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Abstract

Query by melody is the problem of retrieving musical performances
from melodies. Retrieval of real performances is complicated due to the
large number of variations in performing a melody and the presence
of colored accompaniment noise. We describe a simple yet effective
probabilistic model for this task. We describe a generative model that is
rich enough to capture the spectral and temporal variations of musical
performances and allows for tractable melody retrieval. While most
of previous studies on music retrieval from melodies were performed
with either symbolic (e.g. MIDI) data or with monophonic (single
instrument) performances, we performed experiments in retrieving live
and studio recordings of operas that contain a leading vocalist and rich
instrumental accompaniment. Our results show that the probabilistic

approach we propose is effective and can be scaled to massive datasets.
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Chapter 1

Introduction

A natural way for searching a musical audio database for a song is to look for a
short audio segment containing a melody from the song. Most of the existing systems
are based on textual information, such as the title of the song and the name of the
composer. However, people often do not remember the name of the composer and
the song’s title but can easily recall fragments from the soloist’s melody.

The task of query by melody attempts to automate the music retrieval task. It was
first discussed in the context of query by humming [15, 19, 20, 21]|. These works focus
on converting hummed melodies into symbolic MIDI format (MIDI is an acronym
for Musical Instrument Digital Interface. It is a symbolic format for representing
music). Once the query is converted into a symbolic format the challenge is to search
for musical performances that approximately match the query. Most of the research
so far has been conducted with music stored in MIDI format [18] or in monophonic
(i.e. single vocal or instrument) recordings (see for instance [12, 9] and the references
therein). In this work, we suggest a method for query by melody where the query
is posed in symbolic form as a monophonic melody and the database consists of real
polyphonic recordings.

When dealing with real polyphonic recordings we need to address several com-
plicating factors. Ideally, melodies can be represented as sequences of notes, each
is a pair of frequency and temporal duration. In real recordings two major sources
of difficulty arise. The first is the high variability of the actual durations of notes.
A melody can be performed faster or slower than the one dictated by the musical
score. This type of variation is often referred to as tempo variability. Furthermore,
the tempo can vary within a single performance. For instance, a performance can
start with a slow tempo which gradually increases. The second complicating factor
is the high variability of the spectrum due to many factors such as differences in tone

colors (timbre) of different singers/instruments, the intentional variation by the lead-
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ing vocalists (e.g. vibrato and dynamics) and by “spectral masking” of the leading
vocal by the accompanying vocals and orchestra.

We propose to tackle these difficulties by using a generative probabilistic ap-
proach that models the temporal and spectral variations. We associate each note
with a hidden tempo variable. The tempo variables capture the temporal variations
in the durations of notes. To enable efficient computation, the hidden tempo se-
quence is modeled as a first order Markov process. In addition, we describe a simple
probabilistic spectral distribution model that is robust to the masking noise of the ac-
companying instruments and singers. This spectral distribution model is a variant of
the harmonic likelihood model for pitch detection [29]. Combining the temporal and
spectral probabilistic components, we obtain a joint model which can be considered
as a dynamic Bayesian network [10]. This representation enables efficient alignment
and retrieval using dynamic programming.

This probabilistic approach is related to several recent works that employ Hidden
Markov Models (HMM) for music processing. Raphael [26] uses melody information
(pitches and durations of notes) in building an HMM for a score following application.
A similar approach is used by Durey and Clements [12] who use the pitch informa-
tion of notes for building HMMs for melody retrieval. However, both approaches
were designed for and evaluated on monophonic music databases. Most work on
polyphonic music processing addressed tasks such as music segmentation into tex-
tures [6], polyphonic pitch tracking [31], and genre classification [30, 14]. We believe
that the approach we describe in this paper is a step toward an effective retrieval

procedure for massive musical datasets.



Chapter 2
Basic Concepts

A system for query by melody aims to connect between a melody and its perfor-
mances. The substance of this connection is statistical. In the following, we explain
basic concepts regarding two issues. In Sec. (2.1) we describe how we represent and
analyze real performances using a computer. In Sec. (2.2) we review several statistical

concepts and methods.

2.1 Digital musical audio signals

Basically, a musical audio signal is a sound wave, meaning, changes in the air density
as a function of time. A microphone can convert a sound wave into the form of
electric oscillations. Both of the above signals are analog - these signals are continuous
functions from R to R. A computer is a digital machine. Thus, in order to represent
and analyze an analog signal using a computer, the signal has to be digitized. In
this section we briefly introduce the basic concepts and methods of the theory of
digital signal processing. Naturally, we focus on the aspects relevant to musical
acoustic signals. After we lay the groundwork of basic digital signal processing,
we describe the source-filter model of speech (and audio) production. For a more
profound presentation see [27, 28, 22, 24, 16, 13, 7].

2.1.1 Analog and Digital Signals

An analog signal is a continuous value function of continuous time. A digital signal is
a discrete value function of discrete time. Formally, let R denote the real numbers, let
C denote the complex numbers and let Z denote the whole numbers. Let Q denote
a finite set of rational numbers (usually, |Q| = 28, where B is the number of bits we

use for a single number). An analog signal z,(¢) is a function from R to C. Similarly,
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A cos(6) /

Figure 2-1: Example of an analog sinusoidal signal.

an analog signal of real values is a function from R to R. A digital signal z4(n) is a
function from Z to Q. We use subscript , for representing analog signal and subscript
¢ for representing digital signal. In the following, when it will be clear from the
context, we will omit the subscript. A signal with argument ¢ will denote an analog

signal and a signal with argument n will denote a digital signal.

2.1.2 The concept of Frequency

Frequency is closely related to a specific type of periodic motion called harmonic
oscillation, which is described by sinusoidal functions. A simple harmonic oscillation
is mathematically described by the following analog sinusoidal signal:

z.(t) = Acos(2nFt +0), teR

This signal is fully characterized by three parameters: A is the amplitude of the
sinusoid, F' is the frequency in cycles per second or hertz (Hz), and 6 is the phase in
radians. In Fig. (2-1) we illustrate these parameters.

It can easily be shown, that the sinusoidal signal is periodic. We denote the
fundamental period of the sinusoidal signal by 7" = % The concept of frequency is
directly related to the concept of time. Actually, it has the dimension of inverse time.

The relationship we have described for sinusoidal signals carry over to the class of
complex exponential signals,

T, (t) — Aei(Qﬂ'FH—H)

I

6



where i = /—1. This can easily be seen by expressing the signals in terms of sinusoids
using the Euler identity
e = cosf + isinf

According to Fourier (1768-1830), most signals of practical interest can be decom-
posed into a sum of complex exponential signals. Therefore, we can represent a signal
in the time domain (as a function of time) or in the frequency domain (as a function
of frequency). The representation of a signal using the second method is called the
spectrum of the signal. The absolute value of the spectrum is called the magnitude
spectrum. We use lower case letters for representing a signal in the time domain and
upper case letters for representing a signal in the frequency domain. Similar to our
notation in the time domain, a spectrum with argument f will denote continuous
spectrum and a spectrum with argument £ will denote discrete spectrum. We will
explain how to convert a signal from the time domain to the frequency domain and
vice versa in Sec. (2.1.4).

2.1.3 Analog to Digital Conversion

The process of analog-to-digital (A/D) conversion consists of two steps: sampling and

quantization.

Sampling

We sample the analog signal periodically every T seconds. T is the sampling period.
Thus, the n value of the sampled signal equals the value of the analog signal at time
nT,

zqa(n) = 24(nTy)

The sampling frequency is the number of samples in one second. We denote the

sampling frequency by Fs. Clearly,

The measure unit is samples per second. The sampling frequency is an upper bound
for the frequencies that the sampled signal can express. In order to clarify this, let

us observe two analog sinusoidal signals:

%o (t) = cos(2mfut) , Ya(t) = cos(2m fyt)
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Figure 2-2: Example of aliasing.

We sample the signals using sampling frequency F;. We choose Fy such that F, =
fy — fz (without loss of generality f, > f;). We denote the resulting digital signals

by z4(n) and y4(n) respectively. We can easily prove that x4 equals yg:

Ya(n) = Ya(=)

Ftfe

= cos(27r&n) = cos(2m

F; F;
= cos(2mn + QW&TL) = cos(27r£n)
F, F
= tal) = al)

We illustrate this phenomenon in Fig. (2-2). Therefore, frequencies that are higher
than the sampling frequency are introduced in the sampled signal as lower frequencies.
This phenomenon is referred to as aliasing. The above discussion leads to the sampling
theorem:

Theorem 1 (Sampling Principle) An analog signal x,(t) can be reconstructed from
its sampled signal x4(n) = x,(nTs) if the sampling frequency Fs = 7% is greater than
twice its highest frequency - Fy. Otherwise aliasing would result in x4(n). The sam-

pling rate of 2F, is called the Nyquist rate.

Quantization

In order to represent each value of the sampled signal using B bits, we round each

value to yield a discrete binary number. We refer to the rounding errors as quanti-
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zation noise. Usually, we use a normalized 32 bit floating point format with values

ranging from —1.0 to 1.0, and thus the quantization noise is neglected.

2.1.4 Fourier Transform

The French mathematician, Jean Baptiste Joseph Fourier (1768-1830), developed
several mathematical formulas for converting signals from the time domain to the
frequency domain and vice versa. We denote the conversion from the time domain to
the frequency domain by analysis equation, and the opposite conversion by synthesis
equation. The conversion formula is dependent on two aspects of the signal. Peri-
odic (with period F,) vs. aperiodic (with finite-energy, see Sec. (2.1.5)) signals and
continuous-time vs. discrete-time signals. In table (2.1) we describe the analysis and
synthesis equations for the different cases. The only class of signals we can store in
a computer is the periodic discrete-time signals (we only need to store the N values
of one period of the signal). We also refer to this class of signals as finite-duration
discrete-time signals. The analysis equation for this class is often referred to as the
Discrete Fourier Transform (DFT). Similarly, the synthesis equation for this class is
often referred to as the Inverse Discrete Fourier Transform (IDFT).

The spectrum of a periodic discrete-time signal with a period N also form a

periodic sequence with a period N:

N—

[y

1 e (k+N) 1

n=0 n=0

z(n)e 2 %" = X (k)

i ng

If we use a sampling frequency Fj, the range 0 < k£ < N — 1 corresponds to the
frequency range 0 < f < F;. Therefore, X (k) is a sampling of the spectrum range
0, Fy).

The complexity of the straightforward implementation of the DFT is O(N?). By

227r n

taking advantage of the periodicity of the analysing sinusoids e and applying
the divide and conquer principle of splitting the problem into successively smaller
subproblems, a variety of more efficient algorithms of complexity O(N log N) have
been developed which came to be known collectively as the Fast Fourier Transform
(FFT). They generally require that N be a power of two. This requirement is not
critical, since we can add zeros to the end of the finite signal. It can be shown that

zero padding a signal only increases the sampling rate of the frequency.



Analysis Synthesis
5
= 1 . o0 ,
= X(k;) = T/ x(t)e—ﬂﬂ'katdt as(t) _ Z X(k)eZQﬂ'kat
© % P k=—oc0
= o
2
8
o % 1 N—-1 . N—=-1 .
3 X (k)= ~ z(n)e~2mwn z(n) = X (k)ei2mwn
:'5 n=0 n=0
: . N
2| X(n= / w(t)e Pt | a(t) = / X (f)er I af
(] E —0o0 —00
5|3
2
3
=g %0 _
§ X(f) = Z x(n)e—i%rfn x(n) _ / X(f)ei%fndf
s n=—00 .

Table 2.1: Fourier transforms.

2.1.5 Energy

Definition 1 (Energy.) The energy of a discrete-time signal x(n) is defined as

E= ) |zxn)f

n=—oo

A signal £(n) has finite energy iff E < oc.

Usually, we are interested in the ratio between two energy values. The decibel unit

is the common way for comparing the relative energies of two signals.
Definition 2 (Decibel.) The decibel is defined as

E
1 dB = 10logy, El
0

where Ey is the reference energy.

We can also calculate the energy of the spectrum. However, Parseval’s Theorem
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states that the two calculations lead to the same value. We state the theorem for

finite-duration discrete-time signals.

Theorem 2 (Parseval.)

N \ 1 N ,
nz_% jz(n)|” = N;IX(W

The above equality can be easily verified using the idea that orthogonal linear trans-
formation do not change the norm of a vector, and the DFT is indeed an orthogonal
linear transformation.

2.1.6 Linear Shift-Invariant Systems

A system T[] is a function from the signals space to the signals space. We also use
the term filter for describing systems. We will mainly refer to systems that operate
on digital signals. We refer to the argument of this function as the input of the
system and to the value of the function as the output of the system. We usually limit

ourselves to a specific class of systems - the Linear Shift-Invariant (LSI) Systems.

Definition 3 (Linear Systems.) A discrete system T[] is linear if and only if T[]
satisfies the principle of superposition, namely, for all two digital signals x1(n), x2(n)

and for all all two superposition coefficients ay,a, € C
T[alxl(-) + CLQ.TQ(')] = alT[xl(-)] + GZT[-TQ(')]

Definition 4 (Shift-Invariant (SI) Systems.) Let Si[:| be a system that shifts a
signal k samples, namely, if y(-) = Sk[z(-)] then Vn, y(n) = z(n — k). A discrete
system T[] is shift-invariant if and only if shifting the input of the system is equivalent
to shifting the output of the system

T[Skl ()] = Se[T[z()]]

LSI systems can be fully represented using their response due to a unit sample at
time 0. We denote this input signal by

5(n)={ 1 n=0

0 otherwise

11



We denote the output of a system due to the §(n) input by the impulse response of
the system
h(n) =T[6(n)] .

We now show how to represent the output of a system 7'[-] using the impulse response.
Let z(n) be an input signal. We can write x(n) using the natural basis of shifted unit

sample signals

o0 o

z(n)= Y x(k)s(n—k) = Y x(k)Skld(n)] .

k=—o k=—00

Using the linear and shift-invariant properties, we can write the output of the system
as

y(n) = Tlz(n)]

- T k_f: x(k)Sk[é(n)]]
_ ki 2 (k)T [Sk[6(n)]]
_ f; o(k) Sk [T15(n)]
- ki w(k)h(n — k) . (2.1)

The mathematical operation in Equ. (2.1) is called a linear convolution and is denoted
by

o

y(n) = Z z(k)h(n — k) = z(n) * h(n) .

k=—00
Thus, the impulse response fully describes the system. We can determine the output

of the system by convolving the input signal with the impulse response of the system.

LSI Systems in the Frequency Domain

We saw that we can represent a LSI system using its impulse response, h(n). The

discrete-time Fourier transform of the impulse response is called the Transfer Function
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of the system and we denote it by

H(f)= Z h(n)e~#mim

n=—oo

Using the definitions of the Fourier transform and the convolution we can derive the

following important property of the convolution:

—i27wfn

Y(f) =

= Z Z z(k)h(n — k)e 2rf(n=k) g=i2nfk

— Z ‘,L,(k)efimrfk Z h(n . k)efi%rf(nfk)

k=—o00 n=—o00

= i x(k)e 2 rk i h(m)e~ 2 (m)
k=—o0 m=—0o0

= X(NHH(S)

A convolution in the time domain is equivalent to multiplication in the frequency
domain. Therefore, the spectrum of the output at f only depends on the spectrum of
the signal at f and on the value of the transfer function at f. It does not depend on
the spectrum at other frequencies. In other words, the complex exponential signals
are eigenvectors of any LSI system and the transfer function is the corresponding

eigenvalues.

2.1.7 The Short Time Fourier Transform

The Fourier Transform is adequate for analyzing the spectrum of signals whose prop-
erties do not vary with time, that is for analyzing stationary signals. However, musical
signals are not stationary. The properties of musical signals (amplitudes, frequency
and phases) change with time. Therefore, we are interested in the spectrum of short
segments of the signal. We calculate the time-dependent spectrum of the signal using

the Short-Time Fourier Transform.
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Figure 2-3: A chirp signal (top), its DFT analysis using dB scale (middle) and its
STFT analysis presented by spectrogram (bottom).
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Definition 5 (Short Time Fourier Transform.) The Short-Time Fourier Trans-
form (STFT) of a signal x(n) is defined as

o0

X(n, f)= Y a(n+mpw(m)e = (2.2)

m=—0oQ

where w(n) is a window signal.

Equ. (2.2) can be interpreted as the DFT of the shifted signal z(n + m), as viewed
through the window w(m). In the STFT, the one-dimensional sequence z(n) is con-
verted into a two dimensional function of time and frequency. In music signals, the
time resolution for the STFT is usually between 10ms to 80ms. We use the spec-
trogram for illustrating the magnitude of the STFT graphically. In Fig. (2-3) we
compare the DFT and the STFT of a chirp signal. The frequency of the chirp signal
changes linearly through time. The DFT analysis shows the mean frequency contents
of the signal. The STFT analysis shows the changes of the frequency content through

time.

Windowing

The primary purpose of the window w(n) in the STFT is to limit the extent of the
sequence to be transformed so that the spectral characteristics are approximately sta-
tionary over the duration of the window. The more rapidly the signal characteristics
change, the shorter the window should be. On the other hand, a multiplication with
a window blurs the spectrum of the signal. To understand this, recall that a con-
volution in the time domain is equivalent to multiplication in the frequency domain.
Similarly, a multiplication in the time domain is equivalent to convolution in the
frequency domain. Therefore, the original spectrum of the signal is convolved with
the spectrum of the window. In Fig. (2-4) we show the spectrum of a rectangular
window. This shape is often referred to as sinc function. Reduced resolution and
leakage are the two primary effects on the spectrum as a result of applying a window
to the signal. The resolution is influenced primarily by the main lobe of the sinc,
while the degree of leakage depends on the relative amplitude of the main lobe and
the side lobes. Both the main lobe width and the relative amplitude of the main lobe
and the side lobes are dependent on the length of the window and on its shape. For

a more profound presentation see [22, 24, 16].
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Figure 2-4: The spectrum of rectangular window.

2.1.8 Musical Sound Generation

In this section we briefly explain the physical bases of sound generation using tradi-
tional musical instruments. All traditional instruments have an oscillating element
and some means of coupling the sound to the surrounding. For example, in the violin
family, the oscillating element is a string. The string is coupled to a sounding board
using a bridge (see Fig (2-5)). The sounding board receives mechanical motion from
the string and provides better acoustical coupling to the air than can the string alone,
with its very small surface area.

Using the signal processing terminology, the oscillating element can be viewed
as a source signal s(t) that passes through a system (e.g. in the violin family, the
system depends on the sound board). We usually assume that the system is LSI, and
thus is represented using its impulse response h(t). We now explore the properties of

the source signal. If we set a string into motion at its midpoint, it will vibrate at a

1 /T
fo_ﬁ E?

where L is the length of the string, 7" is its tension and m is its mass. This mode of

fundamental frequency given by

vibration is called a standing wave. The string can also vibrates at multiplication of
the fundamental frequency. These frequencies are known as harmonic frequencies, or

merely harmonics. In the general case, the string can vibrate in all these frequencies
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at the same time. At any frequency other than a harmonic frequency, the interference
of reflected and incident waves results in a resulting disturbance of the medium which
is irregular and non-repeating. In Fig. (2-6) we illustrate the vibrating of the string
at the harmonics.

Thus, the source s(t) is a periodic signal that can be expressed using its funda-
mental frequency

s(t) = Z sin(2rhfot) .

Using the definition of the Fourier transform for periodic continuous signals from

Sec. (2.1.4), we can calculate the spectrum of the signal

Sk)y = fo /1/f (isin@whf@)) e~ okt gy

h=1
_ fo/ (i |:6127rhf0t _'e—zZﬂhfot:|> okt gy

1/fo \423 21

o
_ @ Z / oi2m(h—k) fot gy _ / o—i2n (k) fol gy

2 h=1"1/fo 1/fo

_ 1
T2
= Vk, |S(k)| = constant . (2.3)

This kind of spectrum is called a pulse train.

As we mentioned, the source signal s(t) is filtered using the system h(t). Therefore,
the musical signal is a convolution of the source signal with the impulse response of
the system h(t)

z(t) = s(t) x h(t)

and in the frequency domain,

From this analysis we conclude that X (f) is a scaled pulse train with fundamental
frequency fo.

17



Figure 2-5: The elements of a cello.

1st harmonic 2nd harmonic

3rd harmonic 4th harmonic

Figure 2-6: Vibration of a string at the harmonic frequencies.
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2.2 Statistics

In this section we define the basic statistical tools we use for our retrieval system.
For a more profound presentation see [8, 25, 10, 17].

2.2.1 Probability and Random variables

We define probability in terms of a sample space S, which is a set whose elements
are called elementary elements. Each elementary element can be viewed as a possible
outcome of an experiment. A probability distribution Pr{-} on a sample space S is a
mapping from events of S to real numbers such that the following probability axioms

are satisfied:

1. Pr{A} > 0 for any event A.
2. Pr{S} =1
3. Pr{AuU B} = Pr{A} + Pr{B} for any events A and B such that AN B = ¢.

A random variable X is a function from the sample space to the real numbers.
It associates a real number with each outcome of an experiment, which allows us
to work with the probability distribution induced on the resulting set of numbers.
For a random variable X and a real number z, we define the event X = z to be
{s € S: X(s) = z}; thus,

Pr(X =1z)= Z Pr{s} .

{s€S:X(s)=x}

2.2.2 Conditional probability

Sometimes we have some prior knowledge about the outcome of an experiment. For
example, suppose that a friend has flipped two fair coins and has told you that at
least one of the coins showed a head. What is the probability that both coins are
heads? The information given eliminates the possibility of two tails.

Conditional probability formalizes the notion of having prior partial knowledge of
the outcome of an experiment. The conditional probability of an event X = z given

that another event Y = y has occurred is defined to be

Pr(X=zY =y)

PrX=z|Y =y) = Pr(Y =)

(2.4)

The conditional probability of X = z given Y = y is the ratio of the probability of
both events X = x and Y = y to the probability of event ¥ = y.

19



From the definition of conditional probability (Equ. (2.4)), it follows that for two
events X =z and Y =y

PriX=xz,Y=y) = Pr(Y=y)Pr(X=2z|Y =y)

Solving for Pr(X = z|Y = y), we obtain

Pr(X =x)Pr(Y =y|X =x)
Pr(Y =y)
Pr(X =x)Pr(Y =yl X =x)
SePr(X=2)Pr(Y =y X=72) ’

PriX=z|Y =y) =

which is known as Bayes’s theorem. The denominator is a normalizing factor.

2.2.3 Conditional Independencies and Bayesian Networks

Two random variables are independent if
Ve,y Pr(X =z,Y=y)=Pr(X =z)Pr(Y =y) . (2.5)

We also use the notation Pr(X,Y) = Pr(X)Pr(Y) with upper case letter, to express
the same equality as in Equ. (2.5). An equivalent definition is

Pr(X|Y)=Pr(X) ,

which tells us that independence is also a notion of information. Knowing the value
of Y tells us nothing about the value of X. In general, if X, ..., X,, are independent

random variables, then

n
Pr(Xy,..X,) =[] Pr(X) ,
i=1
which allows us a compact representation of the joint distribution.
Unfortunately, most of random variables of interest are dependent on each other.
Therefore, we define a more refined notion - conditional independence. 1t applies when
two variables are independent given the value of another variable. Formally, variables

X and Y are conditionally independent, given variable 7, if
Pr(X,Y|Z)=Pr(X|2)Pr(Y|Z) ,
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that is, learning the values of Y does not change our prediction of X once we know
the value of Z.

The conditional independencies between variables can be visualized using a special
graph called a Bayesian network structure.

Definition 6 A Bayesian network structure G is a directed acyclic graph whose nodes
represent random variables Xy, ..., X,,. Let Pax, denote the parents of X; in G, and
Ndx, denote the variables in the graph that are not descendants of X;. Then G

encodes the following set of conditional independence assumptions:
VXZ PT'(XZ', NdXi|PaXi) = PT(XZ|PG/X1)PT(NdX1|PaX1) y

that is, X; 1s independent of its non-descendants given its parents.

2.2.4 Markov models

A discrete stochastic process is an indexed sequence of random variables. In general,
there can be an arbitrary dependence among the random variables. The process is
characterized by the joint probability functions Pr(X;, Xy, ..., X,) forn=1,2, ... .

Definition 7 A discrete stochastic process is said to be stationary if the joint distri-
bution of any subset of the sequence of random wvariables is invariant with respect to

shifts in the time index, 1.e.,
Vi, Pr(Xy,...,X,)=Pr(Xiiy, . Xnu)

A simple example of a stochastic process with dependence is one in which each
random variable depends on the one preceding it and is conditionally independent of
all the other preceding random variables. Such a process is said to be a first order

Markov process.

Definition 8 A discrete stochastic process X1, Xo, ... is said to be a first order Markov

process if forn =1,2, ...,
Pr(Xn—Fl‘Xnaanla ...,Xl) = PT(Xn+1|Xn)

In this case, the joint probabilty function can be factorized as

PT'(Xl, ,Xn) = PT‘(Xl) ﬁPT(XZ|X,_1)

=2
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Definition 9 A first order Markov process is said to be time invariant if the condi-

tional probability Pr(X,.1|X,) does not depend on n, i.e., forn=1,2, ...
PT'(Xn_H‘Xn) = PT(XQ‘Xl)

We will assume that a Markov process is time-invariant unless otherwise stated.

22



Chapter 3
Problem Setting

In our setting, we are given a melody and our task is to retrieve musical performances
containing the requested melody and to find its location within the retrieved perfor-
mances. In this chapter we explain our setting formally. In Sec. (3.1) we formally
define melody. We continue with a formal definition of a performance in Sec. (3.2).
We also explain why the task of matching between a melody and a performance is
difficult.

3.1 A musical melody

A melody is a sequence of notes where each note is a pair of a pitch value and a

duration value.

3.1.1 Pitch

In this work, we associate pitch with fundamental frequency, although the two are
not quite the same (see for example [13, 7]).

There exists a discrete set of all possible frequencies of notes. In Fig. (3-1) we
show one octave of the keyboard spanning the notes from C to the C in the next
octave. The frequency relation between notes with an interval of one octave is (1 : 2).
There are twelve intervals within one octave. The basic interval is called a semi-
tone. In the well-tempered Western music tuning system, the frequency relation
between consecutive semi tones is constant. Therefore, this relation is (1 : ¥/2).
Furthermore, this relation does not depend on the musical scale. (For other tuning
systems see [13, 7]). Thus, if we know the frequency of a reference note, we can
calculate the frequency of other notes using the interval between this note and the

reference note (i.e. the number of semi tones between the notes). Formally, let A
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Figure 3-1: A twelve-to-the-octave scale.

denote the set of all possible frequencies of notes. In the well-tempered Western
music tuning system, A = {f,.s - 2°/*?|s € Z}, where f,.; = 440H 2.

Using the definition of A we can define a pitch of a note formally. Let R, denote
the positive real numbers. Let f;, f € R, be frequency values (in Hz) and let
[f1, fr] be a diapason. A diapason of a singer (or an instrument) is the range of pitch
frequencies that are in use by the singer (or by the instrument). For instance, a tenor
singer typically employs a diapason of [110H z,530H z]. Let I' = [ fiow, frign] VA denote
all the possible pitches of notes in the diapason. A pitch of a note is an element in
the set I'.

3.1.2 Duration

Similarly to the pitch quantization, there is also a discrete set of all possible durations
of notes. However, for simplicity, in this work we allow a duration to be any real
positive number. That is, a duration of a note is a number in R, .

The above leads us to the formal definition of a melody.

Definition 10 (Melody) A melody is described formally by a sequence of pitches,
p € T* and a sequence of durations, d € R.*, in a predefined time unit (e.g.

seconds).

3.2 A performance
Our goal is to retrieve melodies from audio signals representing real performances.
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Rallentando | 1.2 1.2 1.251.3 1.3
Accelerando | 0.7 0.65 0.6 0.5 0.5

Table 3.1: Examples of scaling factor sequences: In the first sequence the scaling
factors are gradually increasing and thus the tempo is decreasing (”Rallentando”).

In the second example the scaling factors are decreasing and the tempo is increasing
(“Accelerando”).

Definition 11 (Performance) A performance of a melody is a discrete time sam-

pled audio signal, 0 = o4, ..., or.

A performance is formally entirely defined given the melody: play or sing using
pitch p; for the first d; seconds, then play or sing pitch p, for the next ds seconds,
and so on and so forth. In reality, a melody does not impose a rigid framework. The
actual frequency content of a given note varies with the type of instrument that is
played and by the performer. Examples for such variations are the vibrato and timbre
effects. The accompaniment also greatly influences the spectral distribution. While
playing a note using pitch p, we are likely to see a local concentration of energy close
to multiples of the frequency p in the power spectrum of the signal. However, there
may be other spectral regions with high levels of energy. We will address this problem
later on in this section. Another source of variation is local scaling of the durations of
notes as instructed by the melody. The performer typically uses a tempo that scales
the duration and moves from one tempo to another, thus using a different time scale
to play the notes. Therefore, we also need to model the variation in the tempo which
we describe now.

A tempo sequence is a sequence of scaling factors, m € R, *. The actual duration
of note 7, denoted CZ is d; scaled by m;, c?z = d;m;. Seemingly, allowing different scaling
factors for the different notes adds a degree of freedom that makes the melody duration
values redundant. However, a typical tempo sequence does not change rapidly and
thus reflects most of the information of the original durations (up to a scaling factor).
Table 3.1 shows two examples of tempo sequences. A pitch—duration—tempo triplet
(p,d, m) generates an actual pitch-duration pair (p, 3) )

In order to describe the generation of the actual performance audio signal o from
(p, 3) we introduce one more variable, s € R,.* where s; is the starting time (sample
number) of note ¢ in the performance. We define s; = 1+ 23;11 JJ fori=1,...,k+1.
Notes generate consecutive blocks of signal samples. Let 0; = (o, ..., 05;,,-1) be the
block of samples generated by note 7.

The magnitude spectrum of o; varies significantly from performance to perfor-

mance, according to various factors such as the spectral envelope of the soloist and
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pitches of accompaniment instruments. Since our goal is to locate and retrieve a
melody from a dataset that may contain thousands of performances, we resort to a
very simple spectral model and do not explicitly model these variables. We use an

approximation to the likelihood of a block spectrum given its pitch.
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Chapter 4

From melody to signal:

a generative model

To pose the problem in a probabilistic framework, we need to describe the likelihood
of a performance given the melody, P(o|p,d). We cast the tempo sequence m as a

hidden random variable, thus the likelihood can be written as,

P(olp, d) ZP o,m|p,d) . (4.1)

For simplicity, we assume that the tempo sequence does not depend on the melody.
While this assumption, naturally, does not always hold, we found empirically that
these types of correlations can be ignored in short pieces of performances. With this
assumption and the identity d= dm, Equ. (4.1) can be rewritten as,

(olp,d) ZP m|p, d)P(olp, d, m)
- Z P O‘pa d m)
—ZP P(olp,d) .

We illustrate the independencies between the variables in Fig. (4-1). We now need to
specify the prior distribution over the tempo, P(m), and the posterior distribution
of the signal given the pitches and the actual durations of the notes P(o|p, d).
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Figure 4-1: The independencies between the variables. The observed variables are
pink colored and the hidden variables are yellow colored.

4.1 Tempo modeling

We chose to model the tempo sequence as a first order Markov process. As we see in
the sequel this choice on one hand allows an efficient alignment and retrieval, and on
the other hand, was found empirically to be rich enough. Therefore, the likelihood of

m is given by,
k

P(m) = P(my) [ P(milmi_1) .
i=2
We use the log-normal distribution to model the conditional probability P(m;|m;_1),
that is log(m;) ~ N (log(m;_1), p), where p is a scaling parameter of the variance. The
prior distribution of the first scaling factor P(m;) is also assumed to be log-normal
around zero with variance p, log(m;) ~ N (0, p). In our experiments, the parameter p
was determined manually according to musical knowledge. This parameter can also
be learned from MIDI files. Note that for the log-normal distribution, the probability

to change the tempo from value x to value Az is equal to the probability to change
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4.2 Spectral Distribution Model

In this section we describe our spectral distribution model. There exist quite a few
models for the spectral distribution of singing voices and harmonic instruments. How-
ever, most of these models are rather general. These models typically assume that
the musical signal is contaminated with white noise whose energy is statistically in-
dependent of the signal. See for instance [29] and the references therein. In contrast,
we assume that there is a leading instrument, or soloist, that is accompanied by an
orchestra or a chorus. The energy of the accompaniment is typically highly correlated
with the energy of the soloist. Put another way, the dynamics of the accompaniment
matches the dynamics of the soloist. For instance, when the soloist sings pianissimo
the chorus follows her with pianissimo voices. We therefore developed a simple model
whose parameters can be efficiently estimated that copes with the correlation in en-
ergy between the leading soloist and the accompaniment. In Fig. (4-2) we show the
spectrum of one frame of a performance signal from our database. The harmonics
of the soloist are designated by dashed lines. It is clear from the figure that there
is a large concentration of energy at the designated harmonics. The residual energy,
outside the harmonics, is certainly non-negligible but is clearly lower than the energy
of the harmonics. Thus, our assumptions, although simplistic, seem to capture to a
large extent the characteristics of the spectrum of singing with accompaniment.

Using the definition of a block 0; from chapter (3), the likelihood of the signal

given the sequences of pitches and durations can be decomposed into a product of
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likelihood values of the individual blocks,

k
P(old,p) = [ | P(@ilp:)
i=1
Therefore, the core of our modeling approach is a probabilistic model for the spectral
distribution of a whole block given the underlying pitch frequency of the soloist. Our
starting point is similar to the model presented in [29]. We assume that a note with
pitch p; attains high energy at frequencies which are multiples of p;, namely at p;h
for integer h. These frequencies are often referred to as harmonics. We explained the
logic behind this assumption in Sec. (2.1.8). Since our signal is band limited, we only
need to consider a finite set of harmonics h, h € {1,2, ..., H}. For practical purposes
we set H to be 20 which enables a fast parameter estimation procedure. Let F'(w)
denote the observed energy of the block o; at frequency w. Let S(w) denote the energy
of the soloist at frequency w. The harmonic model assumes that S(-) is a scaled pulse
train (see Sec. (2.1.8)), i.e., S(-) is bursts of energy centered at the harmonics of the

pitch frequency, p;h, and we model it as a weighted sum of delta functions,

H

S(w) =Y AR)(pih —w) | (4.2)

h=1

where A(h) is the volume gain for the harmonic whose index is h. The residual of the
spectrum at frequency w is denoted N(w) and is equal to N(w) = F(w) — S(w). We
now describe a probabilistic model that leads to the following log-likelihood score,

1512
[NV

log P(0;|p;) o log

where || - || denotes the £y-norm.

To derive the above equation we assume that the spectrum of the ¢th block, F,
is comprised of two components. The first component is the energy of the soloist,
S(w) as defined in Equ. (4.2). The second component is a general masking noise that
encompasses the signal’s energy due to the accompaniment and affects the entire
spectrum. We denote the noise energy at frequency w as n(w). The energy of the

spectrum at frequency w is therefore modeled as,

H

F(w) = A(h) (n(w) + 8(pih = w)) - (4.3)

h=1

We now impose another simplifying assumption by setting the noise n to be a mul-
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Figure 4-2: The spectrum of a single frame along with an impulse train designating
the harmonics of the soloist.

tivariate normal random variable and further assuming that the noise values at each
frequency w are statistically independent with equal variance. Thus, the noise density

function is
1 lln1I2

f(nlv) = We

where v is the variance and L is the number of spectral points computed by the
discrete Fourier transform. (We chose L = 2!5 to get a good spectral resolution.)
Taking the log of the above density function we get,

L 2
log f(n|v) = 5 log(2mv) — % . (4.4)

The gain values A(h) are free parameters which we need to estimate from the spec-
trum. Assuming that the noise level is relatively small compared to the bursts of
energy at the harmonics of the pitch frequency, we set the value of A(h) to be F(p;h).
We also do not know the noise variance v. For this free parameter we use the sim-
ple maximum likelihood (ML) estimate which can be easily found as follows. The
maximum likelihood estimate of v is found by taking the derivative of log f(n|v) with

respect to v,

dlog f(nlv) _ L 2m _ |nl [Inll”
e o 22 LU g o= T
ov 2 27 + 202 v L
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Rearranging Equ. (4.3), the noise value at frequency w, n(w), can be written as,

n(e) = £ = Ty A (pih = w)
S A(h)

By using above equation for n(w) along with values set for A(h) and the maximum

likelihood estimate v* in Equ. (4.4) we get,

log f(nlu+) =~ (og(2r) +log({In|”) ~log(L) ~ 1)
e+ Liog (181
AN E

Since the stochastic ingredient of our spectral model is the accompanying noise, the

noise likelihood above also constitute the likelihood of the spectrum,

N A
0g (Ol|pl) X 10g ||N||2 - ( 5)

Calculating the probability using the STFT

We now explain how to calculate the probability in Equ. (4.5). The straight-forward
implementation is as follows: given a signal portion o; and a pitch value p;, we
calculate the spectrum of 0; using the DFT. However, because we analyse only a
finite portion of the signal, we in fact calculate the spectrum of a multiplication of
the signal with a rectangular window. That is, we get the convolution of the spectrum
of the signal with the spectrum of a rectangular window (see Sec. (2.1.7)). Therefore,
we need to consider the width of the main lobe and the leakage of the spectrum
of the window function. In order to decrease the leakage effect, we can multiply
the signal with smoother window functions (in our experiments we used hanning
window [24, 16]). In order to overcome the problem of the main lobe, we need to sum
over the main lobe width around each frequency of harmony, in the calculations of S
and N. The properties of the spectrum of the window depend on the window length,
so we need to calculate these properties according to the length of the relevant note.

Another option is first to calculate the STFT for fixed window lengths (see
Sec. (2.1.7)). Then, we can sum the spectrum over the relevant windows in the

STFT for obtaining the spectrum contents for a signal portion.
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Chapter 5
Alignment and Retrieval

Let us overview our approach for retrieval. We are given a melody (p,d) and we
want to find an audio signal o which represents a performance of this melody. Using
our probabilistic framework, we cast the problem as the problem of finding a signal
portion o whose likelihood given the melody, P(o|p, d), is high. Our search strategy
is as follows. We find the best alignment of the signal to the melody as we describe in
the following section. The devised score of the alignment procedure is our means for
retrieval. We then rank the segments of signals in accordance with their likelihood
scores and return the segments achieving high likelihood scores.

5.1 Alignment

Alignment of a melody to a signal is performed by finding the best assignment of
a tempo sequence. Formally, we are looking for the scaling factors m* that attain
the highest likelihood score, m* = arg max,, P(o, m|d, p). Although the number of
possible sequences of scaling factors m grows exponentially with the sequence length,
the problem of finding m* can be efficiently solved using dynamic programming, as
we now describe.

Let m! = (my, ..., m;) denote the scaling factors of the first i notes of a melody.
Let o' = (o01,...,0;) denote the first ¢ samples of a signal. Let M be a discrete
set of possible scaling factor values. For £ € M, let M,,;, be a set of all possible
sequences of i scaling factors, m¢, such that m; = £ is the scaling factor of note i and
t= 22:1 my;d; is the actual ending time of note i. Let (4, ¢, £) be the joint likelihood
of o' and m" € M; ;¢

v(i,t,6) = max P(o',m’|p,d)
mq‘EMi,t,g
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1. Initialization
Vici<r,7(0,4,1) =1

2. Recursion

7(% t 6) =

gleaj\if(’y(z_l’ t/7 fl)P(£|£l)P(Otl+1" . "0t|pi)

where t' =t — d;€.
3. Termination

P* = k.t
L v(k,t,€)

Figure 5-1: The alignment algorithm.

The pseudo code for computing (i, ¢, ) recursively is shown in Fig. (5-1).

The most likely sequence of scaling factors m* is obtained from the algorithm by
saving the intermediate values that maximize each expression in the recursion step.
The complexity of the algorithm is O(kT|M|*>D), where k is the number of notes,
T is the number of samples in the digital signal, |M| is the number of all possible
tempo values and D is the maximal duration of a note. Using a pre-computation of
the likelihood values we can reduce the time complexity by a factor of D and thus
the run time of the algorithm reduces to O(kT|M]|?). It is important to clarify that
the pre-computation does not completely determine a single pitch value for a frame.
It calculates the probability of the frame given each possible pitch in the diapason.

5.2 Retrieval

As mentioned above, our primary goal is to retrieve the segments of signals repre-
senting the melody given by the query. Theoretically, we need to assign a segment o
its likelihood score, P(o|p,d) = >, P(m|p,d). However, this marginal probability
is rather expensive to compute. We thus approximate this probability with the joint
probability of the signal and most likely sequence of scaling factors, P(o, m*|p,d) .

That is, we use the likelihood score of the alignment procedure as a retrieval score.
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Chapter 6

Experimental Results

To evaluate our algorithm we collected 50 different melodies from famous opera arias,
and queried these melodies in a database of real recordings. The recordings consist
of 832 performances of opera arias performed by more than 40 different tenor singers
with full orchestral accompaniment. Each performance is one minute. The data was
extracted from seven audio CDs [3, 1, 5, 2, 4], and saved in wav format. Most of
the performances (about 90 percent) are digital recordings (DDD/ADD). Yet, some
performances are digital remastering of old analog recordings (AAD). This introduced
additional complexity to the retrieval task due to varying level of noise.

The melodies for the experiments were extracted from MIDI files. About half of
the MIDI files were downloaded from the Internet ! and the rest of the MIDI files
were performed on a MIDI keyboard and saved as MIDI files.

We compared three different tempo-based approaches for retrieval. The first
method simply uses the original durations given in the query without any scaling.
We refer to this simplistic approach as the Fized Tempo (FT) model. The second
approach uses a single scaling factor for all the durations of a given melody. However,
this scaling factor is determined independently for each signal so as to maximize the
signals likelihood. We refer to this model as the Locally Fized Tempo (LFT) model.
The third retrieval method is our variable tempo model that we introduced in this
paper. We therefore refer to this method as the Variable Tempo (VT) model. By
taking a prefix subset of each melody used in a query we evaluated three different
lengths of melodies: 5 seconds, 15 seconds, and 25 seconds.

To assess the quality of the spectral distribution model described in Sec. (4.2),
we implemented the spectral distribution model described in [29]. We describe this

Thttp:/ /www.aria-database.com,
http://www.musicscore.freeserve.co.uk,
http:/ /www.classicalmidi.gothere.uk.com

35



Spectral Distribution Model
HSN HIN
AvgP Cov Oerr|AvgP Cov Oerr
VT | 0.95 0.21 0.08| 0.92 0.40 0.10
25/LFT| 0.66 5.90 0.46| 0.63 5.98 0.48
FT | 0.34 20.69 0.77| 0.33 22.46 0.79
VT [0.86 1.75 0.19| 0.83 3.02 0.19
15|LFT| 0.66 8.10 0.44| 0.66 8.15 0.42
FT | 0.38 19.83 0.71| 0.36 19.08 0.73
VT | 0.51 10.67 0.65| 0.46 11.83 0.69
o |LFT| 0.43 17.33 0.69| 0.37 17.94 0.75
FT | 0.38 2296 0.69| 0.35 21.67 0.75

Melody length (sec.)

Table 6.1: Retrieval results

model in appendix (A). This model assumes that the harmonics of the signal are
contaminated with noise whose mean energy is independent of the energy of the
harmonics. We refer to our model as the Harmonics with Scaled Noise (HSN) model
and to the model from [29] as the Harmonics with Independent Noise (HIN) model.

To evaluate the performances of the methods we used three evaluation measures:
one-error, coverage and average precision. To explain these measures we introduce
the following notation. Let N be the number of performances in our database and
let M be the number of melodies that we search for. (As mentioned above, in our
experiments N = 832 and M = 50.) For a melody index i we denote by Y; the set
of the performances containing melody i. The probabilistic modeling we discussed
in this paper induces a natural ordering over the performances for each melody. Let
R;(j) denote the ranking of the performance indexed j with respect to melody i.
Based on the above definitions we now give the formal definitions of the performance

measures we used for evaluation.

One-Error. The one-error measures how many times the top-ranked performance
did not contain the melody posed in the query. Thus, if the goal of our system is
to return a single performance that contains the melody, the one-error measures how
many times the retrieved performance did not contain the melody. Formally, the
definition of the one-error is,
| M
Oerr = -2 “[arg min Ri(j) ¢ V] .

i=1
where [7] = 1 if predicate 7 holds and 0 otherwise.
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Coverage. While the one-error evaluates the performance of a system with respect

to the top-ranked performance, the goal of the coverage measure is to assess the

performance of the system for all of the possible performances of a melody. Informally,

Coverage measures the number of excess (non-relevant) performances we need to scan

until we retrieve all the relevant performances. Formally, Coverage is defined as,
1M

Cov = MZ(maxR( )= |vi]) .

o1 <N
Average Precision. The above measures do not suffice in evaluating the perfor-
mances of retrieval systems as one can achieve good (low) coverage but suffer high
one-error rates, and vice versa. In order to assess the ranking performance as a whole
we use the frequently used average precision measure. Formally, the average precision
is defined as,

ZHJ € YilRi(j') < Bi(j)}

_ 1 j
Ang—MZ R0

zl‘ Z‘jGY

In addition we also use precision versus recall graphs to illustrate the overall
performances of the different approaches discussed in the paper. A precision-recall
graph shows the level of precision for different recall values. The precision at k& is the

number of hits in the first k£ positions in the ranked list divided by k. Formally,

Z {R:(G) = (e 3]:@’) A (Ri(G) < F)}

Precision(k

The recall at k£ is the number of hits in the first £ positions in the ranked list divided

by the number of all the relevant performances in the database. Formally,

Recall(k Z HRG) = 1 €|}}:Z|) A (Ri(j) < k)}

The graphs presented in this paper are non-interpolated, that is, they were calculated
based on the precision and recall values achieved at integer positions of the ranked
lists.

In table 6.1 we report results with respect to the performance measures described
for the F'T, LFT, and VT models. For each tempo model we conducted the experi-
ments with the two spectral distribution models HIN and HSN. It is clear from the
table that the Variable Tempo model with the Harmonics with Scaled Noise spectral
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Figure 6-1: Precision-recall curves comparing the performance of three tempo models
for queries consisting of five seconds (top), fifteen second (middle), and twenty five
seconds (bottom).
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Figure 6-2: Precision-recall curves comparing the performance of each of the tempo
models for three different query lengths.
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Figure 6-3: An illustration of the alignment and segmentation of the VI model. The
pitches of the notes in the melody are overlayed in solid lines.

distribution outperforms the rest of the models and achieves superior results. More-
over, the performance of the Variable Tempo model consistently improves as the
duration of the queries increases. In contrast, the Fized Tempo does not exhibit any
improvement as the duration of the queries increases and the Locally Fized Tempo
shows only a moderate improvement when using fifteen second long queries instead
of five second long queries and it does not improve as the duration grows to twenty
five seconds. A reasonable explanation for these phenomena is that the amount of
variability in a very short query is naturally limited and thus the leverage gained by
accurate tempo modeling which takes into account the variability in tempo is rather
small. Thus, as the query duration grows the power of the variable tempo model
is better exploited. The Locally Fized Tempo can capture the average tempo of a
performance but clearly fails to capture changes in the tempo. Since the chance of
a tempo change grows with the duration of the query the average tempo stops from
being a good approximation and we do not see further improvement in the retrieval
quality.

In Fig. (6-1) we give precision-recall graphs that compare the three tempo models.
Each graph compares FT, LE'T and VT for different query durations. The VT model
clearly outperforms both the FT and LFT models. The longer the query the wider
the gap in performance. In Fig. (6-2) we compare the precision-recall graphs for each

model as a function of the query duration. Each graph shows the precision-recall
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curves for 5, 15, and 25 seconds queries. We again see that only the VT model
consistently improves with the increase in the query duration. Using a globally fixed
tempo (FT) is clearly inadequate as it results in very poor performance — precision
is never higher than 0.35 even for low level of recall. The performance of the LFT
model is more reasonable. A precision of about 0.5 can be achieved for a recall value
of 0.5. However, the full power of our approach is utilized only when we use the VT
model. We achieve an average precision of 0.92 with a recall of 0.75. It seems that
with the VT model we reach an overall performance that can serve as the basis for
large scale music retrieval systems.

Lastly, as a final sanity check of the conjecture of the robustness of the VT model
we used the VT and LFT model with three long melody queries (one minute) and
applied the retrieval and alignment process. We then let a professional musician
listen to the segmentation and browse the segmented spectogram. An example of a
spectogram with a segmentation of the VT model is given in Fig. (6-3). The example
is of a performance where the energy of accompaniment is higher than the energy
of the leading tenor. Nonetheless, a listening experiment verified that our system
was able to properly segment and align the melody posed by the query. Although
these perceptual listening tests are subjective, the experiments indicated that the VT

model also provides an accurate alignment and segmentation.
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Chapter 7
Discussion

In this work we presented a robust probabilistic model for query by melody. The
proposed approach is simple to implement and was found to work well on polyphony-
rich recordings with various types of accompaniments. The probabilistic model that
we developed focuses on two main sources of variability. The first is variations in
the actual durations of notes in real recordings (tempo variability) and the second
is the variability of the spectrum mainly due to the “spectral masking” of the lead-
ing vocal by the accompanying vocals and orchestra. In this work we assumed that
the pitch information in a query is accurate and only the duration can be altered
in the performance. This assumption is reasonable if the queries are posed using a
symbolic input mechanism such as a MIDI keyboard. However, an easier and more
convenient mechanism is to hum or whistle a melody. This task is often called “query
by humming”. In addition to the tempo variability and spectral masking, a query
by humming system also needs to take into account imperfections in the pitch of the
hummed melody. Indeed, much of the work on query by humming have been devoted
to music retrieval using noisy pitch information. The majority of the work on query
by humming though, have focused on search of noisy queries in symbolic databases.
Since the main thrust of this research is searches in real polyphonic recordings, it
complements the research on query by humming and can supplement numerous sys-
tems that search in symbolic databases. We plan to extend our algorithm so it can
be combined with a front end for hummed queries. In addition, we have started con-
ducting research on supervised methods for musical genre classification. We believe
that by combining highly accurate genre classification with a robust retrieval and
alignment we will be able to provide an effective tool for searching and browsing for

both professionals and amateurs.
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Appendix A

The Harmonic with Independent

Noise model

In this appendix we describe the Harmonic with Independent Noise (HIN) model.
The original model was written in the time domain. However, since we introduced
our model in the frequency domain, we also introduce the HIN model in the frequency

domain. For the original presentation in the time domain see [29, 23, 11].

Let F'(w) be the spectrum of a note with pitch p. Using the harmonic model, we
assume that the spectrum can be written as,

Fw) = (Z A(h) 6(ph — w)) +n(w) , (A1)

where H, n(-) and A(-) are the same as in Sec. (4.2). Rearranging Equ. (A.1) we get

the expression for the noise,

n(w) = Flw) - (Z A(h) 6(ph — w)) : (A.2)

We impose a simplifying assumption by setting the noise n to be a multivariate normal
random variable and further assuming that the noise values at each frequency w are

statistically independent with equal variance. Thus, the noise density function is

1 lln1l2

2v

N ei
f(77) (27T’1))L/2
where v is the variance and L is the number of spectral points computed by the
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discrete Fourier transform. Taking the log of the above density function we get,

[l

log f (nlv) = — log(2mv) - (A3)

We found the maximum likelihood estimation for the gain values A(h) by taking the
derivative of log f(n) with respect to A(h),

dlog f(n)

oA =0 = AM=F@h) .

Similarly, we found the maximum likelihood estimation for the variance v by taking
the derivative of log f(n) with respect to v,

) _ . nll?
5 =0 = v'= 7

Plugging the above maximum likelihood estimators for A and v into Equ. (A.3) and

using the expression for 7 in Equ. (A.2) we get

log f(nlvx, A*) = —g(log(%)ﬂog(ﬂnlp)—log(L)—l)
L 1
= c+§log (W) , (A.6)

where N(w) is defined in Sec. (4.2).
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