., so the same entry might be sampled several
time over. In fact, this is virtually certain to happen whenever the sample size is at least on the
order of

√
mn, due to the birthday paradox. This does not appear to be a mere technicality, since

the proofs of our theorems in the inductive model have to rely on a careful separation of the entries
according to the number of times they were sampled. However, in reality each entry appears in the
dataset only once, matching the transductive learning setting.
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To analyze the transductive model, we require analogues of the tools we have for the inductive
model, such as the Rademacher complexity. Fortunately, such analogues were already obtained in
El-Yaniv and Pechyoni (2009), and we will rely on their results. In particular, based on Theorem
1 in that paper, we can use our notion of Rademacher complexity, as defined in Eq. (3), to provide
sample complexity bounds in the transductive model1:

Theorem 5 Fix a hypothesis class W, and suppose that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`. Let a set S
of ≥ 2 distinct indices be fixed, and suppose it is uniformly and randomly split to two equal subsets
Strain, Stest. Then with probability at least 1− δ over the random split, it holds for any W ∈ W that∑

(i,j)∈Stest `(Wi,j , Xi,j)

|Stest|
−
∑

(i,j)∈Strain `(Wi,j , Xi,j)

|Strain|

≤ 4RS(` ◦W) +
b`

(
11 + 4

√
log(1/δ)

)
√
|Strain|

.

We now present our main result for the transductive model, which implies non-trivial bounds on
the Rademacher complexity of matrices with constrained trace-norm. Unlike the inductive model,
here we make no additional boundedness assumptions, yet the bound is superior. The proof appears
in Subsection 7.2.

Theorem 6 Consider the hypothesis class W = {W : ‖W‖tr ≤ t}. Then in the transductive model,
if we let Ni = maxi |{j : (i, j) ∈ S}| and Nj = maxj |{i : (i, j) ∈ S}|, then

RS(` ◦W) ≤ Cl`
3t (
√
m+

√
n)

2|S|
,

where C is the universal constant appearing in Thm. 7. Alternatively, we also have

RS(` ◦W) ≤ Cl`
t max

{
maxi

√
Ni,maxj

√
Nj
}

|S|
4
√

log(min{m,n}),

where C is the universal constant appearing in Thm. 8.

We note that the second bound, while containing an additional logarithmic term, depends on
the distribution of the entries, and can be considerably tighter than the worst-case. To see this,
suppose as usual that t = Θ(

√
mn), and (for simplicity) m = n. Then in the worst-case, the bound

becomes meaningful when |S| = Ω(n3/2). However, if the entries in S are (approximately) uniformly
distributed throughout the matrix, then the maximal number of entries in each row and column is
O(|S|/n). In that case, we obtain the bound

RS(` ◦W) ≤ Õ
(√

n

|S|

)
(ignoring logarithmic factors), which is already meaningful when |S| = Ω̃(n). Interestingly, this
bound is similar (up to logarithmic factors) to previous bounds in the inductive setting, such as
in Srebro and Shraibman (2005), which relied on a uniform distribution assumption. However, our
Rademacher complexity bound in Thm. 6 also applies to non-uniform distributions, and is meaningful
for any distribution.

Compared to the results in Sec. 4, the result here is also superior in that the Rademacher
complexity does not depend on the loss magnitude bound b`. Although this factor does appear in a
different term in the overall sample complexity bound (Thm. 5), we do not know if this dependence
is essential. Indeed, in the inductive setting, such terms appear only in high-probability bounds,
and even then it is possible to prove oracle inequalities which depend merely on

√
b`/|S| rather

than b`/
√
|S| (see for instance (Srebro et al., 2010, Theorem 1)). If such bounds can be proven

in the transductive case as well, it will lead to non-trivial sample complexity results without any
boundedness assumptions whatsoever2.

1In El-Yaniv and Pechyoni (2009), a more general notion of transductive Rademacher complexity was
defined, where the σα random variables could also take 0 values. However, when |Strain| = |Stest|, that
complexity can always be upper bounded by the standard definition of Rademacher complexity - see Lemma
1 in their paper.

2To see why, suppose that the trace norm t = Θ(
√
mn), and the loss function is Lipschitz. Then

b` = Θ(
√
mn) as well, so a

√
b`/|S| term will be on the order of

√√
mn/|S|.
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Another interesting feature of Thm. 6 is that the Rademacher complexity falls off at the rate
of O(1/|S|) rather than O(1/

√
|S|). While such a “fast rate” is unusual in the inductive setting,

here it is a natural outcome of the different modeling of the training data. This does not lead to a
O(1/|S|) sample complexity bound, because the bound in Thm. 5 contains an additional low rate

term O(1/
√
|S|). However, it still leads to a better bound because the low rate term is not explicitly

multiplied by functions of m,n or t.

6 Should We Enforce Boundedness?

As mentioned previously, we often know the range of entries to be predicted (e.g. 1 to 5 for movie
rating prediction). The results of Sec. 4 suggest that in the inductive model, some sort of bounded-
ness seems essential to get non-trivial results. In the transductive model, boundedness also plays a
somewhat smaller role, by appearing in the final sample-complexity bound (Thm. 5), although not in
the Rademacher complexity bound (Thm. 6). These results suggest the natural idea of incorporating
into the learning algorithm the prior knowledge we have on the range of entries. Indeed, several
recent papers have considered the possibility of directly learning a model φ ◦W , where φ is usually
a sigmoid function (Salakhutdinov and Mnih (2007), Ma et al. (2008), Piotte and Chabbert (2009),
Kozma et al. (2009)). Another common practice (not just with trace-norm regularization) is to clip
the learned matrix entries to the known range. Since our theoretical results are just upper bounds,
the effect of boundedness is not sufficiently clear. Thus, it is of interest to understand how clipping
or enforcing boundedness in the learning model helps in practice. We note that while bounded
models have been tested experimentally, we could not find in the literature a clear empirical study
of their effect, in the context of trace-norm regularization.

We conducted experiments on two standard collaborative filtering datasets, movielens100K and
movielens1M3. movielens100K contains 105 ratings of 943 users for 1770 movies, while movielens1M
contains 106 ratings of 6040 users for 3706 movies. All ratings are in the range [1, 5]. For each
dataset, we performed a random 80%− 20% of the data to obtain a training set and a test set. We
considered two hypothesis classes: trace-norm constrained matrices {W : ‖W‖tr ≤ t}, and bounded
trace-norm constrained matrices {φ ◦W : ‖W‖tr ≤ t}, where φ is a sigmoid function interpolating
between 1 and 5. For each hypothesis class, we trained a trace-norm regularized algorithm using
the squared loss. Specifically, we used the common approach of stochastic gradient descent on a
factorized representation W = U>V . This approach is based on the well-known fact, that the trace
norm can also be defined as ‖W‖tr = minW=U>V

1
2

(
‖U‖2F + ‖V ‖2F

)
. Thus, finding the best W by

optimizing a soft trace-norm regularized problem,
∑

(i,j)∈S (Xi,j −Wi,j)
2

+λ‖W‖tr, can be reduced

to finding U, V which minimize∑
(i,j)∈S

(
Xi,j − U>i Vj

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
. (4)

Similarly, for learning bounded models, we can find U, V which minimize∑
(i,j)∈S

(
Xi,j − φ(U>i Vj)

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
. (5)

We note that both problems are non-convex, although for the formulation in Eq. (4), it is possibly
to show there are any local minimum is also a global one.

Tuning of λ was performed with a validation set. Note that in practice, for computational reasons,
one often constrains U and V to have a bounded number of rows. However, this forces W to have low
rank, which is an additional complexity control. Since our goal is to study the performance of trace-
norm constrained matrices, and not matrices which are also low-rank, we did not constrain U, V in
this manner. The downside of this is that we were unable to perform experiments on very large-scale
datasets, such as Netflix, and that is why we focused on the more modest-sized movielens100K and
movielens1M datasets.

To estimate the performance of the learned matrix W on the test set, we used two measures which

are standard in the literature: the root-mean-squared-error (RMSE),
√∑

(i,j)∈Stest
(Wi,j−Xi,j)2
|Stest| , and

the normalized-mean-absolute-error (NMAE),
∑
i,j∈Stest

|Wi,j−Xi,j |
r|Stest| , where r is the range of possible

values in X (5− 1 = 4 for our datasets).

3www.grouplens.org/node/73
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100K (NMAE) 100K (RMSE) 1M (NMAE) 1M (RMSE)

unclipped 0.1882± 0.0005 0.9543± 0.0019 0.1709± 0.0003 0.8670± 0.0016
clipped 0.1874± 0.0005 0.9486± 0.0018 0.1706± 0.0002 0.8666± 0.0016

bounded 0.1871± 0.0004 0.9434± 0.0023 0.1698± 0.0002 0.8618± 0.0017

∆ Clipping (∗10−3) 0.77± 0.07 5.7± 0.6 0.33± 0.01 0.48± 0.04
∆ Bounding (∗10−3) 0.3± 0.4 5.2± 1.5 0.79± 0.02 4.8± 0.1

Table 1: Error on test set (mean and standard deviation over 5 repeats of the experiment). The
columns refer to the dataset (movielens100K or movielens1M) and the performance measure used
(NMAE or RMSE). The first two rows refer to the results using the ‘unbounded’ model as in Eq. (4),
with the output used as-is or clipped to the range [1− 5]. The third row refers to the results using
the ‘bounded’ model as in Eq. (5). The fourth row is the improvement in test error by clipping the
predictions after learning (i.e. the difference between the first and second row). The fifth row is the
additional improvement achieved by using a bounded model (i.e., the difference between the second
and third row).

The experiments were repeated 5 times over random train-test splits of the data, and the re-
sults are summarized in Table 1. From the table, we see that in almost all cases, clipping and
bounding lead to a statistically significant improvement. However, note that in absolute terms, the
improvement is rather modest, especially with the NMAE measure which is less sensitive to large
mispredictions. This accords with our theoretical results: boundedness seems to be an important
and useful property, but in the transductive model (corresponding to our experiments) it plays only
a modest role.

Empirically, one would have expected the use of bounded models to help a lot (in absolute
terms), if learning just trace-norm constrained matrices (without clipping/bounding) leads to many
predictions being outside the interval [1, 5], in which we know the ratings lie. But indeed, this does
not seem to be the case. Table 2 shows the prediction with largest magnitude, over all entries in the
test set, as well as the percentage of predictions which fall outside the [1, 5] interval. It is clearly
evident that such out-of-interval predictions are relatively rare, and this explains why the bounding
and clipping only leads to modest improvements.

100K 1M

largest value 5.95± 0.35 6.13± 0.16
% outside interval 0.69± 0.05 0.79± 0.01

Table 2: Out-of-Interval Values

We emphasize that our results should only be interpreted in the context of pure trace-norm
regularization. There are many other approaches to collaborative filtering, and it is quite possible
that using bounded models has more or less impact in the context of other approaches or for other
application domains.

7 Proofs

Our proofs utilize the following two theorems, which bounds the expected spectral norm of random
matrices.

Theorem 7 (Lata la (2005)) Let Z be a matrix composed of independent zero-mean entries. Then
for some fixed constant C, E[‖Z‖sp] is at most

C

max
i

√∑
j

E[Z2
i,j ] + max

j

√∑
i

E[Z2
i,j ] + 4

√∑
i,j

E[Z4
i,j ]

 .

Theorem 8 (Seginer (2000)) Let A be an arbitrary m × n matrix, such that m,n > 1. Let Z
denote a matrix composed of independent zero-mean entries, such that Zi,j = Ai,j with probability
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1/2 and Zi,j = −Ai,j with probability 1/2. Then for some fixed constant C, E[‖A‖sp] is at most

C 4
√

log(min{m,n}) max

max
i

√∑
j

A2
i,j ,max

j

√∑
i

A2
i,j


7.1 Proof of Thm. 2

We write RS(` ◦W) as
1

|S|
Eσ[ sup

W∈W

∑
i,j

Σi,j`(Wi,j , Xi,j)],

where Σ is a matrix whose (i, j)-th entry is defined as
∑
α:iα=i,jα=j σα. A standard Rademacher

analysis will usually proceed to reduce this to 1
|S|Eσ

[
supW∈W

∑
i,j Σi,jWi,j

]
. However, this will

lead to a trivial bound. Instead, we will do something more refined. Given i, j, let hi,j be the
number of times the sample S hits entry i, j, or more precisely hi,j = |{α : iα = i, jα = j}|. Let
p > 0 be an arbitrary parameter to be specified later, and define

Yi,j =

{
Σi,j hi,j > p

0 hi,j ≤ p
Zi,j =

{
0 hi,j > p

Σi,j hi,j ≤ p.
(6)

Clearly, we have Σ = Y + Z. Thus, we can upper bound the Rademacher complexity by

1

|S|
Eσ

 sup
W∈W

∑
i,j

Yi,j`(Wi,j , Xi,j)

 +
1

|S|
Eσ

 sup
W∈W

∑
i,j

Zi,j`(Wi,j , Xi,j)

 . (7)

Since |`(Wi,j , Xi,j)| ≤ b`, the first term can be upper bounded by

1

|S|
Eσ

b`∑
i,j

|Yi,j |

 =
b`
|S|

Eσ[‖Y ‖1]. (8)

Using the Rademacher contraction principle4, the second term in Eq. (7) can be upper bounded by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 .
Applying Hölder’s inequality, and using the fact that the spectral norm ‖ · ‖sp is the dual to the
trace norm ‖ · ‖tr, we can upper bound the above by

l`
|S|

Eσ sup
W∈W

[‖Z‖sp‖W‖tr] =
l`t

|S|
Eσ [‖Z‖sp] . (9)

Combining this with Eq. (8) and substituting into Eq. (7), we get an upper bound of the form

b`
|S|

Eσ [‖Y ‖1] +
l`t

|S|
Eσ [‖Z‖sp] .

Using Lemma 9 and Lemma 10, which are given below, we can upper bound this by

b`√
p

+
2.2Cl`t

√
p(
√
m+

√
n)

|S|
,

where p is the parameter used to define Y and Z in Eq. (6). Choosing p = |S|b`
2.2Cl`t(

√
m+
√
n)

, we get

the bound in the theorem.

Lemma 9 Let Y be a random matrix defined as in Eq. (6). Then

E[‖Y ‖1] ≤ E

 ∑
i,j:hi,j>p

√
hi,j

 ≤ |S|√
p

4Strictly speaking, we use a slight generalization of it, where the loss function is allowed to differ w.r.t.
every Wi,j - see (Meir and Zhang, 2003, Lemma 5)
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Proof: E[‖Y ‖1] equals

E

 ∑
i,j:hi,j>p

|Σi,j |

 = E

E
 ∑
i,j:hi,j>p

∣∣∣∣∣∣
∑

α:(iα,jα)=(i,j)

σα

∣∣∣∣∣∣
 ∣∣∣{hi,j}


The expression inside the absolute value is the sum of hi,j i.i.d. random variables, and it is easily

seen that its expected absolute value is at most
√
hi,j . Therefore, we can upper bound the above

by E[
∑
i,j:hi,j>p

√
hi,j ]. We can further upper bound it, in a manner which does not depend on the

values of hi,j , by

max
c∈{1,...,mn}

max
h1,...,hc∈R:∀i hi>p,

∑c
i=1 hi=|S|

c∑
i=1

√
hi.

Note that the constraints imply that

|S| =
c∑
i=1

hi ≥
√
p

c∑
i=1

√
hi,

so
∑c
i=1

√
hi can be at most |S|/√p as required.

Lemma 10 Let Z be a random matrix defined as in Eq. (6). Then Eσ[‖Z‖sp] is at most

C

max
i

√ ∑
j:hi,j≤p

hi,j + max
j

√ ∑
i:hi,j≤p

hi,j + 4

√
3
∑

i,j:hi,j≤p

h2
i,j

 ,

where C is the universal constant which appears in the main theorem of Lata la (2005). Moreover,
this quantity can be upper bounded by 2.2C

√
p (
√
m+

√
n)

Proof: With hi,j held fixed, Z is a random matrix composed of independent entries. By using
Thm. 7, we only need to analyze E[Z2

i,j ] and E[Z4
i,j ]. For any i, j, if hi,j ≤ p then Zi,j is a sum of hi,j

i.i.d. variables taking values in {−1,+1}. Therefore, E[Z2
i,j ] = hi,j and E[Z4

i,j ] ≤ 3h2
i,j . Plugging

into Thm. 7 yields the first part of the lemma. To get the second part, we can upper bound the
right-hand side of the first part by

C
√
p
(√

m+
√
n+

4
√

3mn
)
≤ C

√
p
(√

m+
√
n+ 4

√
3/2(
√
m+

√
n)
)
≤ 2.2C

√
p
(√
m+

√
n
)
.

7.2 Proof of Thm. 6

We write RS(` ◦W) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Σi,j`(Wi,j , Xi,j)

 ,
where Σ is a matrix with σi,j in its (i,j)-th entry, if (i, j) ∈ S, and 0 otherwise. By the Rademacher
contraction property5, we can upper bound this by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Σi,jWi,j

 .
By Hölder’s inequality, this is at most

l`
|S|

Eσ

[
sup
W∈W

‖Σ‖sp‖W‖tr
]

=
l`t

|S|
Eσ [‖Σ‖sp] . (10)

The setting so far is rather similar to the one we had in the inductive setting (see the proof of any
of the theorems in Sec. 4). But now, we need to bound just the expected spectral norm of Σ, which

5As in the inductive case, we use in fact a slight generalization where the loss function is allowed to differ
w.r.t. every Wi,j , as in (Meir and Zhang, 2003, Lemma 5).
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is guaranteed to have only a single Rademacher variable in each entry. By applying Thm. 7 on
Eq. (10), we get

RS(` ◦W) ≤ Cl`
t
(√

Ni +
√
Nj + 4

√
|S|
)

|S|
.

Since S can contain at most m and n indices for any single row and column respectively, and
4
√
|S| ≤ 4

√
mn ≤ 1

2 (
√
m+

√
n), we can upper bound the above by 3Cl`t (

√
m+

√
n) /(2|S|).

To get the other bound in the theorem, we apply Thm. 8 instead of Thm. 8 on Eq. (10).

8 Discussion

In this paper, we analyzed the sample complexity of collaborative filtering with trace-norm regu-
larization, obtaining the first non-trivial, distribution-free guarantees. Our results were based on
either mild boundedness assumptions, or a switch from the standard inductive learning model to the
transductive learning model. Moreover, we argue that such a transductive model may be a better
way to model collaborative filtering as performed in practice, as it seems more natural and leads
to a substantial difference in terms of obtainable results. Finally, we discussed the issue of learning
with bounded models, and provided an empirical study which indicates that these lead to a modest
yet significant improvement in performance, corroborating our theoretical findings.

On the theoretical side, one obvious open question is the tightness of our bounds. In a nutshell,
if we assume that we learn n×n matrices with a Θ(n) trace-norm, then our bounds imply a required
sample complexity of O(n3/2). On the other hand, Salakhutdinov and Srebro (2010) presented an
example requiring a sample complexity of at least Ω(n4/3), which applies to all the settings we have
discussed earlier. Currently, we do not know how to bridge this gap. Another issue is understanding
the implications of our analysis to other types of matrix regularization, such as weighted trace-norm
(Salakhutdinov and Srebro (2010)).

As to the use of bounded models, we note that although they seem beneficial in our experiments,
they can also lead to non-convex optimization problems. While this did not seem to hurt performance
in our experiments, it might be more harmful in other datasets of applications. One possible way
to enforce boundeded predictions while maintaining convexity is using ∞-norm constraints, as in
Thm. 4. Minimizing the average loss with respect to such constraints is a convex optimization
problem, and can be done with a generic SDP solver. However, a generic solver won’t scale to large
datasets. Thus, designing an efficient convex optimization algorithm, which combines trace-norm
and ∞-norm constraints, is a potentially useful, yet non-trivial challenge.
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A Proof of Thm. 3

We can rewrite the definition of RS(` ◦W) (see Eq. (3)) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Σi,j`(Wi,j , Xi,j)

 ,
where Σ is a matrix defined as Σi,j =

∑
α:iα=i,jα=j σα. Using the Rademacher contraction principle

(as in (Meir and Zhang, 2003, Lemma 5)), this is at most

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Σi,jWi,j

 . (11)

Decomposing Σ = Y + Z as in Eq. (6) according to a parameter p, we can upper bound the
Rademacher complexity by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Yi,jWi,j

+
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 . (12)

By definition of W, |Wi,j | ≤ bφ, so the first term can be upper bounded by

l`
|S|

Eσ

bφ∑
i,j

|Yi,j |

 =
l`bφ
|S|

Eσ[‖Y ‖1]. (13)

The second term in Eq. (12) equals

l`
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jφ(Wi,j)

 ≤ l`lφ
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jWi,j

 ,
again by the Rademacher contraction principle. Applying Hölder’s inequality, and using the fact
that the spectral norm ‖ · ‖sp is the dual to the trace norm ‖ · ‖tr, we can upper bound the above by

l`lφ
|S|

Eσ

[
sup

W :‖W‖tr≤t
‖Z‖sp‖W‖tr

]
=
l`lφt

|S|
Eσ [‖Z‖sp] .

Combining this with Eq. (13) and substituting into Eq. (12), we get an upper bound of the form

l`bφ
|S|

Eσ [‖Y ‖1] +
l`lφt

|S|
Eσ [‖Z‖sp] .

11
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Using Lemma 9 and Lemma 10, we can upper bound this by

l`bφ√
p

+
2.2Cl`lφt

√
p(
√
m+

√
n)

|S|
,

where p is the parameter used to define Y and Z in Eq. (6). Choosing p =
|S|bφ

2.2Clφt(
√
m+
√
n)

, we get

the bound in the theorem.

B Proof of Thm. 4

Before we begin, we will need the following technical result:

Lemma 11 The dual of the norm ‖W‖ = max{‖W‖tr/t, ‖W‖∞/b} equals

‖Σ‖∗ = min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp,

Proof: By definition of a dual norm, we have

‖Σ‖∗ = sup
W :‖W‖≤1

〈Σ,W 〉,

and our goal is to show that

sup
W :‖W‖≤1

〈Σ,W 〉 = min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp.

First, we note that the dual norm of ‖W‖tr is well-known to be the spectral norm ‖W‖sp (namely,
its largest singular value), and the dual of ‖W‖∞ is the 1-norm ‖W‖1 =

∑
i,j |Wi,j |. Now, for any

Y,Z such that Y + Z = Σ, we have by Hölder’s inequality that

sup
W :‖W‖≤1

〈Σ,W 〉 = sup
W :‖W‖≤1

〈Y,W 〉+〈Z,W 〉 ≤ sup
W :‖W‖≤1

‖Y ‖1‖W‖∞+‖Z‖sp‖W‖tr ≤ b‖Y ‖1+t‖Z‖sp.

This holds for any Y,Z, and in particular

sup
W :‖W‖≤1

〈Σ,W 〉 ≤ min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp. (14)

It remains to show the opposite direction, namely

sup
W :‖W‖≤1

〈Σ,W 〉 ≥ min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp.

To show this, let W ∗ be the matrix which maximizes the inner product above. We know that
‖W ∗‖ ≤ 1, which means that either ‖W ∗‖∞ ≤ b, or ‖W ∗‖tr ≤ t. If ‖W ∗‖∞ ≤ b, it follows that

sup
W :‖W‖≤1

〈Σ,W 〉 = sup
W :‖W‖∞≤b

〈Σ,W 〉 = b‖Σ‖1 ≥ min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp.

In the other case, if ‖W ∗‖tr ≤ t, it follows that

sup
W :‖W‖≤1

〈Σ,W 〉 = sup
W :‖W‖tr≤t

〈Σ,W 〉 = t‖Σ‖sp ≥ min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp.

So in either case,
sup

W :‖W‖≤1

〈Σ,W 〉 ≥ min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp.

Combining this with Eq. (14), the result follows.

We now turn to the proof of Thm. 4 itself. Since `(Wi,j , Xi,j) is assumed to be l`-Lipschitz, we
can use the Rademacher contraction principle to upper bound RS(` ◦W) by

l`Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σαWiα,jα

 =
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Σi,jWi,j

 ,
where Σ is a matrix defined as Σi,j =

∑
α:iα=i,jα=j σα.
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Thinking of Σ,W as vectors, the equation above is the expected supremum of an inner product
between Σ and W . By Hölder’s inequality, we can upper bound this by

l`
|S|

Eσ

[
sup
W∈W

‖Σ‖∗‖W‖
]

(15)

for any norm ‖ · ‖ and its dual norm ‖ · ‖∗. In particular, we will choose the norm ‖W‖ =
max{‖W‖tr/t, ‖W‖∞/b}. Note that by definition of W , supW∈W ‖W‖ ≤ 1. Also, by Lemma 11,

‖Σ‖∗ = min
Y+Z=Σ

b‖Y ‖1 + t‖Z‖sp,

where ‖Y ‖1 =
∑
i,j |Yi,j |, and ‖Z‖sp is the spectral norm of Z . Thus, we can upper bound Eq. (15)

by
l`
|S|

EΣ

[
min

Y+Z=Σ
b‖Y ‖1 + t‖Z‖sp

]
. (16)

Recall that Σ is random matrix, where each entry is the sum of Rademacher variables. Let hi,j
denote the number of variables ’hitting’ entry (i, j) - formally, hi,j = |{α : (iα = i, jα = j}|. We
can upper bound Eq. (16) by replacing the optimal decomposition of Σ into Y,Z by any fixed
decomposition rule. In particular, for an arbitrary parameter p, we can decompose Σ into Y,Z as
in Eq. (6), and get an upper bound on Eq. (16) of the form

l`
|S|

(bEΣ[‖Y ‖1] + tEΣ[‖Z‖sp]) . (17)

Bounds for the two expectations are provided in Lemma 9 and Lemma 10. Plugging them in, we
get

bl`√
p

+
2.2l`Ct

√
p (
√
m+

√
n)

|S|
.

Choosing p = b|S|
2.2Ct(

√
m+
√
n)

and simplifying, we get the bound in the theorem.
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