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Abstract

We study the problem of minimizing the loss of a linear predictor with a con-
straint on the ¢; norm of the predictor. We describe a forward greedy selection
algorithm for this task and analyze its rate of convergence. As a direct corollary
of our convergence analysis we obtain a bound on the sparsity of the predictor as
a function of the desired optimization accuracy, the bound on the /1 norm, and the
Lipschitz constant of the loss function.

1 Outline of main results

We consider the problem of searching a linear predictor with low loss and low ¢/; norm.
Formally, let X be an instance space, ) be a target space, and D be a distribution over
X x Y. Our goal is to approximately solve the following optimization problem

minE )~ [L((w.x),3)] st Wy < B, (1)

where L : R x )Y — R is a loss function. Furthermore, we would like to find an
approximated solution to Eq. (1) which is also sparse, namely, ||w|lo = |{7 : w; # 0}]
is small.

We describe an iterative algorithm for solving Eq. (1) that alters a single element
of w at each iteration. Assuming that L is convex and A-Lipschitz with respect to its
first argument, we prove that after performing 7" iterations of the algorithm it finds a
solution with accuracy O((\ B/€)?). Our analysis therefore implies that we can find
w such that

o [wlo=0((AB/e)%)
e For all w* with ||w||; < B we have E[L((w,x),y)] < E[L({w*,x),y)] + ¢

In a separate technical report, we show that this relation between ||w||o, B, and € is
tight.



2 Problem Setting

Let ¢ : R™ — R be the function
c(w) = E[L((w,x),y)] .

Consider the problem
minc(w) st. [|[w|1 < B, )

and let w* be the minimizer of the above. Recall that our goal is to find a vector w
such that ¢(w) — ¢(w*) < e and ||w||p = O(B?/¢?).

In this report we present an iterative algorithm for solving Eq. (2). The algorithm
initializes w; = 0 and at each iteration it alters a single element of w. Therefore,
Iwirillo < ||wello + 1. We prove that the algorithm finds an e-accurate solution of
Eq. (2) after performing at most O(B?/€?) iterations. As an immediate corollary we
obtain that if we stop the procedure after performing 7 = O(B?/¢?) iterations we
will have ¢(wr) < ¢(w*) + € and ||wrl||o < T. That is, we obtain a sparsification
procedure that finds a good sparse predictor without first finding a good low ¢;-norm
predictor. Naturally, this procedure must be aware of the function c, that is, it should
know (at least approximately) the distribution D and the loss function L. This stands in
contrast to the randomized sparsification procedure described in the previous section,
which is oblivious to D and L. Furthermore, to simplify our derivation we assume
throughout this section that D is a distribution over a finite training set. Additionally,
we assume that L is a proper convex function w.r.t. its first argument.

The report is organized as follows. Initially, we describe and analyze a forward
greedy selection algorithm assuming that L has § Lipschitz continuous derivative (see
Definition 1 below). We prove that the procedure finds an e-accurate solution after per-
forming at most O(ﬁB—i) iterations. Next, we provide a mechanism for approximating

any A-Lipschitz function, L, by a function with 3 Lipschitz continuous derivative, L,
with 8 = 5. This implies that we can run the forward greedy selection algorithm and
find an e/2-accurate solution of ¢ = E[L({w,x),y)| after O(A;Bz) iterations. Com-
bining this with the fact that ¢ approximates ¢, namely for all w |c(w) — é(w)| < €/2,

we obtain a guaranteed sparsification procedure for any A-Lipschitz convex function.

Definition 1 A loss function L has § Lipschitz continuous derivative if it is differen-
tiable (w.r.t. its first argument) and its derivative (w.r.t. its first argument) satisfies

Vyeyv Va17a2€Ra |Ll(alvy)_L/(a27y)| §ﬁ|a’1_a2| .

3 A forward greedy selection algorithm

We now describe a greedy forward selection algorithm for solving Eq. (2). The algo-
rithm initializes the predictor vector to be the zero vector, w; = 0. On iteration ¢, we
first choose a feature by calculating the gradient of ¢ at w; (denoted ;) and finding



INPUT: Loss function L : R x Y — R ; /1 constraint B ;
Training set {(x1,%1), - - -, (Xm, Ym ) } With ||x;||cc < 1 forall
ASSUMPTION: L has 3 Lipschitz continuous derivative (see Definition 1)
(if not, see Sec. 4)
INITIALIZE: w1 =0
Fort=1,2,...
0; = Vc(w,) where ¢(w) = % S LW, %), yi)
Jt € argmax; |6;]
(w.lo.g. assume sign(),, = —1)

6((91,7Wt>+3||91,|\oo)}
’ 4 B2

N = min{l
Wt+1 = (1 — T]t)Wt —+ 77t Bejf

STOPPING CONDITION: (0, W) + B ||0:]|cc < €

Figure 1: A greedy algorithm for solving Eq. (2) when L has ( Lipschitz continuous
derivative.

its largest element in absolute value. Then, we calculate a step size 7, and update the
predictor according to

Wt+1 = (]. — ’I’]t)Wt =+ 77t Bejt .

The step size and the stopping criterion are based on our analysis below. Note that
the update form ensures us that |w||; < B and that |w|lo < t. A pseudo-code
describing the algorithm is given in Fig. 1.

The following theorem bounds the number of iterations required by the algorithm
to converge.

Theorem 1 Assume that the algorithm in Fig. 1 is run with a loss function L that has (3
Lipschitz continuous derivative and with a training set such that for all i, |X; || < 1.

2
Then, the algorithm stops after at most O (%) iterations.

We now turn to the proof of Thm. 1. For all ¢, let ¢; be the sub-optimality of the
algorithm at iteration ¢, that is,

er = c(wy) — w:”r‘r’lvil?SBc(w) .

We also use w* to denote an optimal solution of Eq. (2).
The following lemma provides us with an upper bound on ¢;. Its proof using duality
arguments (see the appendix for more details).

Lemma 1 Forallt we have (8, w;) + B ||0]|c > €.



Proof From Fenchel duality, for any 6 we have

—c*(0) — B8]l < w:|I\Ivlvi|\n§Bc(w < e(wy) .

Therefore,
e < c(wy)+c*(0) + B 0]l

In particular, it holds for 8; = Vc¢(w;). But, in this case we also know from Lemma 7
that c(wy) + ¢*(0¢) = (wy, 8;). This concludes our proof. O
The next central lemma analyzes the progress of the algorithm.

Lemma 2 Assume that L has (8 Lipschitz continuous derivative and that for all i,
I%;]|co < 1. Then,
2n? B?

3 .

Proof Denote u; = 7, (Bejf —w) and thus we can rewrite the update rule as w11 =
(1—n)wi+nBel =w; +uy. Let Ay = ¢, — 441 = ¢(wy) — c(Wyy1). Since L has
0 Lipschitz continuous derivative we can use Lemma 8 to get that for any a;,a2 € R
and y € )Y we have

€t — €441 = Ny €4 —

a2

L(ay + az,y) — L(a1,y) < L'(a1) az + ﬁ : 3)

Therefore,

At =

3=

(Z (L((we,x4),yi) — L({we + utaxi>7yi))>

i=1

(i (i) ) - ““ww)

i=1

\Y
2=

1o~ (g, z:))?
= — 0 _ —_—
(0, 1) m Z 283 )
i=1
where the first equality follows from the definition of ¢, the second inequality follows
from Eq. (3), and the in the last equality we used the definition of 8;. Next, we use
Holder inequality, the assumption ||x;||so < 1, and the triangle inequality, to get that

(wr,x:) < el xilloo < el < me(Be? |y + wll) <2, B

Therefore,
21?2 B? - 2n? B?
Ay > —(04,u;) — 77155 =M (<9t,Wt> - B <0t7eh>) - ntﬁ )
The definition of j; implies that (8;,e’t) = —|0||co. Therefore, we can invoke
Lemma 1 and this concludes our proof. a

Equipped with the above lemma we are now ready to prove Thm. 1.



INPUT: Loss function L : R x J) — R ; ¢; constraint B ; accuracy €
ASSUMPTION: L is proper, convex, and A-Lipschitz w.r.t. its first argument

STEP 1:

Set 5 = 232

For each y define L(a,y) = inf, ﬁvQ + L(a —v,y)
STEP 2:

Run the algorithm in Fig. 1 with L and with accuracy 5

Figure 2: A greedy algorithm for solving Eq. (2) for L being convex and A-Lipschitz.

Proof [of Thm. 1] The definition of 7, implies that (see the proof of Lemma 2)

2n?B?
Atzet—et+1>max<net— n ) .

n B
Note also that €; is monotonically decreasing. We consider two phases. At phase 1, we
have €, > %. In this case, f% > 1 and thus by setting 7 = 1 we obtain A; > 252.
Therefore, the number of iterations in phase 1 is at most 2613% = O(1). At phase 2, we

2
have ¢; < % we can set ) = f 5’2 and get that A; > 85 ;g . Finally, Lemma 9 tells us

852
O

that the number of iterations in phase 2 is at most 1 + Ge

4 Approximating a Lipschitz-convex function by a func-
tion with a Lipschitz continuous gradient

Let L : R — R be a proper, convex, A-Lipschitz function. The infimal convolution of

L and the function f(«) = ﬁ ||||? is defined as

L(a) = iI;f %1)2 +L{a—v). )

The following lemma states that L approximates L and it has Lipschitz continuous
gradient. Its proof is also useful for deriving a closed form of L using the Fenchel
conjugate operator.

Lemma 3 Let L be a proper, convex, \-Lipschitz function and let L be as defined in
Eq. (5). Then,

o Va, |L(a) - L(a)| < 2

o L has 3 Lipschitz continuous gradient



Proof Throughout the proof we use some definitions from convex analysis. In partic-
ular, the Fenchel conjugate of a function g is denoted by g*. See the appendix for more
details. First, using Lemma 4 and the definition of the function f we know that

= B

L*(0) = f*(0) + L*(0) = 592+L*(9).

Therefore, L* is 3 strongly convex (see appendix) and therefore using Lemma 8 we
get that Lhas 3 Lipschitz continuous gradient. This establishes the second claim of the
lemma. Next, using Lemma 5 and the fact that L is A Lipschitz we get that dom(L*) C
[—A, A]. Thus,

i) > @) =0 - P > i) - B

Finally, using Lemma 6 we conclude that

L(a) < L(a) < L(a) + =—.

O

Based on the above lemma we obtain a following sparsification procedure that is

applicable for any proper, convex, and A\ Lipschitz loss function L. The sparsifica-

tion procedure is outlined in Fig. 2. Combining Thm. 1 with Lemma 3 we obtain the
following theorem:

Theorem 2 [f the sparsification procedure given in Fig. 2 is run with a proper, convex,
and X Lipschitz function L, then it finds w s.t. ¢(w) < ¢(w*) + € and

\2 B2
||w||o=o( ! )
€

Proof Using Thm. 1 and the definition of 3 we get that the output of the sparsification

procedure satisfies
B? A2 B?
<O|—) =0 .
[wllo < (ﬁe) ( 2 )

Let é(w) = E[L({w,x),y)]. Using Lemma 3, for any w we have

|é(w) —c(w)| = ’E[i((w,x>,y) — L({w,x),y)] ’
< [BIL(w.x).9) ~ Liw.x) )] < 225 =€

Let w* be the minimizer of ¢(w) and let w* be the minimizer of ¢(w). Then,

c(w) —c(w") = c(w)—é&w)+é(w) —e(w") + &(w") — c(w")
€ € €
< —4-+4-=c¢.
s + 2 + 1 €
This concludes our proof. a
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A Convex Analysis and Technical Lemmas

We first give a few basic definitions from convex analysis. We allow functions to output
+00 and denote by dom(f) the set {w : f(w) < 4o0}. The Fenchel conjugate of a
function f : R™ — R is defined as

1(8) = max (w,0) — f(w) . ®)

If f is closed and convex then f** = f.
The Fenchel weak duality theorem (see e.g. theorem 3.3.5 in [BL06]) states that
for any two functions f, g we have

max —f*(=6) — ¢"() < min f(w) +g(w) .

The following lemma is a convolution theorem for infimal convolution.

Lemma 4 [f f(w) and g(w) are proper and convex functions and h(w) = inf, f(v)+
g(w — V) is their infimal convolution, then h* = f* + g*.

The following lemma relates the Lipschitz property of ¢ to the domain of its conju-
gate function.

Lemma 5 Ifc: R — R is A\-Lipschitz then: dom(c*) C [\, A].

Proof From Lipschitz property we have ¢(v) — ¢(0) < Alv — 0] = A|v| and thus
—c(v) > —(A|v| + ¢(0)). Therefore,

c*(0) = max(v,0) —c(v)

00 if |6] > A
—c(0) else

Y]

mgx(v,@) — AMo| = ¢(0) = {

O
Our next lemma is a perturbation lemma for Fenchel conjugate. Its proof can be
found in [SSS06].



Lemma 6 Let f, g be two functions and assume that for all w € S we have g(w) >
f(w) > g(w) — z for some constant z. Then, g*(0) < f*(0) < g*(0) + =.

The next lemma states a sufficient condition under which the Fenchel-Young in-
equality holds with equality. Its proof can be found in ([BLO6], Proposition 3.3.4).

Lemma 7 Let f be a closed and convex function and let O f (w) be its differential set
atw. Then, for all @ € Of (w) we have, f(w) + f*(0) = (6,w) .

Next, we define the notion of strong convexity.

Definition 2 A continuous function f is o-strongly convex over a convex set S if S is
contained in the domain of f and for all v,u € S and « € [0, 1] we have

flav+ (1 -aju) < af(v)+(1—-a)f(a)

o
—504(1 —a)|v—ul?*.

The next lemma underscores the importance of strongly convex functions. For a
proof see for example Lemma 18 in [SSO7].

Lemma 8 Let f be a proper and o-strongly convex function over S. Let f* be the
Fenchel conjugate of f. Then, f* has a o Lipschitz continuous gradient. Furthermore,
forall 81,05 € R™, we have

F1(01+02) — £(81) < (V/*(6,).00) + - 6]

This technical lemma is used for proving the convergence of our greedy forward
selection algorithm.

Lemma 9 Letr € (0,1/2) and let 2% > €1 > €9 > ... be a sequence such that for all

t>1wehave e, — €1 2> 1 ef. Then, for all t we have €; < ﬁ

Proof We prove the lemma by induction. First, for ¢ = 1 we have ﬁ = Q—IT and the

claim clearly holds. Assume that the claim holds for some ¢. Then,
6t+1§6t—r6?§ﬁ—ﬁ, )

where we used the fact that the function z—rz? is monotonically increasing in [0, 1/(2r)]

along with the inductive assumption. We can rewrite the right-hand side of Eq. (7) as

1 <(t+1)+1 ) (t+1)71) _ 1 ((t+1)271)
r(t+2) T+1 i+1 = (42 (t+1)2 :
1)2-1 . .
The ;erm (t(t +)1)2 is smaller than 1 and thus €41 < m, which concludes our
proof.



