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Abstract

We consider the following problem: given a linear predictor w with low `1-
norm, is it always possible to obtain a sparse predictor with similar error? It is
interesting to understand this question as a further step in understanding the rela-
tionship between sparsity and the `1-norm, which is often used as a surrogate to
sparsity. We show that for any ε > 0, there exists a predictor with expected loss at
most ε more than w that uses only O

`
(‖w‖1 /ε)

2
´

features. Furthermore, such a
predictor can be obtained using a simple randomized procedure. We show that this
bound is tight, and hence the simple randomized procedure is in a sense optimal.

1 Introduction
Even when many features might be available for use in a prediction task, it is often
beneficial to use only a small subset of the available features. Predictors that use only
a small subset of features require a smaller memory footprint and can be applied faster.
Furthermore, in applications such as medical diagnostics, obtaining each possible “fea-
ture” (e.g. test result) can be costly, and so a predictor that uses only a small number
of features is desirable, even at the cost of a small degradation in performance relative
to a predictor that uses more features. Focusing on linear prediction, it is generally
difficult to find the best predictor subject to a constraint on the number of features used
(the sparsity of the predictor), as this is a non-convex constraint that leads to a non-
convex optimization problem. A common alternative is to seek a good predictor with
small `1-norm, using this measure as a surrogate for sparsity. However, the resulting
predictor need not necessarily be sparse. A common approach is to somehow obtain a
sparse predictor from the learned low-`1-norm predictor. But can this always be done
without significantly sacrificing performance?

In this paper we study the question of “sparsification” of linear predictors. Can a
low-`1-norm predictor always be sparsified? I.e., does the existence of a good linear
predictor with low `1-norm guarantee the existence of a good linear predictor that uses
only a small number of features? If so, what is the relationship between the `1-norm
and the number of features necessary to achieve similar performance? And is there a
simple procedure for “sparsifying” a predictor, i.e. obtaining a good sparse predictor
from a good predictor with low `1-norm?

1



We provide a simple randomized procedure for obtaining a sparse predictor w̃ from
a low-`1-predictor w. We show that for any allowed degradation ε > 0, our sparsifica-
tion procedure can produce a linear predictor w̃ that uses onlyO

(
(‖w‖1 /ε)2

)
features

(independent of the overall number of features used by w), and has expected loss at
most ε worse than w. Furthermore, we show that this relationship is tight (in the worst
case): as many as Ω

(
(‖w‖1 /ε)2

)
features might be required in order to get within ε

of the expected loss of a linear predictor w. We also show that the existence of a pre-
dictor with low `2-norm is not enough to guarantee the existence of a sparse predictor.
This is perhaps not surprising, and provides further insight as to why `1-regularization
is preferable to `2-regularization when sparsity is the true objective. Finally, we show
that the common sparsification heuristic, in which the smallest elements of w are ze-
roed, might produce poor sparse predictors. For constructing our tightness results we
derive a generalization of Khintchine inequality that holds for biased random variables.
We believe that this inequality can be useful for deriving additional lower bounds in
machine learning, involving linear loss functions.

Related work The use of the `1-norm as a surrogate for sparsity has a long history
(e.g. [10] and the references therein), and much work has been done on understanding
the relationship between the `1-norm and sparsity.

Donoho [2] provides sufficient conditions for when the optimal `1-norm predictor
will be sparse, but this does not resolve the question of what happens when these con-
ditions are not met and the optimal `1-norm predictor is not sparse, but we still desire
a sparse classifier. Recent work on compressed sensing [1, 3] further explores how `1-
norm regularization can be used for recovering a sparse predictor, but only under sever
assumptions on the training examples (i.e. the design matrix).

Ng [6] considers PAC learning of a sparse predictor, and shows that `1-norm regu-
larization is competitive with the best sparse predictor, while `2-regularization does not
appear to be. In such a scenario we are not interested in the resulting predictor being
sparse (it won’t necessarily be sparse), but only in its generalization performance. In
contrast, in this paper we are interested in the resulting predictor being sparse, but do
not study `1-regularized learning. Rather, we assume we already have a good low-`1-
norm predictor, and ask whether we can obtain from it a good predictor that is sparse.

The converse of our question, focusing on linear classification, was recently re-
solved by Servedio [9]: given a sparse linear separator, can it always be represented
using small weights?

The randomized sparsification procedure we suggest was previously proposed by
Schapire et al [8], as a tool for obtaining generalization bounds for boosting. However,
Schapire et al’s bound depends on log(m), where m is the number of examples in
the input distribution, and is therefore only valid for guaranteeing performance over
a finite sample. Our bound does not depend on m and is adequate for guaranteeing
performance over an arbitrary source distribution.

Studying neural networks with bounded fan-in, Lee et al [5] addressed an equiv-
alent formulation of this question, providing an upper bound similar to ours, for the
special case of the squared-error loss. Here we obtain a more general result, that holds
for any (Lipschitz-continuous) loss function. Furthermore, we present matching upper
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and lower bounds, which together tightly characterize the possible sparseness guaran-
teed by low `1-norm.

2 Problem Setting
We first introduce our notation and formally describe the problem setting. We denote
scalars with lower case letters (e.g. x) and vectors with bold-face letters (e.g. x).
Random variables are designated by sans-serif fonts (e.g. x) and random vectors by
bold-face sans-serif fonts (e.g. x). The set of non-negative reals is denoted by R+, and
the set of integers {1, . . . , k} is denoted by [k].

Consider instances represented by vectors of n features x ∈ X ⊂ Rn and target
values y in some target space Y . E.g., in classification Y = {+1,−1}, while in regres-
sionY = R. A linear predictor is a function of the form1 f(x) = 〈w,x〉 =

∑n
i=1 wixi.

Given an instance-target pair (x, y) ∈ X × Y , we assess the quality of a predic-
tor w for this pair using a loss function L : R × Y → R+. For example, a well
studied loss function for classification is the hinge-loss defined as L(〈w,x〉 , y) =
max{0, 1 − y 〈w,x〉}. We say that a loss function is λ-Lipschitz with respect to its
first argument if for any two scalars a1, a2 ∈ R and target value y ∈ Y we have that
|L(a1, y)− L(a2, y)| ≤ λ |a1 − a2|. For a distribution D over X × Y , we assess the
quality of the predictor w using its expected loss E(x,y)∼D[L(〈w,x〉 , y)] .

The focus of this paper is on constructions of sparse linear predictors. We refer to
the number of non-zero elements of a predictor w as its “sparsity”, and denote it ‖w‖0.
Predictor sparsification is a procedure which receives as input an arbitrary (possibly
non-sparse) predictor w and a target sparsity level S and returns as output a predictor
w̃ for which ‖w̃‖0 ≤ S. Naturally, the sparsification procedure might damage the
accuracy of the predictor w. That is, the expected loss of the sparse predictor w̃ might
be larger than the expected loss of the non-sparse predictor w. The main result of this
paper is a sparsification procedure along with sufficient conditions under which the
excess loss of the resulting sparse predictor is small.

3 Guaranteed Sparsification Procedure
We are now ready to present our randomized “sparsification” procedure. That is, a pro-
cedure that takes as input a low `1-norm predictor and outputs a sparse predictor with
similar performance. We then state our main theorem which bounds the degradation
in performance of the sparsified predictor as a function of the `1-norm of the original
predictor and the desired sparsity.

Let w ∈ Rn be an arbitrary (possibly dense) predictor. Without loss of generality,
we assume that wj ≥ 0 for all j (since otherwise, if wj < 0, we can flip the sign
of the j’th feature). Thus, the predictor w/‖w‖1 defines a probability measure over
the set [n]. To motivate our construction we would like to note that the prediction
〈w,x〉 can be viewed as the expected value of the elements in x according to the

1For clarity of presentation, in this paper we do not allow an unregularized biased term. Both our sparsi-
fiability results and tightness results can be easily modified to allow a bias term
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distribution w/‖w‖1 (scaled by ‖w‖1). We can approximate this expected value by
an empirical average of randomly selected elements of x. Since our goal is to find a
sparse predictor whose predictions are similar to those of w, we construct the sparse
predictor by randomly selecting S elements from [n] based on the probability measure
w/‖w‖1.

Formally, let r = (r1, . . . , rS) be a sequence of i.i.d. random variables over [n]
where for all i ∈ [S] and j ∈ [n] we have P(ri = j) = wj

‖w‖1 . Let ei ∈ Rn be the
vector whose jth element is zero if i 6= j and 1 if i = j. We set our sparse predictor to
be

w̃ =
‖w‖1
S

S∑
i=1

eri . (1)

For any given x ∈ X we have,

E[〈w̃,x〉] =
‖w‖1
S

S∑
i=1

E[xri ] = ‖w‖1 E[xr1 ] = ‖w‖1
n∑
j=1

wj
‖w‖1

xj = 〈w,x〉 .

Thus, the expectations of the predictions of w̃ are precisely the predictions of w (where
the expectation is over the sparsification). The theorem below states that if ‖w‖1 is
significantly smaller than

√
S then the predictions of w̃ are concentrated around their

expectation, and are therefore very similar to those of w, yielding almost the same
performance.

Theorem 1 Let X = {x ∈ Rn : ‖x‖∞ ≤ 1} be an instance space, Y be a target
space, D be an arbitrary distribution over X × Y and L : R × Y → R be a loss
function which is λ-Lipschitz with respect to its first argument. For any w ∈ Rn+,
let r = (r1, . . . , rS) be a sequence of independent random variables over [n], each of
which is distributed according to w/‖w‖1, and let w̃ be the random predictor defined
in Eq. 1. Then, for any scalar δ ∈ (0, 1), with probability of at least 1 − δ over the
choice of r we have that

E(x,y)∼D[L(〈w̃,x〉 , y)] ≤ E(x,y)∼D[L(〈w,x〉 , y)] +
√

2
λ ‖w‖1√

S

(√
log (1/δ) + 5

)
.

Before proving Theorem 1, we underscore its consequences. First, note that in order
to establish the existence of a sparse predictor, we could take δ → 1. We get that the
existence of a predictor w with expected loss l, guarantees the existence of a sparse
predictor w̃, with ‖w̃‖0 ≤ (7.1λ ‖w‖1 /ε)2 and expected loss at most l + ε. Fur-
thermore, a good sparse predictor can be obtained based on the knowledge of a good
low-`1-norm predictor. Suppose we learned a predictor w with low generalization er-
ror (expected loss on the source distribution), E(x,y)∼D[L(〈w,x〉 , y)], where D is an
(unknown) source distribution over X × Y . We would now like to construct a sparse
predictor, w̃, such that the generalization error of w̃ does not exceed that of w by
more than ε. Theorem 1 tells us that if we choose w̃ randomly as in Eq. 1 and if
S ≥ (9 ‖w‖1/ε)

2
, then there’s a 99% chance that the generalization error of w̃ does

not exceed that of w by more than ε. Note that to perform the sparsification we do not
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need access to the source distribution D nor to any samples—the sparse predictor w̃ is
a (random) function of only the (dense) predictor w.

We can also use Theorem 1 in order to always find a sparse predictor with good
performance on a given training set of examples, {(xi, yi)}mi=1, given a low `1-norm
predictor w with good training performance (e.g. one that was learned using this train-
ing set). To do so, construct a sparse predictor as in Eq. 1 and evaluate its performance
on the training set of examples. Then, repeat the randomized construction until the
average loss of w̃ on the training set is at most ε plus the average loss of w on the
training set. Setting D to be the uniform distribution over the training examples and
applying Theorem 1 with δ = 0.5 we get that with probability at least half, the per-
formance of w̃ does not exceed that of w by more than 8.3λ ‖w‖1/

√
S. Thus, if

S ≥ (8.3λ ‖w‖1/ε)
2, after an average of two random sparsification attempts, we will

obtain an S-sparse predictor with mean training loss at most ε more than that of our
original (dense) predictor w.

Proof of Theorem 1 Recall that w̃ is a function of the sequence of random variables
r = (r1, . . . , rS). Let us denote by g(r) the expected loss of w̃, namely,

g(r) = E(x,y)∼D[L(〈w̃,x〉 , y)] . (2)

We prove the theorem using the following three steps. First, we use McDiarmid in-
equality to show that g(r) is concentrated. Specifically, Lemma 1 states that with prob-
ability of at least 1−δ we have

g(r) ≤ Er[g(r)] +
λ ‖w‖1√

S

√
2 log (2/δ) . (3)

Next, in Lemma 2 we utilize the fact that L is λ-Lipschitz to show that

Er[g(r)] ≤ E(x,y)[L(〈w,x〉 , y)] + λE(x,y)Er[| 〈w̃,x〉 − 〈w,x〉 |] . (4)

Finally, Lemma 3 bounds the expected difference between 〈w,x〉 and 〈w̃,x〉 . This
bound holds for any x ∈ X and therefore also for the expectation over x:

E(x,y)Er[| 〈w̃,x〉 − 〈w,x〉 |] ≤ 4
√

2 ‖w‖1/
√
S . (5)

Combining Eqs. 3-5 gives that

g(r) ≤ E(x,y)[L(〈w,x〉 , y)] +
√

2λ ‖w‖1√
S

(√
log(2/δ) + 4

)
.

The inequality in Theorem 1 follows from the above by further bounding
√

log(2/δ) ≤√
log(1/δ) +

√
log(2) and 4 +

√
log(2) < 5. ut

Lemma 1 Under the conditions of Theorem 1, let g(r) be as defined in Eq. 2 and let
δ ∈ (0, 1). Then, the following bound holds with probability of at least 1− δ,

g(r) ≤ Er[g(r)] +
λ ‖w‖1√

S

√
2 log (2/δ) .
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Proof We prove the lemma using McDiarmid inequality. First, we need to show that
g has the bounded differences property with parameter λ ‖w‖1/S. That is, we need
to show that for all i ∈ [S] and r′i ∈ [n], the difference between g(r1, . . . , rS) and
g(r1, . . . , ri−1, r

′
i, ri+1, . . . , rS) is at most 2λ ‖w‖1/S. To do so, we denote by w̃′ the

vector w̃′ = ‖w‖1
S (er

′
i +

∑
j 6=i e

ri). Note that for all x ∈ X we have that, | 〈w̃,x〉 −〈
w̃′,x

〉
| = ‖w‖1

S

∣∣xri − xr′i
∣∣ ≤ 2 ‖w‖1

S . Since L is λ-Lipschitz the above implies that

|L(〈w̃,x〉 , y) − L(
〈
w̃′,x

〉
, y)| ≤ 2λ ‖w‖1

S . The last inequality holds for any x ∈ X
and therefore we conclude that

|E(x,y)[L(〈w̃,x〉 , y)] − E(x,y)[L(
〈
w̃′,x

〉
, y)] | ≤ 2λ ‖w‖1/S .

We have thus shown that g has the bounded differences property. We can now utilize
McDiarmid inequality to get that for all t > 0 we have that P[|g − E[g]| ≥ t] ≤
2 exp

(
−St2/(2λ2‖w‖1

2)
)

. Denote by δ the right-hand side of the above and solving
for t we conclude that with probability of at least 1 − δ the following holds, g(r) ≤
E[g(r)] + λ ‖w‖1√

S

√
2 log (2/δ). ut

Lemma 2 Under the conditions of Lemma 1, we have

Er[g(r)] ≤ E(x,y)[L(〈w,x〉 , y)] + λE(x,y)Er[| 〈w̃,x〉 − 〈w,x〉 |] .

Proof Fix x ∈ X . Since L is λ-Lipschitz we have L(〈w̃,x〉 , y) ≤ L(〈w,x〉 , y) +
λ | 〈w̃,x〉 − 〈w,x〉 |. Taking expectation of the above over r:

Er[L(〈w̃,x〉), y] ≤ L(〈w,x〉 , y) + λEr[| 〈w̃,x〉 − 〈w,x〉 |] .

Taking again expectation of the above this time over (x, y) gives,

E(x,y)Er[L(〈w̃,x〉), y] ≤ E(x,y)[L(〈w,x〉 , y)] + λE(x,y)Er[| 〈w̃,x〉 − 〈w,x〉 |] .

The left-hand side of the above equation equals to ErE(x,y)[L(〈w̃,x〉), y], which by
definition equals to Er[g(r)] and our proof is concluded. ut

Lemma 3 Under the conditions of Theorem 1 we have that for all x ∈ X ,

Er [ | 〈w̃,x〉 − 〈w,x〉 | ] ≤ 4
√

2 ‖w‖1√
S
.

Proof For all i ∈ [n] denote zi = ‖w‖1 xri . The sequence z1, . . . , zS is an inde-
pendently and identically distributed sequence with |zi| ≤ ‖w‖1 for all i ∈ [n] since
‖x‖∞ ≤ 1. We can rewrite 〈w̃,x〉 as

∑S
i=1

‖w‖1
S xri = 1

S

∑S
i=1 zi . Therefore,

E[〈w̃,x〉] = 〈w,x〉. Using Hoeffding inequality we get that for t > 0, P[ | 〈w̃,x〉 −
〈w,x〉 | > t ] ≤ 2 exp

(
−t2S/(2‖w‖21)

)
. The last inequality tells us that the ran-

dom variable | 〈w̃,x〉 − 〈w,x〉 | is concentrated around zero. Lemma 5 in Appendix A
states that the expectation of a random variable that is concentrated around zero can-
not be very large. Formally, applying Lemma 5 with a = ‖w‖1

√
2/S concludes our

proof. ut
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4 Tightness and Extreme Examples
In the previous section, we established that the existence of a predictor w with ‖w‖1 =
B guarantees the existence of a sparse predictor w̃ with ‖w̃‖0 = O(B2/ε2) and ex-
pected loss at most ε more than the expected loss of w. We further saw how such a
sparse predictor can be obtained. We now argue that this relationship is tight, and a
better guarantee cannot be obtained. The procedure of the previous section is therefore
optimal in the sense that no other procedure can yield a better sparsity guarantee (better
by more than a constant factor) in terms of the `1-norm of the input predictor w.

We will use the following lemma (proved in Appendix A), which generalizes the
Khintchine inequality also to biased random variables. We use the lemma in order to
obtain lower bounds on the mean-absolute error in terms of the bias and variance of the
prediction:

Lemma 4 Let x = (x1, . . . , xn) be a sequence of independent Bernoulli random vari-
ables with 0.05 ≤ P[xk = 1] ≤ 0.95. Let Q be an arbitrary polynomial over n
variables of degree d. Then,

E[ |Q(x)| ] ≥ (0.2)d E[ |Q(x)|2 ]
1
2 .

Theorem 2 For any B > 2 and l > 0, there exists a data distribution, such that
a (dense) predictor w with ‖w‖1 = B can achieve mean absolute-error (L(a, b) =
|a− b|) less than l, but for any ε ≤ 0.1, at least B2/(45 ε2) features must be used for
achieving mean absolute-error less than ε.

Proof Fix some B > 2, l > 0, and ε < 0.1. To prove the theorem, we present an
input distributionD, then demonstrate a specific (dense) predictor with ‖w‖1 = B and
mean absolute-error l, and finally present a lower bound on mean absolute-error of any
sparse predictor, from which we can conclude that any predictor u with mean-absolute
error at most ε must satisfy ‖u‖0 ≥ B2/(45 ε2).

The data distribution: Consider an instance space X = {+1,−1}n, where n ≥
1/(la)2, and a target space Y = {+1,−1}. The distribution D over X × Y is as
follows. First, the label y is uniformly distributed with P(y = 1) = 1

2 . Next, the
features x1, . . . , xn are identically distributed and are independent conditioned on y,
with P(xi = y | y) = 1+a

2 , where a = 1/B. Thus, the correlation between each feature
and the label is 1/B. In such an example, the “information” about the label is spread
among all features, and in order to obtain a good predictor, this distributed information
needs to be pulled together, e.g. using a dense linear predictor.

A dense predictor: Consider the predictor w withwi = 1/(na) for all features i. To
simplify our notation, we use the shorthand E [ 〈w,x〉 | y] for denoting E [ 〈w,x〉 | y = y].
Verifying that E [ 〈w,x〉 | y] = n 1

na a y = y for both values of y, and using Jensen’s
inequality we obtain that:

E [ |〈w,x〉 − y| | y] = E [ |〈w,x〉 − E [ 〈w,x〉 | y]| | y] (6)

≤
√

E
[

(〈w,x〉 − E [ 〈w,x〉 | y])2
∣∣∣ y] =

√
Var[ 〈w,x〉 | y] =

√
1−a2

na2 ≤ 1√
na
≤ l .
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Since the expected loss is bounded by l for both values of y, we conclude that E[|〈w,x〉 − y|] ≤
l. In summary, we get a predictor with `1-norm ‖w‖1 = 1/a = B whose expected
error is at most l.

Sparse prediction: Consider any predictor u with only S non-zero coefficients. For
such a predictor we have

∑
u2
i ≥ (

∑
ui)2/S. Since we consider only B > 2, we

have 0.05 < 0.25 ≤ P[xi = y|y] ≤ 0.75 < 0.95, with the loss being an affine function
(degree one polynomial) of x. We can therefore use Lemma 4 to get that:

E [ | 〈u,x〉 − y| | y] ≥ 0.2
√

E [ (〈u,x〉 − y)2 | y] = 0.2
√

Var[〈u,x〉 | y] + (E [ 〈u,x〉 | y]− y)2 .

Next, we can calculate Var[〈u,x〉 | y] = (1 − a2)
∑
i u

2
i ≥ (1 − a2)(

∑
i ui)

2/S and
E [ 〈u,x〉 | y] = ya

∑
i ui. Denote ρ =

∑
i ui we therefore get that

E[| 〈u,x〉 − y|] = EyE [ | 〈u,x〉 − y| | y] ≥ 0.2
√

(1− a2)ρ2/S + (aρ− 1)2 .

The argument inside the square-root is a quadratic expression in ρ that achieves its
minimum at ρ∗ = a/( 1−a2

S + a2). Substituting ρ = ρ∗ we can bound the expected
loss by:

E[| 〈u,x〉 − y|] ≥ 0.2 /
√

1 + a2

1−a2S . (7)

Recalling that a = 1/B < 1/2, to get an expected loss of at most ε, for ε < 0.1, we
must have:

S ≥ (B2 − 1)
(

0.22−ε2
ε2

)
≥ B2

45 ε2 .

We have shown that any predictor with E[|〈u,x〉−y|] ≤ ε must satisfy ‖u‖0 = S ≥
B2/(45 ε2). ut

Note that without using Lemma 4 the above arguments can be used to obtain a
lower bound of ‖u‖0 = Ω(B2/ε) on the sparsity of a predictor achieving squared-
error at most ε (note the linear rather than squared dependence on ε). This lower bound
for the special case of the squared error is tight and matches the upper-bound analysis
of Lee et al [5].

4.1 Low `2-norm does not guarantee sparsifiability
One might ask if the existence of a predictor with low `2-norm can also guarantee the
existence of a sparse predictor. Perhaps even if our proposed sparsification procedure
does not work well on predictors with low `2-norm, a different procedure might be
used to sparsify such predictors. We now show that this is not the case, by presenting
examples where good predictions can be obtained by predictors with arbitrarily low
`2-norm, but for which an arbitrarily high number of features is required in order to
achieve a fixed performance.

To do so, we use the same type of data distribution and dense predictor as in the
previous section. Setting wi = 1/(na) yields ‖w‖2 = 1/(a

√
n). Therefore, we can

decrease the correlation a as we increase the dimension n, keeping the `2-norm of the
dense predictor fixed, but requiring an increasing number of features in order to obtain
good performance.
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Specifically, letB and l be arbitrarily small positive numbers and S arbitrarily large.
Consider again the data distribution P(y = 1) = 1/2 and P(xi = y|y) = (1 + a)/2
with a correlation of a = (S/3 + 1)−1 and dimensionality n = 1/(a · min(B, l))2.
Following the calculations above (Eq. 6), the dense predictor with wi = 1

na , and so
‖w‖ = 1

a
√
n
≤ B, achieves expected absolute-error E [|〈w,x〉 − y|] ≤ 1/(

√
na) ≤ l.

In contrast, using Eq. 7 we get that no predictor that uses less than S features can
achieve expected absolute-error less than 0.1.

4.2 Sparsifying by considering only large weights
The procedure described in Section 3 involves random sampling of the features. An
alternative deterministic procedure, commonly used in practice, is to choose only the
features with the largest weights, or in other words, to zero small weights of the pre-
dictor (and perhaps readjust the remaining weights). We will consider applying this
deterministic procedure to a low `1-norm predictor w∗ learned by minimizing the ex-
pected loss subject to `1-norm regularization. Even on such an “optimal” predictor
w∗, using only the features with largest coefficients, can yield a large degradation in
performance. This can happen when many features are highly correlated.

Specifically, for any arbitrarily large S and arbitrarily small l, we show an example
in which the optimal predictor w∗ with `1-norm at most 3 achieves mean absolute-
error at most l, but using any re-weighting of the S features with the largest coefficients
yields mean absolute-error of at least 0.02. Note that if S ≥ (25/ε)2, our randomized
procedure would yield a S-sparse predictor with error at most l + ε, which we could
set arbitrarily close to zero.

We again define a joint distribution over binary targets y ∈ {+1,−1} and binary
feature vectors x ∈ {+1,−1}Sn, with n = 7/l2 (i.e. the overall dimensionality is
7S/l2). For convenience we will label the features with two indices: x1,1, . . . , xS,n. To
describe the data distribution we use another set of n (latent) binary random variables
z1, . . . , zn ∈ {+1,−1}, i.i.d. given y, with P[zi = y | y] = (1 + 1

3 + i−1
3(n−1) )/2 (i.e. the

correlation between these variables and the labels are between 1/3 and 2/3). The
features xi,j are independent given z, y, and are specified by P[xi,j = zi | zi] = 7/8 =
(1 + 0.75)/2. The features are thus grouped into n groups of S highly correlated
features, where the correlation between each feature and the label varies between 1/4
and 1/2.

The minimum-mean-absolute-error predictor among those with `1-norm bounded
by three, w∗ = arg min‖w‖1≤3 E[| 〈w,x〉−y|], achieves mean absolute-error less than
l (Appendix B). However, in this optimal predictor, the weights wn,i corresponding to
features in the last group will be larger than any other weights (Appendix B), and so
these features will be selected as the maximal weight features. But since these features
are all highly correlated, using any combination of them will not yield mean absolute-
error better than 0.02 (Appendix B).

We also note that the features in the last group would also be the first S features
selected by following the `1-norm regularization path or by related methods such as
LARS [4].
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5 Discussion
Using the `1-norm as a surrogate to sparsity is prevalent in machine learning and other
domains. It is therefore interesting to precisely understand the relationship between the
`1-norm and sparsity. Here we answer a fundamental question in this regard: how much
sparsity does low `1-norm guarantee? This question is relevant when we are directly
interested in obtaining a predictor that uses only a small number of features, e.g. when
each feature is expensive to compute. We show here that indeed having low `1-norm
does guarantee the existence of a sparse predictor, and present a simple randomized
procedure for obtaining such a sparse predictor. We also precisely characterize what
level of sparsity one can hope for, and show that the randomized procedure does indeed
achieve this optimal sparsity (up to a constant factor).

We emphasize that our results assume we already have a low `1-norm predictor in
hand, and indeed our randomized procedure depends only on this predictor, and not
on the data. We do not address here the complimentary question of the appropriate-
ness of using `1-norm regularization when we would like to be competitive with some
unknown sparse predictor. This question has been recently addressed by Ng [6], who
argued that in this PAC-learning setup the `1-norm is much more appropriate than the
`2-norm as a surrogate to sparsity. Here, we see from another perspective how the
`1-norm, and not the `2-norm, is much more closely related to sparsity.
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A Additional Lemmas
Proof of Lemma 4 Using Holder’s inequality with p = 3/2 and q = 3 we have

E[ |Q(x)|2 ] =
X

x∈{0,1}n
P(x)|Q(x)|2 =

X
x

“
P(x)2/3|Q(x)|2/3

”“
P(x)1/3|Q(x)|4/3

”
≤ (

X
x
P(x)|Q(x)|)2/3(

X
x
P(x)|Q(x)|4)

1
3 .

Taking both sides of the above to the power of 3/2 and rearranging, we obtain that,

E[ |Q(x)| ] ≥ E[ |Q(x)|2 ]
1
2

“
E[ |Q(x)|2 ]

1
2 /E[ |Q(x)|4 ]

1
4

”2

. (8)

We now use Corollary (3.2) from [7] to get that E[|Q(x)|2]
1
2 ≥ σ4,2(α)dE[|Q(x)|4]

1
4 , where

σ4,2(α) =

r
(1−α)2/4−α2/4

(1−α)α2/4−1−α(1−α)2/4−1 . We conclude our proof by combining the above with

Eq. 8 and noting that for α ∈ (.05, .5) we have σ4,2(α)2 ≥ 0.2. ut

Lemma 5 Let X be a random variable and x′ ∈ R be a scalar and assume that there exists
a > 0 such that for all t ≥ 0 we have P[|X − x′| > t] ≤ 2e−t

2/a2 . Then, E[|X − x′|] ≤ 4 a.

Proof For all i = 0, 1, 2, . . . denote ti = a i. Since ti is monotonically increasing we have that
E[|X − x′|] is at most

P∞
i=1 tiP[|X − x′| > ti−1]. Combining the above with the assumption

in the lemma we get that E[|X − x′|] ≤ 2 a
P∞
i=1 i exp−(i−1)2 . The proof now follows from

the inequalities

∞X
i=1

i exp−(i−1)2 ≤
5X
i=1

i exp−(i−1)2 +

Z ∞
5

xe−(x−1)2dx < 1.8 + 10−7 < 2 .

B Analysis of Example from Section 4.2
Optimal bounded `1-norm predictor: We first establish that min‖w‖1≤3 E[| 〈w, x〉 − y|] ≤ l.
We do so by presenting a predictor with ‖w‖1 < 3 and mean absolute-error at most l (this
is not the optimal predictor, but certainly bound its mean absolute-error). Consider the pre-
dictor with wi,1 = 8

3n
for each group i, and wi,j = 0 for all j > 1. We have E[〈w, x〉 |y] =

8
3n

Pn
i=1

3
4
( 1
3
+ i−1

3(n−1)
)y = y and Var[ 〈w, x〉 | y] =

P
i(

8
3n

)2(1−( 3(1+(i−1))
4·3 )2) ≤ n( 8

3n
)2(1−

( 3·1
4·3 )2) = 20

3n
< 7/n. Using a calculation as in Eq. 6, we can now bound the mean absolute-

error by
p

7/n ≤ l.
Optimal predictor w∗ with bounded `1-norm: Within each group, if w∗i,j > w∗i,j′ we can

reduce the mean-absolute error by shifting weight from (i, j) to (i, j′). We can conclude that the
weights within each group are equal. Furthermore, if w∗i,1 ≥ w∗n,1 and w∗i,1 > 0, for i < n, we
can reduce the error by shifting weight from group i to the last group. Therefore, for any non-
zero bound on the `1-norm, the last group would have strictly more weight than other groups.

Predictor using only last group: Consider a predictor w that uses only the last group,
i.e. with wi,j = 0 for i < n. We have E[〈w, x〉 |y] =

P
j wn,j

3
4

2
3
y = 1

2
ρy, where ρ =P

j wn,j , and Var[ 〈w, x〉 | y] =
P
i w

2
n,iVar[xn,i | y] +

P
i6=j wn,iwn,jCov[xn,i, xn,j | y] ≥

(
P
i wn,i)

2Cov[xn,1, xn,2 | y] = 5
16
ρ2. In order to apply Lemma 4 we introduce i.i.d., and in-

dependent of z, latent Bernoulli variables vn,j , with P(vn,j = 1) = 7
8

, and write xn,j = znvn,j .
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The mean absolute-error is now a second degree polynomial in the independent (conditioned
on y) variables v, z, and we can apply Lemma 4 and use arguments as in the Proof of 2 to get

E[| 〈w, x〉 − y|] ≥ 0.22
q

5
16
ρ2 + ( 1

2
ρ− 1)2 ≥ 0.22

q
45
81
> 0.02.
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