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Abstract

We consider the following problem: given a
linear predictor w with low `1-norm, is it al-
ways possible to obtain a sparse predictor
with similar error? It is interesting to un-
derstand this question as a further step in
understanding the relationship between spar-
sity and the `1-norm, which is often used as
a surrogate to sparsity. We show that for any
ε > 0, there exists a predictor with expected
loss at most ε more than w that uses only
O
(
(‖w‖1 /ε)2

)
features. Furthermore, such

a predictor can be obtained using a simple
randomized procedure. We show that this
bound is tight, and hence the simple random-
ized procedure is in a sense optimal.

1. Introduction

Although many features might be available for use in
a prediction task, it is often beneficial to use only a
small subset of the available features, even at the cost
of a small degradation in performance relative to a
predictor that uses more features. Focusing on lin-
ear prediction, it is generally difficult to find the best
predictor subject to a constraint on the number of fea-
tures used (the sparsity of the predictor). A common
alternative is to seek a good predictor with small `1-
norm, using this measure as a surrogate for sparsity.
However, the resulting predictor need not necessarily
be sparse. A common approach is to somehow obtain a
sparse predictor from the learned low-`1-norm predic-
tor. But can this always be done without significantly
sacrificing performance?

We study the question of “sparsification” of linear pre-
dictors. Can a low-`1-norm predictor always be spar-
sified? I.e., does the existence of a good linear pre-
dictor with low `1-norm guarantee the existence of a
good linear predictor that uses only a small number
of features? If so, what is the relationship between
the `1-norm and the number of features necessary to

achieve similar performance? And is there a simple
procedure for “sparsifying” a predictor, i.e. obtaining
a good sparse predictor from a good predictor with low
`1-norm?

We provide a simple randomized procedure for obtain-
ing a sparse predictor w̃ from a low-`1-predictor w.
We show that for any allowed degradation ε > 0, the
sparsification procedure can produce a linear predictor
w̃ that uses only O

(
(‖w‖1 /ε)2

)
features (independent

of the overall number of features used by w), and has
expected loss at most ε worse than w. Furthermore, we
show that this relationship is tight (in the worst case):
as many as Ω

(
(‖w‖1 /ε)2

)
features might be required

in order to get within ε of the expected loss of a lin-
ear predictor w. We also show that the existence of a
predictor with low `2-norm is not enough to guarantee
the existence of a sparse predictor. This is perhaps not
surprising, and provides further insight as to why `1-
regularization is preferable to `2-regularization when
sparsity is the true objective. Finally, we show that the
common sparsification heuristic, in which the smallest
elements of w are zeroed, might produce poor sparse
predictors. For constructing our tightness results we
derive a generalization of Khintchine inequality that
holds for biased random variables. We believe that
this inequality can be useful for deriving additional
lower bounds in machine learning, involving linear loss
functions.

Related work Much work on compressed sensing
focuses on conditions, both on the labels and on the
training examples (i.e. the design matrix), under which
the optimal `1-norm predictor will be sparse. But
these conditions don’t generally hold in machine learn-
ing applications (e.g. when many features are redun-
dant), while we might still hope to be able to use `1-
norm regularization in order to get a sparse predictor.

Ng (Ng, 2004) considers PAC learning of a sparse
predictor, and shows that `1-norm regularization is
competitive with the best sparse predictor, while `2-
regularization does not appear to be. In such a sce-
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nario we are not interested in the resulting predictor
being sparse (it won’t necessarily be sparse), but only
in its generalization performance. In contrast, in this
paper we are interested in the resulting predictor be-
ing sparse, but do not study `1-regularized learning.
Rather, we assume we already have a good low-`1-
norm predictor, and ask whether we can obtain from
it a good predictor that is sparse.

The converse of our question, focusing on linear clas-
sification, was recently resolved by Servedio (Servedio,
2006): given a sparse linear separator, can it always
be represented using small weights?

The randomized sparsification procedure we suggest
was previously proposed by Schapire et al (Schapire
et al., 1997), as a tool for obtaining generalization
bounds for boosting. However, Schapire et al’s bound
depends on log(m), where m is the number of exam-
ples in the input distribution, and is therefore only
valid for guaranteeing performance over a finite sam-
ple. Our bound does not depend on m and is adequate
for guaranteeing performance over an arbitrary source
distribution.

Studying neural networks with bounded fan-in, Lee et
al (Lee et al., 1996) addressed an equivalent formula-
tion of this question, providing an upper bound sim-
ilar to ours, for the special case of the squared-error
loss. Here we obtain a more general result, that holds
for any (Lipschitz-continuous) loss function. Further-
more, we present matching upper and lower bounds,
which together tightly characterize the possible sparse-
ness guaranteed by low `1-norm.

2. Guaranteed Sparsification Procedure

Let w ∈ Rn be an arbitrary (possibly dense) predictor.
Without loss of generality, we assume that wj ≥ 0 for
all j (since otherwise, if wj < 0, we can flip the sign of
the j’th feature). Thus, the predictor w/‖w‖1 defines
a probability measure over the set [n]. To motivate
our construction we would like to note that the predic-
tion 〈w,x〉 can be viewed as the expected value of the
elements in x according to the distribution w/‖w‖1
(scaled by ‖w‖1). We can approximate this expected
value by an empirical average of randomly selected ele-
ments of x. Since our goal is to find a sparse predictor
whose predictions are similar to those of w, we con-
struct the sparse predictor by randomly selecting S
elements from [n] based on the probability measure
w/‖w‖1.

Formally, let r be a sequence of i.i.d. random variables
over [n] with P(ri = j) = wj

‖w‖1 . We set our sparse

predictor to be w̃ = ‖w‖1
S

∑S
i=1 eri , where ei is the ith

standard basis vector.

Theorem 1 Let X = {x ∈ Rn : ‖x‖∞ ≤ 1} be an
instance space, Y be a target space, D be a distribution
over X × Y and L : R × Y → R be a loss function
which is λ-Lipschitz with respect to its first argument.
For any w ∈ Rn

+, and any δ > 0, with probability at
least 1− δ over the choice of r, we have:

E(x,y)∼D[L(〈w̃, x〉 , y)] ≤ E(x,y)∼D[L(〈w, x〉 , y)]

+
√

2
λ ‖w‖1√

S

(√
log (1/δ) + 5

)
Taking δ close to one, we can conclude that the ex-
istence of a predictor w with expected loss l, guar-
antees the existence of a sparse predictor w̃, with
‖w̃‖0 ≤ (7.1λ ‖w‖1 /ε)2 and expected loss at most
l+ ε. Furthermore, after learning w, we can efficiently
construct a sparse predictor w̃, with sparsity almost
as above. Note that to perform the sparsification we
do not need access to the source distribution D nor
to any samples—the sparse predictor w̃ is a (random)
function of only the (dense) predictor w. If we do
have access to samples, and a low `1-norm predictor
with low training error, we can repeatdly (randomly)
construct a sparse predictor until we verify that the
sparse predictor indeed has low training error. Theo-
rem 1, with D set to the empirical distribution, bounds
the expected runtime of this procedure.

3. Tightness and Extreme Examples

We now argue that the procedure of the previous sec-
tion is optimal in the sense that no other procedure
can yield a better sparsity guarantee (better by more
than a constant factor) in terms of the `1-norm of the
input predictor w.

We will use the following lemma, which generalizes the
Khintchine inequality also to biased random variables.
We use the lemma in order to obtain lower bounds
on the mean-absolute error in terms of the bias and
variance of the prediction:

Lemma 1 Let x = (x1, . . . , xn) be a sequence of in-
dependent Bernoulli random variables with 0.05 ≤
P[xk = 1] ≤ 0.95. Let Q be an arbitrary polynomial
over n variables of degree d. Then,

E[ |Q(x)| ] ≥ (0.2)d E[ |Q(x)|2 ]
1
2 .

Theorem 2 For any B > 2 and l > 0, there ex-
ists a data distribution, such that a (dense) predictor
w with ‖w‖1 = B can achieve mean absolute-error
(L(a, b) = |a− b|) less than l, but for any ε ≤ 0.1,
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at least B2/(45 ε2) features must be used for achieving
mean absolute-error less than ε.

To prove the theorem, we present an input distribution
D for which we have a specific (dense) predictor with
‖w‖1 = B and mean absolute-error l, and also a lower
bound on mean absolute-error of any sparse predictor.

Consider an instance space X = {+1,−1}n, where
n ≥ 1/(la)2, and a target space Y = {+1,−1}. The
distribution D over X ×Y is as follows. First, the label
y is uniformly distributed with P(y = 1) = 1

2 . Next,
the features x1, . . . , xn are identically distributed and
are independent conditioned on y, with P(xi = y | y) =
1+a
2 , where a = 1/B. Thus, the correlation between

each feature and the label is 1/B. In such an example,
the “information” about the label is spread among all
features, and in order to obtain a good predictor, this
distributed information needs to be pulled together,
e.g. using a dense linear predictor.

Without using Lemma 1 we can obtain a lower bound
of ‖u‖0 = Ω(B2/ε) on the sparsity of a predictor
achieving squared-error at most ε. This lower bound
for the special case of the squared error is tight and
matches the upper-bound analysis of Lee et al (Lee
et al., 1996). Using Lemma 1 allows us to demonstrate
a squared dependence on ε might be necessary.

3.1. Low `2-norm does not guarantee
sparsifiability

One might ask if the existence of a predictor with low
`2-norm can also guarantee the existence of a sparse
predictor. Perhaps even if our proposed sparsification
procedure does not work well on predictors with low
`2-norm, a different procedure might be used to spar-
sify such predictors. We show that this is not the case,
by presenting examples where good predictions can be
obtained by predictors with arbitrarily low `2-norm,
but for which an arbitrarily high number of features is
required in order to achieve a fixed performance.

To do so, we use the same type of data distribution
and dense predictor as in the previous section. Setting
wi = 1/(na) yields ‖w‖2 = 1/(a

√
n). Therefore, we

can decrease the correlation a as we increase the di-
mension n, keeping the `2-norm of the dense predictor
fixed, but requiring an increasing number of features
in order to obtain good performance.

3.2. Sparsifying by considering only large
weights

The procedure described in Section 2 involves random
sampling of the features. An alternative determinis-

tic procedure, commonly used in practice, is to choose
only the features with the largest weights, or in other
words, to zero small weights of the predictor (and per-
haps readjust the remaining weights). We consider ap-
plying this deterministic procedure to a low `1-norm
predictor w∗ learned by minimizing the expected loss
subject to `1-norm regularization. Even on such an
“optimal” predictor w∗, using only the features with
largest coefficients can yield a large degradation in per-
formance. This can happen when many features are
highly correlated.

Specifically, for any arbitrarily large S and arbitrar-
ily small l, we show an example in which the optimal
predictor w∗ with `1-norm at most 3 achieves mean
absolute-error at most l, but using any re-weighting
of the S features with the largest coefficients yields
mean absolute-error of at least 0.02. Note that if
S ≥ (25/ε)2, our randomized procedure would yield
a S-sparse predictor with error at most l+ ε, which we
could set arbitrarily close to zero.

We again define a joint distribution over binary tar-
gets y ∈ {+1,−1} and binary feature vectors x ∈
{+1,−1}Sn, with n = 7/l2 (i.e. the overall dimen-
sionality is 7S/l2). For convenience we will label the
features with two indices: x1,1, . . . , xS,n. To describe
the data distribution we use another set of n (la-
tent) binary random variables z1, . . . , zn ∈ {+1,−1},
i.i.d. given y, with P[zi = y | y] = (1 + 1

3 + i−1
3(n−1) )/2

(i.e. the correlation between these variables and the
labels are between 1/3 and 2/3). The features xi,j are
independent given z, y, and are specified by P[xi,j =
zi | zi] = 7/8 = (1 + 0.75)/2. The features are thus
grouped into n groups of S highly correlated features,
where the correlation between each feature and the
label varies between 1/4 and 1/2.

The minimum-mean-absolute-error predictor among
those with `1-norm bounded by three achieves mean
absolute-error less than l. However, in this optimal
predictor, the weights wn,i corresponding to features
in the last group will be larger than any other weights,
and so these features will be selected as the maximal
weight features. But since these features are all highly
correlated, using any combination of them will not
yield mean absolute-error better than 0.02.

We also note that the features in the last group would
also be the first S features selected by following the `1-
norm regularization path or by related methods such
as LARS (Efron et al., 2004).
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