
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

Yoram Singer SINGER@GOOGLE.COM

Google inc., Mountain View, USA and The Hebrew University, Jerusalem, Israel

Nathan Srebro NATI @UCHICAGO.EDU

Toyota Technological Institute, Chicago, USA

Abstract

We describe and analyze a simple and effec-
tive iterative algorithm for solving the optimiza-
tion problem cast by Support Vector Machines
(SVM). Our method alternates between stochas-
tic gradient descent steps and projection steps.
We prove that the number of iterations required
to obtain a solution of accuracyǫ is Õ(1/ǫ). In
contrast, previous analyses of stochastic gradient
descent methods requireΩ(1/ǫ2) iterations. As
in previously devised SVM solvers, the number
of iterations also scales linearly with1/λ, where
λ is the regularization parameter of SVM. For a
linear kernel, the total run-time of our method
is Õ(d/(λǫ)), whered is a bound on the num-
ber of non-zero features in each example. Since
the run-time doesnotdepend directly on the size
of the training set, the resulting algorithm is es-
pecially suited for learning from large datasets.
Our approach can seamlessly be adapted to em-
ploy non-linear kernels while working solely on
the primal objective function. We demonstrate
the efficiency and applicability of our approach
by conducting experiments on large text classi-
fication problems, comparing our solver to ex-
isting state-of-the-art SVM solvers. For exam-
ple, it takes less than5 seconds for our solver to
converge when solving a text classification prob-
lem from Reuters Corpus Volume 1 (RCV1) with
800, 000 training examples.

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

1. Introduction

Support Vector Machines (SVMs) are effective and popu-
lar classification learning tool (Vapnik, 1998; Cristianini
& Shawe-Taylor, 2000). The task of learning a support
vector machine is cast as a constrained quadratic program-
ming problem. However, in its native form, it is in fact an
unconstrained empirical loss minimization with a penalty
term for the norm of the classifier that is being learned.
Formally, given a training setS = {(xi, yi)}m

i=1, where
xi ∈ R

n andyi ∈ {+1,−1}, we would like to find the
minimizer of the problem

min
w

λ

2
‖w‖2 +

1

m

∑

(x,y)∈S

ℓ(w; (x, y)) , (1)

where

ℓ(w; (x, y)) = max{0, 1 − y 〈w,x〉} . (2)

We denote the objective function of Eq. (1) byf(w).
An optimization method finds anǫ-accurate solution̂w if
f(ŵ) ≤ minw f(w) + ǫ. The original SVM problem
also includes a bias term,b. We omit the bias throughout
the first sections and defer the description of an extension
which employs a bias term to Sec. 4.

We describe and analyze in this paper a simple iterative al-
gorithm, called Pegasos, for solving Eq. (1). The algorithm
performsT iterations and also requires an additional pa-
rameterk, whose role is explained in the sequel. Pegasos
alternates between stochastic subgradient descent steps and
projection steps. The parameterk determines the number
of examples fromS the algorithm uses on each iteration for
estimating the subgradient. Whenk = m, Pegasos reduces
to a variant of the subgradient projection method. We show
that in this case the number of iterations that is required in
order to achieve anǫ- accurate solution is̃O(1/(λǫ)). At
the other extreme, whenk = 1, we recover a variant of
the stochastic (sub)gradient method. In the stochastic case,

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

we analyze the probability of obtaining a good approximate
solution. Specifically, we show that with probability of at
least1− δ our algorithm finds anǫ-accurate solution using
only Õ(1/(δλǫ)) iterations, while each iteration involves a
single inner product betweenw andx. This rate of conver-
gence doesnot depend on the size of the training set and
thus our algorithm is especially suited for large datasets.

Before indulging in the description and analysis of Pega-
sos, we would like to draw connections to and put our
work in context of some of the more recent work on SVM.
For a more comprehensive and up-to-date overview of rel-
evant work see the references in the papers cited below
as well as the web site dedicated to kernel methods at
http://www.kernel-machines.org . Due to the centrality of
the SVM optimization problem, quite a few methods were
devised and analyzed. The different approaches can be
roughly divided into the following categories.

Interior Point (IP) methods: IP methods (see for instance
(Boyd & Vandenberghe, 2004) and the references therein)
cast SVM learning as a quadratic optimization problem
subject to linear constraints. The constraints are replaced
with a barrier function. The result is a sequence of uncon-
strained problems which can be optimized very efficiently
using Newton or Quasi-Newton methods. The advantage of
IP methods is that the dependence on the accuracyǫ is dou-
ble logarithmic, namely,log(log(1/ǫ)). Alas, IP methods
typically require run time which is cubic in the number of
examplesm. Moreover, the memory requirements of IP are
O(m2) which renders a direct use of IP methods very dif-
ficult when the training set has many examples. It should
be noted that there have been several attempts to reduce
the complexity based on additional assumptions (see e.g.
(Fine & Scheinberg, 2001)). However, the dependence on
m remains super linear. In addition, while the focus of the
paper is the optimization problem cast by SVM, one needs
to bare in mind that the optimization problem is a proxy
method for obtaining good classification error on unseen
examples. Achieving very high accuracy in the optimiza-
tion process is usually unnecessary and does not translate to
a significant increase in generalization accuracy. The time
spent by IP methods for finding a single accurate solution
may, for instance, be better utilized for finding numerous
approximate solutions for multiple choices ofλ.

Decomposition methods: To overcome the quadratic
memory requirement of IP methods, decomposition meth-
ods such as SMO (Platt, 1998) and SVM-Light (Joachims,
1998) switch to the dual representation of the SVM opti-
mization problem, and employ an active set of constraints
thus working on a subset of dual variables. In the extreme
case, called row-action methods (Censor & Zenios, 1997),
the active set consists of a single constraint. While algo-
rithms in this family are fairly simple to implement and en-

tertain general asymptotic convergence properties (Censor
& Zenios, 1997), the time complexity of most of the algo-
rithms in this family is typically super linear in the training
set sizem. Moreover, since decomposition methods find a
feasible dual solution and their goal is to maximize the dual
objective function, they often result in a rather slow conver-
gence rate to the optimum of the primal objective function
(See also the discussion in (Hush et al., 2006)).

Some of the decomposition methods do yield though a re-
gret bound in the online learning setting. For instance, the
Passive Aggressive (Crammer et al., 2006) applies the ob-
jective function of SVM to each example. Online learn-
ing algorithms were also suggested as fast alternatives to
SVM (see (Freund & Schapire, 1999)). Such algorithms
can be used to obtain a predictor with low generalization
error using an online-to-batch conversion scheme (Cesa-
Bianchi et al., 2004). However, the conversion schemes
do not necessarily yieldǫ-accurate solutions to the original
SVM problem and their performance is typically inferior
to direct batch optimizers. As noted above, Pegasos shares
the simplicity and speed of online learning algorithms but
is guaranteed to converge to the actual SVM solution.

Gradient based methods: Unconstrained gradient meth-
ods were very common in optimization until the emergence
of the ultra-fast IP methods. While gradient based methods
are known to exhibit slow convergence rates, the compu-
tational demands imposed by large scale classification and
regression problems of high dimension feature space, re-
vived the theoretical and applied interest in gradient meth-
ods. The Pegasos algorithm is an improved stochastic sub-
gradient method. Two concrete algorithms that are closely
related to the Pegasos algorithm that are based on gradient
methods are the NORMA algorithm (Kivinen et al., 2002)
and a stochastic gradient algorithm by Zhang (2004). The
Pegasos algorithm uses a sub-sample ofk training exam-
ples to compute an approximate sub-gradient. Whenk = 1
the Pegasos algorithm becomes very similar to the afore-
mentioned methods of Kivienen et. al and Zhang with a few
notable and crucial differences. First, after each gradient-
based update, Pegasos employs a projection step ofw onto
theL2 ball of radius1/

√
λ. This modification enables the

usage of a very aggressive decrease in the learning rate
and yields an improved̃O(1/ǫ) rate of convergence rather
thanO(1/ǫ2) rate. This theoretical improvement is also re-
flected in our experiments. Whenk = m Pegasos results
in a modified gradient-descent algorithm with an improved
convergence rate. In addition to the superior rate of con-
vergence, Pegasos can incorporate a bias term (discussed
in Sec. 4) and can utilize parallel computation power for
appropriate choices ofk.

Last, we would like to point to the SVM-Perf algorithm
recently proposed by Joachims (2006) for linear SVMs.

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

SVM-Perf uses cutting planes to find a solution with accu-
racyǫ in timeO(md/(λǫ2)). The complexity guarantee for
Pegasos avoids the dependence on the data set sizem and
reduces the dependence on the accuracy to onlyÕ(1/ǫ). In
practice, while SVM-Perf yields very significant improve-
ments over decomposition methods for large data sets, our
experiments (see Sec. 5) demonstrate that Pegasos is sub-
stantially faster than SVM-Perf.

2. The Pegasos Algorithm

In this section we describe the Pegasos algorithm for solv-
ing the optimization problem given in Eq. (1). The algo-
rithm receives as input two parameters:T - the number of
iterations to perform;k - the number of examples to use for
calculating sub-gradients. Initially, we setw1 to any vector
whose norm is at most1/

√
λ. On iterationt of the algo-

rithm, we first choose a setAt ⊆ S of sizek. Then, we
replace the objective in Eq. (1) with an approximate objec-
tive function,

f(w;At) =
λ

2
‖w‖2 +

1

k

∑

(x,y)∈At

ℓ(w; (x, y)) .

Note that we overloaded our original definition off as
the original objective can be denoted either asf(w) or as
f(w;S). We interchangeably use both notations depending
on the context . Next, we set the learning rateηt = 1/(λt)
and defineA+

t to be the set of examples for whichw suf-
fers a non-zero loss. We now perform a two-step update as
follows. We scalewt by (1 − ηt λ) and for all examples
(x, y) ∈ A+

t we add tow the vectoryηt

k x. We denote the
resulting vector bywt+ 1

2
. This step can be also written as

wt+ 1
2

= wt − ηt∇t, where

∇t = λwt − 1
|At|

∑

(x,y)∈A+

t

y x . (3)

The definition of the hinge-loss implies that∇t is a sub-
gradient off(w;At) at wt. Last, we setwt+1 to be the
projection ofwt+ 1

2
onto the set

B = {w : ‖w‖ ≤ 1/
√

λ} . (4)

That is, wt+1 is obtained by scalingwt+ 1
2

by

min
{

1, 1/(
√

λ‖wt+ 1
2
‖)

}

. As we show in our analysis be-

low, the optimal solution of SVM is in the setB. Informally
speaking, we can always project back onto the setB as we
only get closer to the optimum. The output of Pegasos is
the last vectorwT+1. The pseudo-code of Pegasos is given
in Fig. 1.

Note that if we chooseAt = S on each roundt then we
obtain the subgradient projection method. On the other ex-
treme, if we chooseAt to contain a single randomly se-
lected example, then we recover a variant of the stochastic

INPUT: S, λ, T , k

INITIALIZE : Choosew1 s.t.‖w1‖ ≤ 1/
√

λ
FOR t = 1, 2, . . . , T

ChooseAt ⊆ S, where|At| = k
SetA+

t = {(x, y) ∈ At : y 〈wt,x〉 < 1}
Setηt = 1

λt
Setwt+ 1

2
= (1 − ηt λ)wt + ηt

k

∑

(x,y)∈A+

t

y x

Setwt+1 = min

{

1, 1/
√

λ
‖w

t+ 1
2

‖

}

wt+ 1
2

OUTPUT: wT+1

Figure 1.The Pegasos Algorithm.

gradient method. In general, we allowAt to be a set ofk
examples sampled i.i.d. fromS.

We conclude this section with a short discussion of imple-
mentation details when the instances are sparse, namely,
when each instance has very few non-zero elements. In this
case, we can representw as a triplet(v, a, ν) wherev is a
dense vector anda, ν are scalars. The vectorw is defined
through the triplet as follows:w = av andν stores the
squared norm ofw, ν = ‖w‖2. Using this representation,
it is easily verified that the total number of operations re-
quired for performing one iteration of Pegasos withk = 1
is O(d), whered is the number of non-zero elements inx.

3. Analysis

In this section we analyze the convergence properties of
Pegasos. Throughout this section we denote

w
⋆ = argmin

w

f(w) . (5)

Recall that on each iteration of the algorithm, we focus on
an instantaneous objective functionf(w;At). We start by
bounding the average instantaneous objective of the algo-
rithm relatively to the average instantaneous objective of
the optimal solution. We first need the following lemma
which generalizes a result from (Hazan et al., 2006). The
lemma relies on the notion of strongly convex functions.
A detailed proof and further explanations can be found in
(Shalev-Shwartz & Singer, 2007).

Lemma 1. Letf1, . . . , fT be a sequence ofλ-strongly con-
vex functions w.r.t. the function12‖ · ‖2. LetB be a closed
convex set and defineΠB(w) = arg minw

′∈B ‖w − w
′‖.

Letw1, . . . ,wT+1 be a sequence of vectors such thatw1 ∈
B and fort ≥ 1, wt+1 = ΠB(wt − ηt∇t), where∇t is a
subgradient offt at wt andηt = 1/(λt). Assume that for
all t, ‖∇t‖ ≤ G. Then, for allu ∈ B we have

1

T

T
∑

t=1

ft(wt) ≤
1

T

T
∑

t=1

ft(u) +
G2(1 + ln(T))

2λT
.

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

Based on the above lemma, we are now ready to bound the
average instantaneous objective of Pegasos.

Theorem 1. Assume that for all(x, y) ∈ S the norm of
x is at mostR. Let w⋆ be as defined in Eq. (5) and let
c = (

√
λ + R)2. Then, forT ≥ 3,

1

T

T
∑

t=1

f(wt;At) ≤ 1

T

T
∑

t=1

f(w⋆;At) +
c ln(T)

λT
.

Proof. To simplify our notation we use the shorthand
ft(w) = f(w;At). The update of the algorithm can be
rewritten aswt+1 = ΠB(wt − ηt∇t), where∇t is de-
fined in Eq. (3) andB is defined in Eq. (4). Thus, for
proving the theorem it suffices to show that the condi-
tions stated in Lemma 1 hold. Sinceft is a sum of aλ-
strongly convex function (λ2 ‖w‖2) and a convex function
(the average hinge-loss overAt), it is alsoλ-strongly con-
vex (see Lemma 1 in (Shalev-Shwartz & Singer, 2007)).
Next, we derive a bound on‖∇t‖. Using the facts that
‖wt‖ ≤ 1/

√
λ and that‖x‖ ≤ R combined with the tri-

angle inequality we obtain‖∇t‖ ≤
√

λ + R. Finally, we
need to prove thatw⋆ ∈ B. To do so, we use the fact that
there exists a vectorα⋆ ∈ [0, 1]m such that

λ

2
‖w⋆‖2+

1

m

∑

(x,y)∈S

ℓ(w⋆; (x, y)) = −λ

2
‖w⋆‖2+

‖α⋆‖1

m
.

(The above equality is derived by applying the strong dual-
ity theorem to the SVM optimization problem.) Rearrang-
ing the above and using the non-negativity of the hinge-loss
gives that‖w⋆‖ ≤ 1/

√
λ. The bound in the theorem fol-

lows now using simple algebraic manipulations.

Note that the convexity off implies that

f
(

1
T

∑T
t=1 wt

)

≤ 1
T

∑T
t=1 f(wt) .

Using the above inequality and Thm. 1, we immediately
obtain the following corollary which gives a convergence
analysis for the caseAt = S.

Corollary 1. Assume the conditions stated in Thm. 1 and
thatAt = S for all t. Letw̄ = 1

T

∑T
t=1 wt. Then,

f (w̄) ≤ f(w⋆) +
c ln(T)

λT
.

Based on the above corollary, the number of itera-
tions required for achieving a solution of accuracyǫ
is Õ(R2/(λ ǫ)). Joachims (2006) recently suggested a
method, called SVM-Perf, which requiresO(R2/(λ ǫ2)) it-
erations. The cost of each iteration of SVM-Perf isO(md),
wherem is the number of examples andd is the effective
dimension of the examples. The complexity of a single iter-
ation of Pegasos whenAt = S is alsoO(md), with smaller

constants.1 We therefore obtain a significant improvement
with a simpler algorithm.

WhenAt 6= S, Corollary 1 no longer holds. In addition,
the final hypothesis we use in Fig. 1 iswT+1 rather than
the average hypothesis. The next theorem bridges this gap
as it implies that the same convergence rate still holds in
expectation if we randomly choose a stopping time.

Theorem 2. Assume that the conditions stated in Thm. 1
hold and for allt, At is chosen i.i.d. fromS. Let r be an
integer picked uniformly at random from[T]. Then,

EA1,...,AT
Er[f(wr)] ≤ f(w⋆) +

c ln(T)

λT
.

Proof. To simplify our notation, denote byAj
i the sequence

of sets(Ai, . . . , Aj). Taking expectation of the inequality
given in Thm. 1 we obtain

EAT

1
[
1

T

T
∑

t=1

f(wt;At)] ≤ EAT

1
[
1

T

T
∑

t=1

f(w⋆;At)]

+
c ln(T)

λT
.

(6)

We now analyze the two expectations given in Eq. (6).
Sincew⋆ does not depend on the choice ofAT

1 , we have,

EAT

1
[
1

T

T
∑

t=1

f(w⋆;At)] =
1

T

T
∑

t=1

EAT

1
[f(w⋆;At)]

=
1

T

T
∑

t=1

EAt
[f(w⋆;At)]

= f(w⋆) .

(7)

Next, we analyze the expectation at the left-hand side of
Eq. (6). Note thatwt only depends onAt−1

1 . Thus,

EAT

1
[
1

T

T
∑

t=1

f(wt;At)] =
1

T

T
∑

t=1

EAt

1
[f(wt;At)] . (8)

Recall that the law of total expectation implies that
for any two random variablesX,Y , EX [f(X)] =
EY EX [f(X)|Y]. SettingX = At

1 andY = At−1
1 we get

that

EAt

1
[f(wt;At)] = EAt−1

1

[EAt

1
[f(wt;At)|At−1

1]]

= EAt−1

1

[f(wt)] = EAT

1
[f(wt)] .

Combining the above with Eq. (8) we obtain

EAT

1
[
1

T

T
∑

t=1

f(wt;At)] = EAT

1
[
1

T

T
∑

t=1

f(wt)] .

1Seemingly, to calculatēw we need additionalO(n) opera-
tions at each iteration, wheren is the dimension ofw. However,
if n > m d we can also savewt as a linear combination of the
m instances in the training set and update only the coefficients.
Thus, the cost of each iteration never exceedsO(m d).

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

Combining the above with Eq. (7) and Eq. (6), and noting
thatEr[f(wr)] = 1

T

∑T
t=1 f(wt) we conclude our proof.

The above theorem states that, in expectation, the stochas-
tic version of the algorithm will converge as fast as the de-
terministic version. The next theorem provides a very sim-
ple concentration bound.

Theorem 3. Assume that the conditions stated in Thm. 2
hold. Letδ ∈ (0, 1). Then, with probability of at least1−δ
over the choices of(A1, . . . , AT) and the indexr we have
that

f(wr) ≤ f(w⋆) +
c ln(T)

δ λ T
.

Proof. Let Z be the random variablef(wr) − f(w⋆).
From the definition ofw⋆ as the minimizer off(w) we
clearly have thatZ is a non-negative random variable.
Thus, from Markov inequalityP[Z ≥ a] ≤ E[Z]/a.
Setting E[Z]/a = δ and using Thm. 2 we obtain that
a = E[Z]

δ ≤ c ln(T)
δ λ T .

Let us now discuss the implications of Thm. 3. First, by
taking T = ∞ we immediately obtain from Thm. 3 con-
vergence in the limit. In addition, we can use Thm. 3
for analyzing the convergence of the last weight vector.
We do so by viewingT as a random index drawn from
{1, . . . , T̂}, whereT̂ > T . SincewT does not depend
on AT+1, . . . , AT̂ , we can terminate the algorithm afterT
iterations and returnwT . Using Thm. 3 we know that

f(wT) − f(w⋆) ≤ c ln(T̂)

δ λ T̂
≤ c ln(T)

δ λ T
.

We conclude this section with a discussion on the depen-
dence of the convergence rate on the confidence parameter
δ and on the accuracy parameterǫ. From Thm. 3 we ob-
tain that to achieve accuracyǫ with confidence1 − δ we
needÕ(1

λ δ ǫ) iterations. In contrast, by applying previ-
ously studied conversions of online algorithms in the PAC
setting (e.g. (Cesa-Bianchi et al., 2004; Cesa-Bianchi &
Gentile, 2006)) one can obtain accuracy ofǫ with confi-
dence1 − δ usingÕ(ln(1/δ)

λ ǫ2) iterations. Thus, as long as
the desired confidence is not too high, our convergence rate
is significantly better. If we would like to have a very high
confidence, we can use a simple amplification technique
(a.k.a. boosting the confidence), to construct a few candi-
date vectors such that with confidence1 − δ at least one
of the vectors has accuracy ofÕ(ln(1/δ)

λ T). Let s denote the
smallest integer larger thanln(1/δ). We run the algorithms
times while setting the number of iterations for each run to
T/s. We then randomly choose one vector from the vectors
constructed by each run. Denote byŵ1, . . . , ŵs the result-
ing weight vectors. Using Thm. 3 with a confidence value

of 1/e, we know that with probability of at least1 − 1/e
we have that

f(ŵi)−f(w⋆) ≤ c e ln(T)

λT/s
≤ c e ln(T)

⌈

ln
(

1
δ

)⌉

λT
. (9)

Therefore, the probability that forall runs the above in-
equality does not hold is at moste−s ≤ δ. In other words,
with probability of at least1− δ, at least one of the vectors
ŵi satisfies Eq. (9). We have therefore shown a method
that usesÕ(ln(1/δ)

λ ǫ) iterations for constructing⌈ln(1/δ)⌉
weight vectors, where at least one of them isǫ-accurate.
Finally, we need to pick anǫ-accurate vector from the set
of s vectors. This requiresO(1

λǫ2) examples in the general
case, since estimating the objective of eachŵi up to accu-
racy of ǫ requiresO(1

λǫ2) examples. Note however that if
we would like to simply choose the best performing vec-
tor with respect to the zero-one error over a validation set
(rather than based on the objective value of SVM), we only
needO(1

ǫ2) examples. That is, we gain a factor of1/λ. We
leave further exploration of this issue to future work.

4. Extensions

In this section we discuss a few extensions to our basic clas-
sification learning algorithm. These extensions broaden the
set of applications that can be tackled by our approach. Due
to the lack of space we confine ourselves to a rather high
level overview of two extensions and defer the complete de-
tails to a long version of this paper. We would like to note
though that we have devised generalizations of Pegasos to
complex decision problems, from multiclass categorization
to learning with structured data.

Incorporating a bias term: In many applications, the
weight vectorw is augmented with a bias term which is
a scalar, typically denoted asb. The prediction for an in-
stancex becomes〈w,x〉 + b and the loss is accordingly
defined as,

ℓ ((w, b); (x, y)) = max{0, 1 − y(〈w,x〉 + b)} . (10)

The bias term often plays a crucial role when the distribu-
tion of the labels is uneven as is typically the case in text
processing applications where the negative examples vastly
outnumber the positive ones. We now briefly describe three
different approaches to learn the bias term and underscore
the advantages and disadvantages of each approach.

The first approach is rather well known and its roots go
back to early work on pattern recognition (Duda & Hart,
1973). This approach simply amounts to adding one more
feature to each instancex thus increasing the dimension to
n + 1. The artificially added feature always take the same
value. We assume w.l.o.g that the value of the constant fea-
ture is1. Once the constant feature is added the rest of the

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

algorithm remains intact, thus the bias term is not explicitly
introduced. The analysis can be repeated verbatim and we
therefore obtain the same convergence rate for this modifi-
cation. Note however that by equating then+1 component
of w with b, the norm-penalty counterpart off becomes
‖w‖2 + b2. The disadvantage of this approach is thus that
we solve a slightly different optimization problem. On the
other hand, an obvious advantage of this approach is that it
requires no modifications to the algorithm itself rather than
a modest increase in the dimension and it thus can be used
without any restriction onAt.

The second approach incorporatesb explicitly by defining
the loss as given in Eq. (10) whilenot penalizing forb.
Formally, the task is to find an approximate solution to the
following problem,

min
w,b

λ

2
‖w‖2 +

1

m

∑

(x,y)∈S

[1 − y(〈w,x〉 + b)]+ . (11)

Note that all the sub-gradients calculations w.r.tw remain
intact. The sub-gradient with respect tob is also simple to
compute. For a sampleAt it amounts to,−1

|At|
∑

(x,y)∈A+

t

y

and thus requires onlyk additions and subtractions and a
single devision. This approach is also very simple to im-
plement and can be used with any choice ofAt, in par-
ticular, sets consisting of a single instance. The caveat of
this approach is that the functionf ceases to be strongly
convex. This is due to the fact that with the incorporation
of b, the objective functionf becomes piece-wise linear in
the direction ofb and is thus no longer strongly convex.
Therefore, the analysis presented in the previous section
no longer holds. An alternative proof technique yields a
slower convergence rate ofO(1/

√
T).

The last method entertains the advantages of the two meth-
ods above at the price of a more complex algorithm that
is applicable only for large values ofk. The main idea is
to rewrite the optimization problem given in Eq. (11) as
minw

λ
2 ‖w‖2 + g(w;S) where

g(w;S) = min
b

1
m

∑

(x,y)∈S [1 − y(〈w,x〉 + b)]+ . (12)

Based on the above, we redefinef(w;At) to be λ
2 ‖w‖2 +

g(w;At). On each iteration of the algorithm, we find a
subgradient off(w;At) and subtract it (multiplied byηt)
from wt. Finally, we project the resulting vector so that its
norm will not exceed1/

√
λ. The problem however is how

to find a subgradient ofg(w;At), asg(w;At) is defined
through a minimization problem overb. It can be shown
that the complexity of finding a subgradient ofg(w;At) is
equivalent to the complexity of solving the minimization
problem in Eq. (12). The latter problem is a generalized
weighted median problem that can be solved efficiently in
time O(k). We omit the details due to the lack of space.

Table 1.Training time in CPU-seconds
Pegasos SVM-Perf SVM-Light

CCAT 2 77 20,075
Covertype 6 85 25,514
astro-ph 2 5 80

The above adaptation indeed work for the caseAt = S and
we obtain the same rate of convergence as in the no-bias
case. However, whenAt 6= S we cannot apply the analysis
from the previous section to our case since the expectation
of f(w;At) over the choice ofAt is no longer equal to
f(w;S). WhenAt is large enough, we can use more in-
volved measure concentration tools to show that the expec-
tation of f(w;At) is close enough tof(w;S). We again
omit the details due to the lack of space.

Using Mercer kernels: One of the main benefits of support
vector machines is their ability to incorporate and construct
non-linear predictors using kernels which satisfy Mercer’s
conditions. The crux of this property stems from the rep-
resenter theorem (Kimeldorf & Wahba, 1971), which im-
plies that the optimal solution of SVM can be expressed
as a linear combination of its constraints. In the classifi-
cation problem, the representer theorem implies thatw is
a linear combination of the instancesxi. The common ap-
proach for solving the optimization problem for SVM when
kernels are employed is to switch to the dual problem and
find the optimal set of dual variables. Following (Freund &
Schapire, 1999; Kivinen et al., 2002), we outline a different
approach and directly minimize the primal problem while
still using kernels. The main observation is that ifw1 is
initialized to be the zero vector, then at each iteration of the
algorithmwt can be written aswt =

∑

i∈It
αixi, where

It is a subset of{1, . . . ,m}. The above claim can be eas-
ily proved using an inductive argument. Therefore, we can
store the setIt and the coefficientsαi instead of storingwt.
It is now easy to verify that the algorithm in Fig. 1 can be
used in conjunction with kernels, by representingwt us-
ing It andαi, calculating inner product operations using
〈wt,xt〉 =

∑

i∈It
αi 〈xi,xt〉, and evaluating the norm of

wt using‖wt‖2 =
∑

i,j∈It
αiαj 〈xi,xj〉. Based on the

analysis in previous sections, Pegasos finds anǫ-accurate
solution usingÕ(1/(δλǫ)) iterations, while each iteration
involves a single inner product betweenw andx. Note
however that each inner product operation betweenw and
x may requiremin{m, Õ(1/(δλǫ)}) evaluations of the ker-
nel function.

5. Experiments

In this section we present experimental results that demon-
strate different merits of our algorithm and its accompa-
nying analysis. We start by showing that Pegasos is in-

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

deed a practical tool for solving large scale problems. In
particular, we compare its runtime to a new state-of-the-
art solver (Joachims, 2006) on three large datasets. Next,
we compare Pegasos to two previously proposed methods
that are based on stochastic gradient descent, namely to
Norma (Kivinen et al., 2002) and to the method given in
(Zhang, 2004). Finally, we explore the empirical behavior
of the algorithm with respect to the parameterk. In all of
the experiments we did not incoprorate a bias term since
(Joachims, 2006; Kivinen et al., 2002; Zhang, 2004) do
not incorporate that term either. Additionally, we used the
algorithm as in Fig. 1, omitting the stage of boosting the
confidence, as we found empirically that in practice it was
not necessary.

In our first experiment we compared Pegasos to the SVM-
Perf algorithm (Joachims, 2006). We used the following
datasets, which were provided to us by T. Joachims.
(1) The binary text classification task CCAT from the
Reuters RCV1 collection. There are 804,414 examples
and there are 47,236 features with sparsity 0.16% in this
dataset.
(2) Classification of abstracts of scientific papers from the
Physics ArXiv according to whether they are in the Astro-
physics section. There are 99,757 features of high sparsity
(0.08%). There are 62,369 examples in this dataset.
(3) Class 1 in the Covertype dataset of Blackard, Jock &
Dean, which is comparably low-dimensional with 54 fea-
tures and a sparsity of 22.22%. There are 581,012 examples
in this dataset.

Table 4 lists the cpu-time of Pegasos and SVM-Perf on the
datasets described above. SVM-Perf (Joachims, 2006) is
a cutting plane algorithm for solving SVM that is based
on a reformulation of the SVM problem. It was shown
in (Joachims, 2006) that SVM-Perf is substantially faster
than SVM-Light, achieving a speedup of several orders
of magnitude on most datasets. We run both Pegasos
and SVM-Perf on the three datasets with values ofλ as
given in (Joachims, 2006), namely,λ = 10−4 for CCAT,
λ = 2 · 10−4 for Astro-physics, andλ = 10−6 for Cover-
type. We used the latest version of SVM-perf, implemented
in C, as provided by T. Joachims. We implemented Pegasos
in C++ and run all the experiments on a 2.8GHz Intel Xeon
processor with 4GB of main memory under Linux. For
completeness, we added to the table the runtime of SVM-
Light as reported in (Joachims, 2006). As can be seen in
the table, although SVM-Perf is by itself very fast, Pegasos
still achieves a significant improvement in run-time. We
calculated the objective value of the solutions obtained by
Pegasos and SVM-Perf. For all three datasets, the objec-
tive value of Pegasos never exceeded that of SVM-Perf by
more than 0.001. In addition, the generalization error of
both methods was virtually identical. It is interesting to
note that the performance of Pegasos does not depend on

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

T

Pegasos
Norma

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

Pegasos
Zhang

Figure 2.Comparisons of Pegasos to Norma (left) and Pegasos to
stochastic gradient descent with a fixed learning rate (right) on the
Astro-Physics datset. In the left plot, the solid lines designate the
objective value and the dashed lines depict the loss on the test set.

the number of examples but rather on the value ofλ. In-
deed, the runtime of Pegasos for the Covertype dataset is
larger than its runtime for CCAT, although the latter dataset
is larger.

In our next experiment, we compared Pegasos to
Norma (Kivinen et al., 2002) and to a variant of stochastic
gradient descent described in (Zhang, 2004). Both meth-
ods are similar to Pegasos when settingk = 1 with two
differences. First, there is no projection step. Second,
the scheduling of the learning rate,ηt, is different. In
Norma (Thm. 4), it is suggested to setηt = p/(λ

√
t),

where p ∈ (0, 1). Based on the bound given in Thm.
4 of (Kivinen et al., 2002), the optimal choice ofp is
0.5(2 + 0.5T−1/2)1/2, which for t ≥ 100 is in the range
[0.7, 0.716]. Plugging the optimal value ofp into Thm. 4 in
(Kivinen et al., 2002) yields the boundO(1/(λ

√
T)). We

therefore hypothesized that Pegasos would converge much
faster than Norma. In Fig. 5 (left) we compare Pegasos to
Norma on the Astro-Physics dataset. We split the dataset
into a training set with 29,882 examples and a test set with
32,487 examples and report the final objective value and
the average hinge-loss over the test set. As in (Joachims,
2006), we setλ = 2 ·10−4. As can be seen, Pegasos clearly
outperforms Norma. In fact, Norma fails to converge even
after106 iterations. This can be attributed to the fact that
the value ofλ here is rather small. As mentioned before,
the differences between Pegasos and Norma are both the
different learning rate and the projection step which is ab-
sent in Norma. We also experimented with a version of
Pegasos without the projection step and with a version of
Norma that includes a projection step. We found that the
projection step is important for the convergence of Pegasos,
especially whenT is small, and that a projection step also
improves the performance of Norma. However, Pegasos
still outperforms the version of Norma that includes an ad-
ditional projection step. We omit the graphs due to the lack
of space. We now turn to comparing Pegasos to the algo-
rithm from (Zhang, 2004) which simply setsηt = η, where
η is a (fixed) small number. A major disadvantage of this

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

T=1250
T=31250

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

kT=104

kT=105

kT=106

Figure 3.The effect ofk on the objective value of Pegasos on the
Astro-Physics dataset. Left:T is fixed. Right:kT is fixed.

approach is that finding an adequate value forη is a diffi-
cult task on its own. Based on the analysis given in (Zhang,
2004) we started by settingη to be10−5. Surprisingly, this
turned out to be a poor choice and the optimal choice ofη
was substantially larger. In Fig. 5 (right) we illustrate the
convergence of stochastic gradient descent withηt set to be
a fixed value from the set{0.001, 0.01, 0.1, 1, 10}. It is ap-
parent that for some choices ofη the method converges at
about the same rate of Pegasos while for other choices ofη
the method fails to converge. We would like to emphasize
that for large datasets, the time required for evaluating the
objective is much longer than the time required for training
a model. Therefore, searching forη is significantly more
expensive than running the algorithm a single time. The
apparent advantage of Pegasos is due to the fact that we do
not need to search for a good value forη but rather have a
predefined schedule ofηt.

In our last experiment, we examined the effect of the pa-
rameterk on the convergence of the algorithm. Our analy-
sis implies that the convergence of Pegasos does not depend
onk. Based on this fact, the optimal choice ofk in terms of
run time should bek = 1. In Fig. 3 (left) we depict the ob-
jective value obtained by Pegasos as a function ofk when
T is fixed. It is clear from the figure that, in contrast to
our bounds, the convergence of Pegasos improves ask gets
larger. This fact may be important in a distributed comput-
ing environment. As long ask is smaller than the number
of CPUs, the complexity of Pegasos still depends solely on
T (and onlog(k)), while the throughput greatly improves.
An interesting question is how to setk for a single CPU. In
this case, the runtime of Pegasos is of the order ofkT . In
Fig. 3 (right) we show that the convergence rate of Pega-
sos as a function ofk is approximately constant, for a wide
range of values ofk, so long askT is kept fixed. We leave
further research of both of the theoretical and practical as-
pects of the choice ofk to future work.

6. Conclusions

We described and analyzed a simple and effective algo-
rithm for approximately minimizing the objective func-

tion of SVM. The algorithm, called Pegasos, is a modified
stochastic gradient method in which every gradient descent
step is accompanied with a projection step. We derived fast
rate of convergence results and experimented with the algo-
rithm. Our empirical results indicate that for linear kernels,
Pegasos achieves state-of-the-art results, despite or because
of its simplicity. We plan to investigate all the questions we
surfaced in this paper as well as to conduct thorough exper-
iments with non-linear kernels. In addition, we have started
investigating the usage of similar paradigms in other learn-
ing problems such asL1-SVM and other loss functions.

Acknowledgements Part of this work was done while SS and
NS were visiting IBM research labs, Haifa, Israel. This work
was supported by grant I-773-8.6/2003 from the German Israeli
Foundation (GIF).

References
Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cam-

bridge University Press.
Censor, Y., & Zenios, S. (1997).Parallel optimization: Theory,

algorithms, and applications. Oxford University Press, NY.
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the gen-

eralization ability of on-line learning algorithms.IEEE Trans-
actions on Information Theory, 50, 2050–2057.

Cesa-Bianchi, N., & Gentile, C. (2006). Improved risk tail bounds
for on-line algorithms.NIPS.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer,
Y. (2006). Online passive aggressive algorithms.JMLR, 7.

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction to
support vector machines. Cambridge University Press.

Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene
analysis. Wiley.

Fine, S., & Scheinberg, K. (2001). Efficient svm training using
low-rank kernel representations.JMLR, 2, 242–264.

Freund, Y., & Schapire, R. E. (1999). Large margin classification
using the perceptron algorithm.Mach. Learning, 37, 277–296.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006). Logarithmic
regret algorithms for online convex optimization.COLT.

Hush, D., Kelly, P., Scovel, C., & Steinwart, I. (2006). Qp al-
gorithms with guaranteed accuracy and run time for support
vector machines.JMLR.

Joachims, T. (1998). Making large-scale support vector machine
learning practical. In B. Scḧolkopf, C. Burges and A. Smola
(Eds.),Advances in kernel methods - support vector learning.
MIT Press.

Joachims, T. (2006). Training linear svms in linear time.KDD.
Kimeldorf, G., & Wahba, G. (1971). Some results on tchebychef-

fian spline functions.J. Math. Anal. Applic., 33, 82–95.
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online

learning with kernels.IEEE’ TSP, 52, 2165–2176.
Platt, J. C. (1998). Fast training of Support Vector Machines using

sequential minimal optimization. In B. Schölkopf, C. Burges
and A. Smola (Eds.),Advances in kernel methods - support
vector learning. MIT Press.

Shalev-Shwartz, S., & Singer, Y. (2007).Logarithmic regret algo-
rithms for strongly convex repeated games(Technical Report).
The Hebrew University.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.
Zhang, T. (2004). Solving large scale linear prediction problems

using stochastic gradient descent algorithms.ICML.

