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Abstract

We describe and analyze an online algorithm for
supervised learning of pseudo-metrics. The al-
gorithm receives pairs of instances and predicts
their similarity according to a pseudo-metric.
The pseudo-metrics we use are quadratic forms
parameterized by positive semi-definite matrices.
The core of the algorithm is an update rule that
is based on successive projections onto the posi-
tive semi-definite cone and onto half-space con-
straints imposed by the examples. We describe
an efficient procedure for performing these pro-
jections, derive a worst case mistake bound on
the similarity predictions, and discuss a dual ver-
sion of the algorithm in which it is simple to
incorporate kernel operators. The online algo-
rithm also serves as a building block for deriving
a large-margin batch algorithm. We demonstrate
the merits of the proposed approach by conduct-
ing experiments on MNIST dataset and on docu-
ment filtering.

algorithm for learning a distance function is provided with

a predefined set of examples. Each example consists of
two instances and a binary label indicating whether the
two instances are similar or dissimilar. The work of (Xing
et al., 2003; Shental et al., 2002) used various techniques
that are effective in batch settings, but do not have nat-
ural, computationally-efficient online versions. Further
more, these algorithms did not come with any theoretical
error guarantees. In this paper, we discuss, analyze, and
experiment with aronline algorithm for learning pseudo-
metrics. As in a batch setting, we receive pairs of instances
which may be similar or dissimilar. But in contrast to
batch learning, in the online setting we need to extend a
prediction on each pair as it is received. After predicting
whether the current pair of instances is similar, we receive
the correct feedback on the instances’ similarity or dissim
ilarity. Informally, the goal of the online algorithm is to
minimize the number of prediction errors. Online learning
algorithms enjoy several practical and theoretical advan-
tages: They are often simple to implement; they are typ-
ically both memory and run-time efficient; they often come
with formal guarantees in the form of worst case bounds
on their performance; there exist several methods for con-

verting from online to batch learning, which come with for-
mal guarantees on the batch algorithm obtained through the
Many problems in machine learning and statistics requireconversion. Moreover, there are applications such as text
the access to a metric over instances. For example, the péfitering in which the set of examples is indeed not given all
formance of the nearest neighbor algorithm (Cover & Hart,at once, but instead revealed in a sequential manner while
1967), multi-dimensional scaling (Cox & Cox, 1994) and predictions are requested on-the-fly.

clustering algorithms such as K-means (MacQueen, 1965)he online algorithm we suggest incrementally learns
all depend critically on whether the metric they are given, pseudo-metric and a threshold. As in (Xing et al.
truly reflects the underlying relationships between the in'2003) the pseudo-metrics we use are quadratic forrr;s
put instances. Several recent papers have focused on e o metrized by positive semi-definite (PSD) matrices. At
problem of automatically learning a distance function fromg,ch time step, we get a pair of instances and calculate the

examples (Xing et al., 2003; Shental et al., 2002). Thesgjisiance between them according to our current pseudo-
papers have focused on batch learning algorithms. A batchetric. \We decide that the instances are similar if this dis-

Appearing inProceedings of the1*! International Conference tance is less than the current threshold and otherwise we

on Machine LearningBanff, Canada, 2004. Copyright 2004 by Sy that the instances are dissimilar. After extending our
the authors. prediction, we get the true similarity label of the pair of in
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stances and update our pseudo-metric and threshold. OwhereA > 0 is a symmetric positive semi-definite matrix.
update rule is based on the projection operation. Intujtive It is easy to verify that ifA > 0 thend 4 is indeed a pseudo-
we look for a new pseudo-metric and threshold that on thenetric. Furthermore, there exists a mafiiksuch that

one hand will predict correctly the last example we have e , o
just received and on the other hand will be as close as pos- (x =x) Alx =x) = [Wx = Wx'|3 .

sible to the previous pseudo-metric and threshold. The ide?hereforedA(x, x') is the Euclidean distance between the

of using the projection operation for online algorithms wasjmage ofx andx’ due to a linear transformatidi .
first introduced by (Herbster, 2001), and was further de-

veloped by (Crammer et al., 2003). The resulting updatef Ne margin of a sampl§, denotedy, is defined to be the
rule enjoys some nice properties. First, the PSD matrix wdninimum separation between all pairs of similar and dis-
learn is a linear combination of rank-one matrices definecimilar examples. Lefx;,x;,+1) and (x2, x5, —1) be

by vectors in the span of the instances. This allows us to de3Uch a pair. Then, the margin requirement translates to
velop a dual version of the algorithm that employs kernels. Y 2

Further, we show that all the PSD matrices obtained by the (dalx1,31))” < (dalxe, x3))" =7 - @
online algorithm are norm bounded. We use this property toNote that we can scald and~ by any positive constant
prove an online error bound, and to design a large-margitiactor without essentially modifying the properties of the
batch algorithm based on the online algorithm. solution (as in the case of many classification problems).
We therefore set to be2 and later on look for a matrixd
hich has a small norm. If we get a samplef m tuples of

e form (x, x’, y) there are, however)(m?) constraints
the form described by Eq. (1). Thus, we introduce a
esholdb € R and replace the above constraints with the
lowing set of constraints,

This paper is organized as follows. Sec. 2 formally intro-
duces the problem of online learning of pseudo-metrics an%ﬁ
sets the notation used throughout the paper. In Sec. 3, we
. : . . 0
describe our pseudo-metric learning algorithm for the sep:

: . - thr
arable case and show that the resulting online algorlthnigOI
can be implicitly implemented using kernel operators. In
Sec. 4, we derive_g worst-case Iossf bound for the online  v(x,x',y):y=+1 = (dxx))?<b-1,
glgorlthm. A modification of the on_llne algorithm tp thg %, y) i y=—1 = (dxx)2>b+1,
inseparable case and a corresponding loss bound is briefly
discussed in Sec. 5. In Sec. 6, we describe a simple onlinehich can be written as a single linear constraint as follows
to batch learning conversion, and discuss the generaliza- M2y
tion properties of resulting batch algorithm. Experiménta y (b= (da(x,x))*) = 1. @
results are provided in Sec. 7. The experiments apply our ] )
algorithm to the tasks of digit recognition and online doc- Given a set of examples we can now define a constrained
ument filtering. We compare the performance of our algo-OPtimization problem to findd. Note that in addition to

rithm to both other batch similarity learning algorithmslan the constraint defined in Eq. (2), we also need to impose
online algorithms for classification. the constraint thatl must be positive semi-definite (PSD).

Solving this constrained optimization problem can be per-

. formed by standard methods, such as interior-point algo-

2. Problem Setting rithms for solving semi-definite programs. In this paper
Let X denote our feature space. For concreteness we a¥/€ focus instead on a simple and efficient online approach,

sume thatt = R™. Our goal is to learn a pseudo-metric and later use well-studied techniques for converting from
over X. A pseudo-metric is a functiod : X x X — R online to batch learning algorithms. We thus obtain the

which needs to satisfy three requirementsg(#, x') > 0, be;t of both worlds: a I_oss.bound for an efficient o_nline al-
(i) d(x,x') = d(x’,x), and (iii) d(x1, x2) + d(x2,%3) > gorlthm, and a generalization bound for the resulting batch
d(x1,x3). While the instances may belong to a well de- &lgorithm.

fined partition of’ into classes, we do not receive direct | the online setting we observe tuples., x’, . ) in a se-
supervision in the form of class labels. Instead, we get simgyyential manner. On time stepwe first observéx,, x"),
ilarity and dissimilarity feedback. Therefore, we assumegng calculatel 4 (x,, x"). If the square ofi,(x,,x.) is
that we receive examples of the form= (x,x’,y) €  greater than the thresholdwve predict that the pair is dis-
(¥ x & x {+1,-1}). Each example is composed of an similar. Otherwise, we say that the pair is similar. After ex
instance paifx, x') and a labe} which equalst1if xand  tending the prediction, we receive the true lapeand may

x’ are considered similar and1 otherwise. As in (Xing  syffer a loss if there is a discrepancy between our predictio
et al., 2003), we restrict ourselves to pseudo-metricsef th andy,. The loss we discuss in this paper is an adaptation

form of the hinge loss,

da(x,x') = /(x —x)tA(x — %) , 0-(A,b) =max {0, y, ((da(x,,x,))*> —b) +1} .




Thus, if we satisfy the inequality in Eq. (2) we suffer no or dissimilar. In summary, the update rule of our online
loss. Otherwise, we pay a cost that grows linearly with thealgorithm is composed of two successive projections,
amount the inequality is violated. The goal of the online

algorithm is to minimize theumulativeloss it suffers. As L (Azbz) =Pc,(Ar,br)

in other online algorithms the matri® and the threshold 2. (Ar41,br41) =P, (Az,bz)

b are updated after receiving the feedback Therefore,

we denote by(A,,b,) the matrix-threshold pair used for In the following, we show how to efficiently perform these
prediction on round-. projections.

3. An Online Algorithm 3.1. Projecting ontoC’r

Recall that we refer thA b) both as a matrix-scalar pair
We now present our first algorithm, which assumes that n241
there exists a matrixi* = 0 and a scalab* > 1 that and as a vector ifR . For the simplicity of represen-

perfectly separates the data. Namely, we assume th#&tion, we denote by € R" “+1 the vector representation
¢-(A*,b*) = 0 for all 7. A modification of the algorithm ~ Of (4, 0). Analogously,w,w:, w, denote the vectors
for the inseparable case is given in Sec. 5. corresponding td A, b;), (A7, b7), (Ar41,br41). In ad-

2
- . dition, letx, € R™ ! be the vector corresponding to the
The general method we use for deriving our on-line UP- 1 atrix-scalar pai(—y, v.vL,y,), wherev, — x, — x..

date rule is_ based on the orthkogonal projection operatiorbsing the above terminology along with simple algebraic
Formal}iy, given a vectok € _R _and a closed_conv_ex set manipulations, we can rewrite the definition 6f from
C C R”, the orthogonal projection of onto C is defined n2i1 .
by Eg. B)asC, = {w € R cwex, > 1} tis
. to verify that the projection &f . ontoC.- is given by
P _ <2 easy -0 -~
o(x) argggn e = xll2 Po. (Wr) =w, +a;x, wherea, =0if w,-x, > 1and

. _ _ . 2
In words, P¢(x) is the vector inC' that is closest tex. otherwisenr = (1 —wr - x-)/ X l2-

We now use the fact thatv, and x, are the vec-
tors corresponding to the matrix-scalar pdiss., b)) and
(—y-v,vL, y.). Therefore, we get that,

For simplicity of presentation, we refer {04,b) both as
a matrix-scalar pair and as a vectorlt¥ ' where the
firstn2 elements of the vector are the elementsidfisted
column-wise) and the last entry of the vectob.id-or each (A b)) L (Arby)

T — 2 - 9

time stepr, we define the sef, ¢ R™"*! as “ [P [vr[[3 +1

C. = {(A, b) e R™H ¢ 0 (Ab) = 0} . (@ andthe update becomes

L — A — t L
Thus,C; is the set of all matrix threshold pairs which attain Ar =Ar —yrogvove o, be=brtaw, o (4)
zero loss on the exampl& -, X/, y-). Recall that a neces-
sary condition imposed on a matrik used as a pseudo- 3.2. Projecting ontoC,
metric is thatA = 0. In addition, the threshold must be \ne now describe an efficient method for projecting
at leastl (otherwise the loss on any similar points will be (As,bs) onto C,. First note that if (A1, bry1) =

non-zero). Thus, we denote by, the set of all admissible Pe (A b.) then A, is the projection ofA» onto the
matrix-threshold pairs, 7y 07 T+ s

set of all PSD matrices antl- ; is the projection ofb;
onto the se{b € R : b > 1}. The projection ob; onto the
above set isnax{1, b;}. It remains to show how to project

Equipped with the above definitions, we now describe theA onto the set of all PSD matrices.

update step of the online algorithm. The update is comWe start with the casg, = —1. In this cased; = A, +
prised of two projections. First we project the currenta;v, vt wherea; > 0 and henced: = 0. Therefore,
matrix-threshold paifA,,b,) onto C,. Let (A;,b;) = the projection ofA; onto the set of the PSD matrices is
Pc.(Ar,br) be the resulting matrix-threshold pair. In A itself. However, ify, = 1 A; might not be positive
words, we attempt to kegd», b;) as close td A,,b,) as  semi-definite. Sincel; is symmetric, we can rewritd ;
possible, while forcing A+, b:) to achieve a zero loss on asA; = Z?:l Aiw;ul, where); is thei'th eigenvalue of
the most recent example. We then define the new matrixA; andu; is its corresponding eigenvector. Without loss
threshold painA,;1,b,+1) as the projection of A, b;) of generality, we assume thag > ... > )\, and that
onto the set’,, thus ensuring that4, 1, b,41) is admis-  the eigenvectorguy,...,u,} form an orthonormal basis
sible for deciding whether two instancesx’ are similar  of R". The matrixA.; is the projection ofd: onto the

Co={(Ab) R A=0,b>1} .



Initialize: SetA; =0;b; € R common preprocessing strategy is to use a non-linear map-

Forr=1,2,... ping function¢ : X — F that maps the data into some high
Get a pair of instances(x,, x,) € R™ x R” dimensional feature spade and then learn irf’ (Vapnik,
Predict: x,,x are similar iff(da, (x,,x}))* < b, 1998). SinceF is high-dimensional, we need an efficient
Getthe true targey, € {+1, -1} way to access the data ifi. In this section we present a

Suffer loss ¢ (A-,b;) =

maX{O v (da, (xr, %)) — by) +1) dual version of_ the algorlthm in Fig. 1, Where_ interface to
If (£-(Ar,by) > 0): the data is limited to inner products. Thus, if we have a
Setv, = (x, — x}) kerqel functionk : X xX =R that efficiently computes
Seta. — Lr(Arbe) the inner products i, K (x,x’) = ¢(x) - ¢(x’), we can
R efficiently learn a pseudo-metric over.
Defined: = A; — yra,v,vE ; bs = by +yror
If (y, = 1), To derive a dual version for the online algorithm, we first
Update: b-41 = bz show that for any time-, the matrixA. can be written as
Find (An, u,) - the minimal eigenvalue ofl; and m
its corresponding eigenvector _ et
O 2 0) A=) Bl (5)
Update: A,11 = Az — A\ u,ul,
Else wherem < 27 and all the vectors; are in the span of
Update: Ari1 = A the vectors(vi = (¢(x1) — ¢(x})),- .-, v = (9(x7) —
Else [y, = —1] #(x2))}, namely,
Update: A;41 = Az ; bz = max{bs, 1}
Else [(-(A-,br) =0]
Update: A, 1 = A, ; byiq = bs r; = ij,iw(xj) - ¢(x})) = mevj -

Figure 1.The pseudo-metric online learning algorithm (POLA). The above representation af. enables us to efficiently
calculate the distance between a hew pair of instances using

the kernel function, because using Eq. (5), we have:
positive semi-definite cone. Given the set of eigenvectors , ) .
and eigenvalues of ;, the projection yields that, . ; can (da(Xr1,%X741))" = Vep" Ar vep

be written as, s 2
= > Bilriveia)

'r+1 Z g AL P =1 9
:A; >0 m T

(See for instance Golub & Van Loan, 1989.) In addition, ;ﬁz J;pj’lvj VT

from the (eigenvalue) Interlacing Theorem we have that

A: has at most aingle negative eigenvalue (cf. Wilkin- In addition, we have that; - v.11 = K(xj,X;41) —

son, 1965, pp. 94-97 and Golub and Van Loan, 1989, pag& (x;,x/ ;) — K(x},xﬂrl) + K (X}, X7 41).

412). Therefore, we get that, ., = A; — \,u,ul,. Here,

An andu, can be calculated efficiently using the Lanc-

zos method (see, e.g., Golub and Van Loan, 1989). We

name the resulting algorithm POLA as an abbreviation for,

Pseudo-metric Online Learning Algorithm. The pseudo-

code of POLA is given in Fig. 1.

We now use an inductive argument to show thAatcan in-
deed be written as in Eq. (5). The initial mat is the
zero matrix and clearly fits the form of Eq. (5). Assume
thatA is of the form in Eq. (5). The first step of the online
update rule is to defind; = A, — y.a,v,vt. Thus,A;
can also be written as in Eq. (5). If the resulting mattix
is positive semi-definite we do not have to do anything. If
it does have a (single) negative eigenvalue, we fikd),
The pseudo-metrics we have used so far take the form  the minimal eigenvalue af.+ and its corresponding eigen-
vector. We then setl,,; = A; — Auu’. It remains to
(da(x,x"))? = (x —x)!A(x — x') = |[Wx - WX|3 , show thatu is also in the span ofvy,...,v.}. Sinceu is
an eigenvector ofi; we have thatd;u = Au. Using the
wherel = /A exists sinced = 0. Thereforegd 4 (x, x') inductive assumption, we rewrité; as in Eq. (5) and get
is the Euclidean distance between the imag @ndx’  that, (3", Bir;r!) u = Au, which yields,
due to alinear transformationi?’. In real-world applica-
tions, similarity and dissimilarity constraints over iastes u— Z <ﬂv(rL . )> o (6)
might not be satisfied by such simple distance functions. A A '

3.3. Kernel-based Implementation

=1



Therefore,u is in the subspace spanned fw, ..., r,,} Proof of Theorem 1:
and thus it is also in the span ¢4, ..., v,,}, which con-  For simplicity, we use the definitions &f, w,, w1, w;
cludes the derivation. andy, from Sec. 3.1. We also denote by € R" *! the

In the rest of this section we explain how to find, via inner- VECtOr corresponding to the matrix-scalar palr’, b*).

products, the minimal eigenvalug, and its corresponding  pefine A, = |w, — w2 = [wri1 — w*|2. We prove
eigenvector,u, of the matrixA:. LetQ € R"*? be a
matrix whose columns form an orthonormal basis for the
subspace spanned Ry, ..., v,,} and letq; denote the
7'th column of Q. From Eq. (6) we get that each eigenvec-
tor u of A; can be written as a linear combination of the Z A, = |wi—w = lwrp — w2
columns ofQ and thus there exists a vectere R? such

thatu = Q. Sinceu is an eigenvector ofi;, we get that < flwy — W*I|§ ) 9)

Adru=iu = A:Qk =0k . This provides an upper bound 3A_ A, . In the following
Multiplying both sides byQ! we get thalQ!4:Qk = Ak.  we prove the lower bound\, > (/,(A.,b,))* /R. We

The reverse direction is also correct. Namelykifs an  can subtract and add the tefiw: — w*||§ from A to get
eigenvector of)! A-(Q thenu is an eigenvector aofl; with

the theorem by boundlnET 1 A from above and below.
®First note thab""_, A, is a telescopic sum and therefore

N

the same eigenvalue. We have thus shown tha an A = (||wT — w3 — [|ws fw*||§)

eigenvector ofd- with an eigenvalue\ iff u = Qk where

k is an eigenvector af! A Q with the same eigenvalue + <||W% — w5 = [we1 — W*||§>

The matrixQ* AQ can be computed using inner-products

since Recall thatw; is the projection ofw. onto C, and that
w1 IS the projection ofw; onto C,. By assumption,

(Q'AQ) b= Zﬁl ar - 1i)(q; i) - w* € C, andw* € C,.. Therefore, we get from Lemma 2

that

Finally note that{q, ..., qq} can be found implicitly us- A > we —wo )+ [Wern — Wil

ing the kernel Gram-Schmidt procedure. In summary, we
have shown that all the steps of the online algorithm in

Fig. 1 can be implemented via a kernel function. We now use the fact that; = w., + a,x, wherea, =
(-(Ar,b:)/ ||x, |3 to get that

(Cr(Ar,b,))°

The following theorem provides a loss bound for the algo- lws —well; = [

rithm in Fig. 1. After proving the theorem we discuss a few

of its implications. where the last inequality is due to the fact thiat, |2 =
|x, — .3 +1 < R. Combining Eq. (11) with Eq. (10)

Theorem 1 Let (x1,x},v1),- .-, (X, X, y-),... be a se- we getA, > (¢,(A,,b.))?/R. Comparing the above

guen](%:e>o|f| examplltﬁi jnld If;gi;g‘:ﬁ;ﬁ;}g?ggg;ﬁcﬁ ;c)hat lower bound with the upper bound in Eq. (9) we get

T Xr — X, . = T 2 B 2 : :
andb* > 1 for WhiC?]VT > 1,4,(A*,b*) = 0. Then the 2=t (b4, br))" < Rfw w1”2' which gives the

* 2
following bound holds for an§" > 1 Eound in Eq. (7) sincgw” — w3 = [[A*[|¢ + (6"~ b1)*.

v

Iws — w2 . (10)

4. Analysis (0o(Ar, b))

>
- R

» (11)
T||2

i (ZT(AT,bT))Q <R (||A*||F (b — b1)2) . () Note that the loss bound of Thm. 1 does not depend on the
= - dimension of the instance space. Therefore, the bound does
not change if we employ kernels which map the instances to
The proof of the theorem is based on the following lemmahigh dimensional spaces. The sole difference in the bound
when using kernels is that the norm 4f and the norm of
Lemma 2 Letw € R" be any vector and lef' C R" bea  the instances are assumed to be small in the mapped space.
closed convex set. Then for any € C' we have Note also that we make a similarity prediction mistake iff
Iw = w3 Pow) = w3 = fw = Po(w)l3 . @ Yr br — (da-bero))) < 0. Thus, if on roundr the
predicted similarity is incorrect, theft, (A,,b,))” > 1.
For a proof see for instance (Censor & Zenios, 1997)Therefore the number of prediction mistakes cannot ex-
Thm. 2.4.1. ceedR <||A*||F (b* —by) ) Finally we would like to



note that while Thm. 1 provides a loss bound on the suniied

of squaresof hinge losses, it is possible to derive a bound &

which is a mere sum of losses. The proof however is moregEy =
=

complicated, and is omitted due to lack of space.

that perfectly matches the similarity and dissimilarity re T
lations between instances. In this section, we relax this™ ="

assgmptlon and .descnbe a mOdIflcatl_on for the algomhmFigure 2.Results of dimensionality reduction using distance
in Fig. 1 for the mseparable case. Since there is no Pelearning. Top: noisy images of the digits "2” and "5” (left) re-
fect pseudo-metric that explains the data even from hindggnstruction of the images using PCA (middle) and reconstruc-
sight, we do not expect our online algorithm to attain a fixedtion using POLA (right). Bottom: A corresponding color-coded
amount of loss. Instead, we measure the loss of the onlingpresentation of the distances between each pair of images.
algorithmrelative to the loss of any other fixed pseudo-

metric parametrized byA*, b*). The algorithm employs a _ .

relaxation parameter, denoted hy> 0. The only modifi-  l0ss of the final pseudo-metric any example from the
cation to the algorithm in Fig. 1 is to define training set is at mos#. Furthermore, combining the in-
equality of Eq. (9) with the fact thaf\. is non-negative
we obtain Lemma 3 below (see also Crammer et al., 2003).
This lemma assures that the norm of the result is bounded.

(A, b,)

= . 12
=+ 147 2

Qr

It is possible to derive a loss bound for POLA with the | emma 3 Under the same conditions of Thm. 1, the fol-
above modificatiorrelative to the loss of any other fixed |owing bound holds for any > 1

pseudo-metric using the same techniques as in (Crammer

et al., 2003). The full details are omitted due to the lack of A ”2 Y (b —1)? < 4 (HA*HQ i (b*)2>
space. TR AT - F
6. Using POLA in Batch Settings Combining the bound on the norm with the fact that its em-

pirical loss on the training set is small implies that the re-
We have focused thus far on online algorithms. Howeversulting pseudo-metric has good generalization properties
in many machine learning tasks the entire training data ig hat is, assuming that the training set and the test set are
given to the learning algorithm in advance. Such settings.i.d samples from the same source then with high probabil-
are typically referred to as batch learning. In batch learndty the loss on the test set is also small. The formal deriva-
ing the goal is to find an hypothesis which exhibits smalltion uses standard learning theoretic tools and is omitted
empirical error or loss on the training data and generalizegue to the lack of space.
well by obtaining similar low loss on unseen examples. In
this se_ction we build upon the_ fact that we have (_jevised7_ Experimental Results
an online learning algorithm with a loss bound on its per-
formance. Specifically, we use POLA as a building blockIn this section we present experimental results with syn-
to devise a batch procedure which returns a pseudo-metrigetic and natural data that demonstrate different mefits o
that is guaranteed to generalize well. POLA. In the first experiment we created two synthetic im-
. . . ages of the digits "5” and "2”. Each image is composed
There are various techmque; to convert from online of 12 x 12 pixels. We then created 64 noisy versions of
baFch learning which come with some formal guaranteesy, . o original images by adding biased noise as follows.
quite a few can be used in our settllng. We present h‘.”@ve defined two noise patterns: the first pattern was gener-
one of the simplest conversion techniques. The conversiop, . by adding a zero mean Gaussian noise to all the odd
procedure uses a convergence parameter, de@‘?md”' columns of the digit image; the second pattern was gener-
vokes POLA multiple times so long as there exists an ®Xated in a similar manner by adding noise to the odd rows.

ample in the trammg set whose hinge loss exce@asf The variance of the noise was set such that the signal to
no such example exists the procedure stops and returns tlp]

' ; ; Bise ratio isl (0dB SNR). The noisy images are depicted

final matrix obtained by POLA.QThe loss b02und Sf Sec. 3on the top left part of Fig. 2. The noise degraded the orig-
guarantees that at mos® (||A*||F + (0" —b) ) /B°1in- inal images up to the point where it is almost impossible
vocations of POLA will be required. By construction, the to recognize whether the original digit is "2” or "5”. The



of the k Nearest Neighbor (kNN) classifier with different
(pseudo) metrics on the MNIST dataset. MNIST contains
images of thel0 digits each of which is represented by
* 28 x 28 pixels. We randomly picked0,000 examples
RS " ) from the training set and used all th&, 000 examples of
- PR the test set. Next(')) = 45 binary classification prob-
0 lems were generated by comparing all pairs of digits. In
o4 the first experiment we compared the performance of kNN
using the Euclidean distance to its performance when using
a pseudo-metric obtained by running POLA on the training
N ) N set. To train POLA we randomly choge000 pairs of in-
SHNOE SN Pt B | . stances and used the last hypothesis generated by POLA
RCA error RCA error for evaluation on the test set (see Sec. 6). A comparison of
the error on all5 binary classification problems is given
on the top left scatter plot of Fig. 3. Each point in the plot
corresponds to a binary classification problem. Tkexis
designates the error of KNN with Euclidean distance while
they-axis is the error of KNN using POLA's pseudo-metric.
o It is clear that using the learned pseudo-metric greatly re-
duces the error rate. In fact, the error when using POLA as
Figure 3T0p and middle rows: scatter plOtS of error rates for all a pre_processing step is lower than the vanilla kNMlirof
pr?\irs of d_igits from the MNIST dataset. Top Le_ft: POLAVs. EU- the45 binary problems. Next, we compared the RCA algo-
clidean distance. Top Right: POLA vs FDA. Middle Left: POLA ' jihm for learning distances (Shental et al., 2002) to POLA.
vs. RCA without PCA as a preprocessing step. Middle Right:p - & ¢410,ys the same learning setting as POLA in a batch
POLA vs. RCA. Bottom row: the digit8 and8 after dimension- . -
ality reduction using PCA (left) and POLA (right). mode. We pompared the performgnce of kNN using a dis-
tance function learned by RCA to its performance using a
pseudo-metric learned by POLA. RCA uses PCA as a pre-
processing step in order to reduce dimensionality. We thus
plot on the bottom left of Fig. 2 is a color coded represen-applied PCA independently to each binary problem and re-
tation of the distance between each pair of original noisyduced the dimension of eae? image to at0 dimensional
images. Itis also clear that the distances are rather randogector. This value of the dimension was chosen by exper-
and do not reflect the identity of the underlying prototypes.imentation on the test set. The results, comparing POLA
We next performed principal component analysis (PCA) onwith RCA, are given on the middle right plot of Fig. 3.
the images and reconstructed the images using the largesDLA outperforms RCA on all but one of th& binary
eigenvector. The corresponding reconstructed images aggroblems. We also applied RCA without the dimensional-
shown on the middle of the top row of Fig. 2. The distancesity reduction step. The results are given on the middle left
between each two reconstructed images are given on thslot of Fig. 3. Here, the results of RCA are much worse
middle of the bottom row. While some of the images be-and POLA outperforms RCA on all of th& binary prob-
come more intelligible, it is still not possible in most case lems. The fact that POLA does not require dimensionality
to reveal whether an image represents the digit "2” or "5”. reduction is in accordance with our formal analysis. In-
Similarly, the corresponding distances do not clearly showgeed, the loss bound of Thm. 1 depends on the Frobenius
the underlying two-class structure. Last, we applied POLAnorm of A* and doesiot depend on the actual dimension
to all pairs of noisy images, and reconstructed each imagef the instances.

using the largest eigenvector of the learned matrixThe

reconstructed images and the distances are depicted on t}%e also compared POLA to Fisher D|scr|m|n§nt Analy-
right hand side of Fig. 2. Most, if not all, of the recon- SIS (FDA) (D_uda et a!., 2001). F,DA can be viewed as a
structed images look intelligible and we can easily reveafimensionality reduction method in the presence of super-
the original digit prototype for each image. Indeed, the dis vision. The smplest for.m of FDA for bl'nary c!a55|f|<;at|on
tances matrix depicted on the right exhibits a clear blockPTOPIEmS projects the instances ontsiagle dimension.
structure corresponding to the partition of the data into tw Thus, to make a fair comparison with FDA, we projected

classes. This experiment demonstrates the power of supdf€ data of each binary problem onto the largest eigenvec-
vised learning of pseudo-metrics for extracting relevant i ' Of the matrix found by POLA. We then compared the
formation. performance of KNN using the projected data obtained by

POLA and FDA. The results are depicted on top right part
Our next set of experiments compares the performance
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clearly outperforms the simple 1NN algorithm. However,
the performance of PAUM and the standard Perceptron al-
gorithm are often comparable to POLA. Since the PAUM
< e algorithm depends on parameters that drastically effect it

" pétcepionercr T Pauen” T alvertor performance, it is possible that finer tuning of these param-
eters will improve its performance.

POLA error
POLA error

POLA error

Figure 4.A comparison of the error of various online algorithms
for document filtering in the dataset Reuters-21578. Acknowledgments Thanks to G. Elidan, M. Fink, E. Egozi,
and M. Shalev for discussion and comments. The work of A.N.
was supported in part by the Department of the Interior/DARPA
of Fig. 3. Here again KNN with POLA clearly outperforms under contract number NBCHD030010. The work of Y.S. and
kNN with FDA on all of the problems. S.S was supported in part by the IST Programme of the Euro-

In the final experiment with the MNIST dataset we ran- pean Community, under the PASCAL Network of Excellence,
domly selected 00 images Corresponding to the dIgItS 0" |ST—2002'506778, and by NSF ,|TR Award 0205594. This pUb-
and "8". We then projected each image onto the two largeslication only reflects the authors’ views.
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