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Abstract

Boosting algorithms build highly accurate prediction mechanisms from a collection of low-accuracy
predictors. To do so, they employ the notion of weak-learnability. The starting point of this paper is
a proof which shows that weak learnability is equivalent to linear separability with `1 margin. The
equivalence is a direct consequence of von Neumann’s minimax theorem. Nonetheless, we derive the
equivalence directly using Fenchel duality. We then use our derivation to describe a family of relaxations
to the weak-learnability assumption that readily translates to a family of relaxations of linear separability
with margin. This alternative perspective sheds new light on known soft-margin boosting algorithms and
also enables us to derive several new relaxations of the notion of linear separability. Last, we describe
and analyze an efficient boosting framework that can be used for minimizing the loss functions derived
from our family of relaxations. In particular, we obtain efficient boosting algorithms for maximizing
hard and soft versions of the `1 margin.

1 Introduction

Boosting is a popular and successful method for building highly accurate predictors from a set of low-
accuracy base predictors. For an overview see for example Freund and Schapire [1999], Schapire [2003],
Meir and Rätsch [2003]. The first boosting algorithm was used for showing the equivalence between weak
learnability and strong learnability [Schapire, 1990]. Weak learnability means that for any distribution over
a set of examples there exists a single feature, also referred to as weak hypothesis, that performs slightly
better than random guessing. Schapire [1990] was the first to show that if the weak learnability assumption
holds then it is possible to construct a highly accurate classifier, to the point that it perfectly classifies all the
examples in the training set. This highly accurate classifier is obtained by building a majority tree of weak
hypotheses. Shortly after Schapire’s seminal paper, Freund Freund [1995] devised the boost-by-majority
algorithm which directly implied that if the weak learnability assumption holds then the set of examples is
linearly separable.

Studying the generalization properties of the AdaBoost algorithm, Schapire et al. [1997] showed that
AdaBoost in fact finds a linear separator with a large margin. However, AdaBoost does not converge to the
max margin solution [Ratsch and Warmuth, 2005, Rudin et al., 2007]. Interestingly, the equivalence between
∗A short version of this paper appeared in COLT 2008
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weak learnability and linear separability is not only qualitative but also quantitative: weak learnability with
edge γ is equivalent to linear separability with an `1 margin of γ. We give a precise statement and a simple
proof of the equivalence in Thm. 4. We note that the equivalence can be also derived from von Neumann’s
minimax theorem [von Neumann, 1928]. Nevertheless, our proof is instructive and serves as a building
block for the derivation of our main results.

Since the weak learnability assumption is equivalent to linear separability, it implies that the weak-
learnability assumption is non-realistic due to its high sensitivity to even small amounts of label noise. For
example, assume that we have a dataset that is perfectly separable with a large margin except for merely two
examples. These two examples share the same instance but attain opposite labels. Since such a dataset is
non-separable, the weak learnability assumption fails to hold as well. To cope with this problem, we must
somehow relax the weak learnability, which is equivalent to relaxing the linear separability assumption. In
this paper we propose a family of relaxations of the linear separability assumption, which stems from the
equivalence of weak-learnability and linear-separability. The guiding tool is to first define a natural family
of relaxations of the weak learnability assumption, and then analyze its implication on the separability
assumption.

In addition to our analysis and relaxations outlined above, we also propose and analyze an algorithmic
framework for boosting that efficiently solve the problems derived from our family of relaxations. The algo-
rithm finds an ε accurate solution after performing at most O(log(m)/ε2) iterations, where m is the number
of training examples. The number of iterations upper bounds the number of different weak-hypotheses con-
stituting the solution. Therefore, we cast a natural trade-off between the desired accuracy level, ε, of the
(possibly relaxed) margin attained by the weight vector learned by the boosting algorithm, and the sparse-
ness of the resulting predictor. In particular, we obtain new algorithms for maximizing the hard and soft
`1 margin. We also provide an O(m log(m)) procedure for entropic projections onto `∞ balls. Combined
with this procedure, the total complexity of each iteration of our algorithm for minimizing the soft `1 margin
is almost the same as the complexity of each iteration of AdaBoost (assuming that the complexity of each
activation of the weak learning algorithm requires Ω(m) time).

Related Work As mentioned above, the equivalence of weak learnability and linear separability with `1
margin is a direct consequence of von Neumann’s minimax theorem in game theory [von Neumann, 1928].
Freund and Schapire [1996] were the first to use von Neumann’s result to draw a connection between weak
learnability and separability. They showed that if the weak learnability assumption holds then the data is
linearly separable. The exact quantification of the weak learnability parameter and the `1 margin parameter
was later spelled out in Ratsch and Warmuth [2005].

Schapire et al. [1997] showed that the AdaBoost algorithm finds a large margin solution. However, as
pointed out by Ratsch and Warmuth [2005], Rudin et al. [2007], AdaBoost does not converge to the max
margin solution. Ratsch and Warmuth [2005] suggested an algorithm called AdaBoost∗ which converges
to the maximal margin solution in O(log(m)/ε2) iterations. The family of algorithms we propose in this
paper entertains the same convergence properties. Rudin et al. [2007] provided a more accurate analysis
of the margin attained by AdaBoost and also presented algorithms for achieving the max-margin solution.
However, their algorithm may take O(1/ε3) iterations to find an ε accurate predictor.

The above algorithms are effective when the data is linearly separable. Over the years, numerous boost-
ing algorithms were suggested for non-separable datasets. We list here few examples. The LogLoss Boost
algorithm [Collins et al., 2002] tries to minimize the cumulative logistic loss, which is less sensitive to
noise. MadaBoost [Domingo and Watanabe, 2000] is another example of an algorithm that copes with non-
separability. It does so by capping from above the importance weights produced by the boosting algorithm.
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MadaBoost shares similarities with some of the relaxations presented in this paper. However, MadaBoost
does not exploit the aforementioned equivalence and has a convergence rate that seems to be inferior to the
rate obtained by the relaxations we consider in this paper. Another notable example for a boosting algo-
rithm that works well in the non-separable case and is considered to be noise tolerant is the BrownBoost
algorithm [Freund, 2001]. BrownBoost uses the error-function (erf) as a margin-based loss function. The
error-function reaches an asymptote when its input (margin in the context of BrownBoost) tends to −∞.
It thus constitutes a robust alternative to a convex loss function, including the LogLoss function. Since the
error function is non-convex, all the results presented in this paper are not applicable to BrownBoost. In
the support vector machine literature, the common relaxation of the separability assumption is obtained by
using the hinge-loss (see for example Cristianini and Shawe-Taylor [2000]). Warmuth et al. [2007] recently
proposed the SoftBoost algorithm that directly minimizes the hinge-loss function. The relaxation described
in Warmuth et al. [2007] is a special case of the family of relaxations we present in this paper. The Soft-
Boost algorithm also builds on the idea of relaxing the weak learnability assumption by capping the maximal
weight of a single example. A similar idea was also used by the SmoothBoost algorithm [Servedio, 2003].
Our presentation leads to an interesting perspective on this relaxation, showing that maximizing the margin
while minimizing the hinge-loss is equivalent to maximizing the average margin of the k examples with the
worst margin. This equivalence is also implied from the work presented in Warmuth et al. [2007]. More
importantly, in this paper we present a simpler algorithm which does not employ a convex optimization pro-
cedure on each round of boosting. Our approach stands in contrast to the algorithm of Warmuth et al. [2007,
2006, 2008], which requires “totally corrective” updates and entails solving a rather complex optimization
problem on each iteration. See also the discussion in Sec. 5.2.

The family of boosting algorithms we derive is reminiscent of the boosting algorithm proposed by Zhang
[2003]. However, our analysis is different and allows us to: (i) provide an analytic solution for the step size;
(ii) tackle complicated loss functions, including cases when the loss function does not take an explicit form.
Our analysis stems from the primal-dual view of online convex programming [Shalev-Shwartz and Singer,
2006b, 2007, Shalev-Shwartz, 2007] and also borrows ideas from the analysis given in Smola et al. [2007].
The main difference between our analysis and that of Smola et al. [2007], Zhang [2003] is that we do not
impose any assumption on the second order derivatives of the objective function. Instead, we rely on a
duality argument and require a strongly convex assumption on the Fenchel conjugate of the loss function.
As we show, in many interesting cases, it is simple to verify that our assumption holds, while it is rather
complex to analyze the second order derivatives of the loss function in hand.

Throughout this paper, we focus on the analysis of the empirical loss over the training set. There has
been extensive work on obtaining generalization bounds for boosting algorithms and for margin-based hy-
potheses. We refer the reader for example to Schapire et al. [1997], Mason et al. [1998], Koltchinskii et al.
[2001]. A complimentary question, left out of the scope of this paper, is whether the equivalence between
weak learnability and linear separability with margin can be exploited for obtaining improved generalization
bounds.

2 Notation and basic definitions

Let (x1, y1), . . . , (xm, ym) be a sequence of m examples, where for all i, xi ∈ X and yi ∈ {+1,−1}. Let
H be a set of base hypotheses, namely, each h ∈ H is a function from X into [+1,−1]. For simplicity,
we assume that H is finite and thus H = {h1, . . . , hn}. Let A be a matrix of size m × n over [+1,−1]
where the (i, j) entry of A is Ai,j = yi hj(xi). We note that boosting algorithms solely use the matrix A
and do not directly work with the set of examples. Therefore, throughout the rest of the paper we focus on
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the properties of the matrix A.
We denote column vectors with bold face letters, e.g. d and w. We use the notation dT ,wT for denoting

their corresponding row vectors and byAT the transpose of the matrixA. The inner product between vectors
is denoted by 〈d,w〉 = dTw. The vector obtained by multiplying a matrix A with a vector d is designated
as Ad and its ith element as (Ad)i. The set of non-negative real numbers is denoted as R+ and the set of
integers {1, . . . , n} as [n]. The m dimensional probability simplex is denoted by Sm = {d ∈ Rm

+ : ‖d‖1 =
1}. We denote the m dimensional `1 ball of radius r by Bm1 (r) = {w ∈ Rm : ‖w‖1 ≤ r}. For the unit
`1 ball, we often omit r and use the shorthand Bm1 . Similarly, we denote the m dimensional `p ball by
Bmp (r) = {w ∈ Rm : ‖w‖p ≤ r} and again omit r whenever it is equal to 1.

Definition 1 (separability with `1 margin γ). A matrix A is linearly separable with `1 margin γ if there
exists w ∈ Bn1 such that mini∈[m](Aw)i ≥ γ, and γ is the greatest scalar that satisfies the above inequality,
namely,

γ = max
w∈Bn

1

min
i∈[m]

(Aw)i .

Rewriting the above using the more familiar notation of examples (xi, yi) and feature vectors φ(x) =
(h1(x), . . . , hn(x)) we obtain

γ = max
w∈Bn

1

min
i
yi〈w,φ(xi)〉 .

This is similar to the (hard-margin) Support Vector Machine [Vapnik, 1998], with the important difference
that here we constraint w to be in the `1 unit ball while in Support Vector Machine we constraint w to be in
the `2 unit ball.

Next, we formally define weak learnability.

Definition 2 (γ-weak-learnability). A matrix A is γ-weak-learnable if for all d ∈ Sm there exists j ∈ [n]
such that |(dTA)j | ≥ γ, and γ is the greatest scalar that satisfies the above inequality, namely,

γ = min
d∈Sm

max
j∈[n]

|(dTA)j | .

The quantity (dTA)j =
∑m

i=1 diyihj(xi) is often called the edge of the jth hypothesis. The analysis of
many boosting algorithms (including AdaBoost) assumes that for any distribution there exists an hypothesis
with an edge of at least γ.

We next give a few basic definitions from convex analysis. A set S ⊂ Rn is convex if for any two vectors
d1,d2 in S, all the line between d1 and d2 is also in S, that is, {αd1 + (1 − α)d2 : α ∈ [0, 1]} ⊆ S. A
function f : S → R is closed and convex if for any scalar r, the level set {d : f(d) ≤ r} is closed and
convex. We allow functions to output +∞ and denote by dom(f) the set {d : f(d) < +∞}. The core of a
set C ∈ Rn, denoted core(C), is the set of all points x ∈ C such that for all d ∈ Rn there exists τ ′ > 0 for
which for all τ ∈ [0, τ ′] we have x + τd ∈ C. The Fenchel conjugate of a function f : S → R is defined as

f?(θ) = max
d∈S

〈d,θ〉 − f(d) . (1)

If f is closed and convex then f?? = f .
Our derivation makes an extensive use of the following theorem.

Theorem 3 (Fenchel Duality: Borwein and Lewis [2006, Theorem 3.3.5]). Let f : Rm → R ∪ {∞} and
g : Rn :→ R ∪ {∞} be two closed and convex functions and let A be a matrix of dimension m× n. Then,

max
w
−f?(−Aw)− g?(w) ≤ min

d
f(d) + g(dTA) .
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Table 1: Summary of notations.
x,xT column vector and its transpose
〈x,v〉 inner product (= xTv)
A matrix of size m× n
Sm m dimensional probability simplex
Bmp (ν) `p ball {w ∈ Rm : ‖w‖p ≤ ν}
IC(d) indicator function (= 0 if d ∈ C and =∞ else)
[x]+ vector whose ith element equals max{0, xi}
‖ · ‖, ‖ · ‖? norm and its dual norm
f, f? function and its Fenchel conjugate
ei all zeros vector except 1 in the ith position
[m] the set {1, . . . ,m}

The above holds with equality if in addition we have

0 ∈ core
(
dom(g)−ATdom(f)

)
,

where − denotes the set exclusion operator.

Note that the first part of the theorem is analogous to the notion of weak-duality while additional condi-
tion yields the equivalent of strong duality. We denote an arbitrary norm by ‖ · ‖ and its dual norm by ‖ · ‖?.
That is,

‖w‖? = max
d:‖d‖≤1

〈w,d〉 .

Two dual norms that we extensively use are ‖w‖1 =
∑

i |wi| and ‖w‖∞ = maxi |wi|.
For a set C, we denote by IC(d) the indicator function of C, that is, IC(d) = 0 if d ∈ C and otherwise

IC(d) = ∞. The definition of ‖w‖? implies that the Fenchel conjugate of IC(d) where C = {d : ‖d‖ ≤
1}, is the function ‖ · ‖?. To conclude this section, we would like to point the reader to Table 1 which
summarizes our notations.

3 Weak-learnability and linear-separability

In this section we establish the equivalence between weak learnability and linear separability with `1 margin.
As mentioned before, this result can be derived from von Neumann’s minimax theorem. The purpose of the
proof below is to underscore the duality between weak learnability and separability, which becomes useful
in the next sections. The theorem is by no means new (see for instance Freund and Schapire [1996]) and its
role is to pave the road for the analysis presented in the sequel and underscore the usage of Fenchel duality
which is used extensively throughout the paper.

Theorem 4. A matrix A is γ-weak-learnable if and only if it is linearly separable with `1 margin of γ.

Proof. We prove the theorem using Fenchel duality (Thm. 3). For convenience, we refer to the optimization
problem on the right (left) hand side of Thm. 3 as the primal (dual) optimization problem. Let f be the
indicator function of the m-dimensional simplex, i.e. f(d) = 0 if d ∈ Sm and otherwise f(d) = ∞, and
let g(w) = ‖w‖∞. Then, the primal problem is

P ? = min
d
f(d) + g(dTA) = min

d∈Sm
‖dTA‖∞ .
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The definition of γ-weak-learnability conveys that A is P ?-weak-learnable. Next, we turn to the dual prob-
lem. The Fenchel conjugate of g is the indicator function of the set Bn1 (see Sec. 2) and the Fenchel conjugate
of f is

f?(θ) = max
d∈Rm

〈θ,d〉 − f(d) = max
d∈Sm

〈θ,d〉 = max
i∈[m]

θi .

Therefore,
D? = max

w∈Rn
−f?(−Aw)− g?(w) = max

w∈Bn
1

min
i∈[m]

(Aw)i .

Definition 1 implies that A is separable with `1 margin of D?. To conclude our proof, it is left to show that
P ? = D?. First, we note that for w = 0 the value of D is zero, and thus D? ≥ 0. Therefore, if P ? = 0
then 0 = P ? ≥ D? ≥ 0 so in this case we clearly have P ? = D?. Assume now that P ? = γ > 0. Based on
Thm. 3 and the definition of the core operator, it suffices to show that for any vector v there exists τ ′ > 0
such that for all τ ∈ [0, τ ′] we have τ v /∈ {ATd : d ∈ Sm}. This property holds true since for any d ∈ Sm
we have ‖ATd‖∞ ≥ P ? while for sufficiently small τ ′ we must have ‖τv‖∞ < P ? for all τ ∈ [0, τ ′].

4 A family of relaxations

In the previous section we showed that weak learnability is equivalent to separability. The separability
assumption is problematic since even a perturbation of a single example can break it. In this section we
propose a family of relaxations of the separability assumption. The motivation for these relaxations stems
from the equivalence between weak-learnability and separability. The main idea is to first define a natural
family of relaxations of the weak learnability assumption, and then analyze the implication to the separability
assumption. To simplify the presentation, we start with a particular relaxation that was studied in Servedio
[2003], Warmuth et al. [2006]. We then generalize the example and describe the full family of relaxations.

4.1 A first relaxation: capped probabilities and soft margin

To motivate the first simple relaxation, consider a matrix A whose ith row equals to the negation of its jth
row. That is, our training set contains an instance which appears twice with opposing labels. Clearly, this
training set is not separable even though the rest of the training set can be perfectly separable with a large
margin. The equivalence between weak learnability and linear separability implies that A is also not weak
learnable. To derive this property directly, construct the distribution d with di = dj = 1

2 (and dr = 0 for
r 6= i and r 6= j) and note that dTA = 0.

In the above example, the weak learnability assumption fails because we place excessive weight on
the problematic examples i, j. Indeed, it was observed that AdaBoost over-weighs examples, which par-
tially explains its poor performance on noisy data. To overcome this problem, it was suggested (see for
instance Servedio [2003], Warmuth et al. [2006]) to restrict the set of admissible distributions by capping
the maximum importance weight of each example. That is, the weak learner should return a weak hypothesis
only when its input distribution satisfies ‖d‖∞ ≤ 1

k , for a predefined integer k ∈ [m].
Plugging the above restriction on d into Definition 2 we obtain the following relaxed weak learnability

value,
ρ = min

d∈Sm:‖d‖∞≤ 1
k

max
j∈[n]
|(dTA)j | . (2)

Assume that a matrix A satisfies the above with ρ > 0. The immediate question that surfaces is what is
the implication on the separability properties of A? To answer this question, we need to refine the duality
argument given in the proof of Thm. 4.
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Let f(d) be the indicator function of Sm ∩ Bm∞( 1
k ) and let g(w) = ‖w‖∞. The optimization problem

given in Eq. (2) can be rewritten as mind f(d) + g(dTA). To derive the dual optimization problem, we find
the Fenchel conjugate of f ,

f?(θ) = max
d∈Sm:‖d‖∞≤ 1

k

〈d,θ〉 .

To maximize the inner product 〈d,θ〉 we should allocate the greatest admissible weight to the greatest
element of θ, allocate the greatest of the remaining weights to the second greatest element of θ, and so on
and so forth. For each i ∈ [m], let si(θ) be the ith greatest element of θ, that is, s1(θ) ≥ s2(θ) ≥ . . .. Then,
the above argument yields

f?(θ) =
1
k

k∑
j=1

sj(θ) .

Combining the form of f? with Thm. 3 we obtain that the dual problem of Eq. (2) is

max
w∈Bn

1

1
k

k−1∑
j=0

sm−j(Aw) . (3)

Using the same technique as in the proof of Thm. 4 it is easy to verify that strong duality holds as well. We
therefore obtain the following corollary.

Corollary 5. Let A be a matrix and let k ∈ [m]. For a vector θ, let AvgMink(θ) be the average of the k
smallest elements of θ. Let ρ be as defined in Eq. (2). Then,

max
w∈Bn

1

AvgMink(Aw) = ρ .

Let us now discuss the role of the parameter k. First, if k = 1 then the function AvgMink reduces to the
minimum over the vector provided as its argument, and therefore we revert back to the traditional definition
of margin. When k = m, the only admissible distribution is the uniform distribution. In this case, it is easy
to verify that the optimal weight vector associates wj = 1 with the feature that maximizes |(dTA)j | (while
d being the uniform distribution) and wj = 0 for the rest of the features. That is, the performance of the
optimal strong hypothesis is equal to the performance of the best single weak hypothesis, and no boosting
process takes place. The interesting regime is when k is proportional to m, for example k = 0.1m. In this
case, if ρ > 0, then we are guaranteed that 90% of the examples can be separated with margin of at least ρ.

It is also possible to set k based on knowledge of the number of noisy examples in the training set and
the separability level of the rest of the examples. For example, assume that all but ν of the examples are
separable with margin γ. Then, the worst objective value that w can attain is, AvgMink(Aw) = −ν+(k−ν)γ

k .
Constraining the right hand side of this equality above to be at least γ

2 and solving for k yields that for
k ≥ 2ν(γ + 1)/γ at least m− k examples attain a margin value of at least γ/2.

4.2 A general relaxation scheme

We now generalize the above relaxation and present our general relaxation scheme. To do so, we first rewrite
Eq. (2) as follows. Denote C = Bm∞(1/k) and recall that IC(d) is the indicator function of the set C. We
can now rewrite Eq. (2) as

ρ = min
d∈Sm

(
max
j∈[n]
|(dTA)j |+ IC(d)

)
. (4)
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The general relaxation scheme is obtained by replacing IC with a large family of functions. Before speci-
fying the properties of allowed functions, let us first define the following generalized notion of weak learn-
ability.

Definition 6 ((ρ, f)-weak-learnability). Let f be an arbitrary function. A matrixA is (ρ, f)-weak-learnable
if

ρ = min
d∈Sm

(
max
j∈[n]
|(dTA)j |+ f(d)

)
.

Intuitively, we can think on ρ as the minimum of the maximal edge plus a regularization term f(d). In
the case of capped importance weights, the regularization function is a barrier function that does not penalize
distributions inside Bm∞(1/k) and places an infinite penalty for the rest of the distributions.

The following theorem shows how the fact that a matrix A is (ρ, f)-weak-learnable affects its separa-
bility properties. To remind the reader, we denote by ei the vector whose ith element is 1 and the rest of its
elements are zero. The notation [x]+ represents the vector whose ith element is max{0, xi}.

Theorem 7. Let f be a convex function, ρ be a scalar, and A be a (ρ, f)-weak-learnable matrix. Assume
that the following conditions hold,
(i) mind f(d) = 0,
(ii) 0 ∈ core(dom(f)),
(iii) ∀θ ∈ Rm, ∀i ∈ [m], ∀α ∈ [0, 1], the Fenchel conjugate of f satisfies

f?(θ) ≥ f?(θ − α θi ei)

then,
max

w∈Bn
1 ,γ∈R

(
γ − f?([γ −Aw]+)

)
= ρ .

The proof of the theorem is again based on the Fenchel duality theorem. The vector [γ − Aw]+ appearing
in the dual problem is the vector of hinge-losses. Before diving into the details of the proof, let us give two
concrete families of functions that satisfy the requirement given in the theorem.

Example 1. Let f be the indicator function of a ball of radius ν, {d : ‖d‖ ≤ ν}, where ‖ · ‖ is an arbitrary
norm and ν is a scalar such that the intersection of this ball with the simplex is non-empty. To apply the
theorem, we need to verify that the three conditions hold. Clearly, mind f(d) = 0 and the vector 0 is in the
core of the domain of f (which is simply the ball of radius ν). Furthermore, f?(w) = ν ‖w‖? and therefore
the third condition given in the theorem holds as well. Applying the theorem we obtain that:

max
w∈Bn

1 ,γ∈R

(
γ − ν ‖[γ −Aw]+‖?

)
= min

d∈Sm:‖d‖≤ν
‖dTA‖∞ .

In particular, if ‖·‖ is the `∞ norm we obtain again the example of capped sample weights. Since the 1-norm
and ∞-norm are dual norms we get that in the dual problem we are maximizing the margin parameter γ
while minimizing the cumulative hinge-loss. Combining this fact with Corollary 5 we get that

AvgMink(Aw) = max
γ∈R

(
γ − 1

k

m∑
i=1

[γ − (Aw)i]+
)
.

The right hand side of the above is usually called the “soft-margin”. The above equality tells us that the
soft margin is equivalent to the average margin of the k worst examples (see also Warmuth et al. [2006],
Schölkopf et al. [1998]).
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Example 2. Let f(d) = ν ‖d‖ where ‖ · ‖ is an arbitrary norm and ν is a scalar. Then, f?(w) is the
indicator function of the ball of radius ν with respect to the dual norm {w : ‖w‖? ≤ ν}. The condition
given in the theorem clearly holds here as well and we obtain the dual problem

max
w∈Bn

1 ,γ∈R
γ s.t. ‖[γ −Aw]+‖? ≤ ν .

That is, we are now maximizing the margin subject to a constraint on the vector of hinge-losses.

We now turn to proving Thm. 7. First, we need the following lemma which characterizes the Fenchel
conjugate of f + ISm .

Lemma 8. Assume that f satisfies the conditions given in Thm. 7 and denote f̃(d) = f(d)+ISm(d). Then,

f̃?(θ) = −max
γ∈R

(γ − f?([γ + θ]+)) .

Proof. We first rewrite f̃? as

f̃?(θ) = max
d
−f(d)− (ISm(d)− 〈θ,d〉)

= −
(

min
d
f(d) + (ISm(d)− 〈θ,d〉)

)
Denote g(d) = ISm(d) − 〈θ,d〉. It is easy to verify that g?(x) = maxi(θi + xi). Next, note that 0 ∈
core(dom(f)) by assumption and that dom(g) = Sm. Therefore, strong duality holds and we can use
Thm. 3 which yields,

−f̃?(θ) = max
x

(−f?(x)− g?(−x))

= max
x

(
−f?(x)−max

i
(θi − xi)

)
.

We note that the above equality also follows from properties of the Fenchel conjugate of the infimal convo-
lution operator (see for example Borwein and Lewis [2006]). Let Cγ = {x : ∀i, xi ≥ θi + γ}. We show in
the sequel that for any γ, the vector [θ + γ]+ is a minimizer of f?(x) over x ∈ Cγ . Combining this with the
above expression for −f̃?(θ) we get that

−f̃?(θ) = max
γ

(γ − f?([θ + γ]+)) ,

as required. Therefore, it is left to show that the vector [θ + γ]+ is indeed a minimizer of f?(x) over Cγ .
Clearly, [θ + γ]+ ∈ C. In addition, for any x ∈ Cγ we can make a sequence of modifications to x until
x = [θ + γ]+ as follows. Take some element i. If xi > [θi + γ]+ then based on assumption (iii) of Thm. 7
we know that

f?
(
x− xi − [θi + γ]+

xi
xiei

)
≤ f?(x) .

If xi < [θi+γ]+ we must have that [θi+γ]+ = 0 since we assume that x ∈ Cγ and thus xi ≥ θi+γ. Thus,
xi < 0 but now using assumption (iii) of Thm. 7 again we obtain that f?(x−xiei) ≤ f?(x). Repeating this
for every i ∈ [m] makes x equals to [θ + γ]+ while the value of f?(x) is non-increasing along this process.
We therefore conclude that [θ + γ]+ is a minimizer of f?(x) over x ∈ Cγ and our proof is concluded.
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Based on the above lemma the proof of Thm. 7 is readily derived.

Proof of Thm. 7. The proof uses once more the Fenchel duality theorem. Define the function f̃(d) = f(d)+
ISm(d). Therefore, Thm. 3 tells us that the dual of the problem mind f̃(d) + ‖dTA‖∞ is the problem
maxw∈Bn

1

(
−f̃?(−Aw)

)
. Using Lemma 8 we obtain that the dual of the problem given in Definition 6 is

the same maximization problem as stated in the theorem. To conclude the proof it is left to show that strong
duality also holds here. First, using the assumption mind f(d) = 0 we get that f?(0) = 0. By setting
w = 0 and γ = 0 we get that the dual problem is bounded below by zero. Thus, if ρ = 0 then strong duality
holds. If ρ > 0 then we can use the fact that dom(f̃) ⊆ dom(f) and therefore the same arguments as in the
end of the proof of Thm. 4 holds here as well.

5 Boosting algorithms

In this section we derive a boosting algorithm for solving the max-relaxed-margin problem described in the
previous section, namely,

max
w∈Bn

1

max
γ∈R

(γ − f?([γ −Aw]+)) . (5)

The function f? should satisfy the conditions stated in Thm. 7. In particular, if f?(x) = ν ‖x‖1 we obtain
the soft margin problem

max
w∈Bn

1

max
γ∈R

(
γ − ν

m∑
i=1

[γ − (Aw)i]+

)
, (6)

while if f?(x) = maxi xi then we obtain the non-relaxed max margin problem

max
w∈Bn

1

min
i∈[m]

(Aw)i .

The boosting algorithm for solving Eq. (5) is described in Fig. 1. To simplify the presentation, let us
first describe the algorithm for the non-relaxed max-margin problem, that is, f?(x) = maxi xi. As we
have shown in the proof of Thm. 4, the corresponding Fenchel conjugate f(d) is the indicator function of
Sm. The algorithm initializes the weight vector to be the zero vector, w1 = 0. On round t, we define a
distribution over the examples

dt = argmax
d∈Sm

(
〈−Awt,d〉 − (f(d) + β h(d))

)
= argmin

d∈Sm

(
〈Awt,d〉+ (f(d) + β h(d))

)
,

where h(d) is the relative entropy function. Since we are now dealing with the case f(d) = ISm , we can use
Lemma 18 in the appendix and get that dt is the gradient of the Fenchel conjugate of the function βh(d).
In the appendix we list several Fenchel conjugate pairs. In particular, the Fenchel conjugate of the relative
entropy is the soft-max function

h?(θ) = log

(
1
m

m∑
i=1

eθi

)
.

Using the property (βh)?(θ) = βh?(θ/β) we obtain that

dt,i ∝ e
− 1
β (Awt)i .
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INPUT: matrix A ∈ [+1,−1]m,n

Relaxation function f?

Desired accuracy ε

DEFINE: h(d) =
∑m

i=1 di log(di) + log(m)

f(d) = Fenchel conjugate of f?

INITIALIZE: w1 = 0, β = ε
2 log(m)

FOR t = 1, 2, . . .

dt = argmin
d∈Sm

(
〈Awt,d〉+ (f(d) + β h(d))

)
jt ∈ arg maxj |(dTt A)j |

(w.l.o.g. assume sign(dTt A)jt = 1)

IF 〈dt, A (ejt −wt)〉 ≤ ε

RETURN wt

ELSE

ηt = max
{

0,min
{

1, β dT
t A(ejt−wt)

‖A(ejt−wt)‖2∞

}}
wt+1 = (1− ηt)wt + ηt ejt

Figure 1: A Boosting Algorithm for maximizing the relaxed margin given in Eq. (5).

That is, the log of the probability assigned to the ith example is negatively proportional to the margin of
the example according to the current weight vector wt. Therefore, the algorithm allocates larger importance
weights to the erroneous examples, in a similar fashion to the weighting scheme of examples of many other
boosting algorithms, such as AdaBoost.

Next, we perform a step analogous to calling a weak-learner by finding a single column of A with the
best edge. We would like to note that it is possible to extend the algorithm so that the weak learner may
find a column whose edge is only approximately optimal (see also Warmuth et al. [2008]). For simplicity
we confine the description to weak learners that return the column with the greatest edge. Next, we check
whether a stopping condition is met. (We later on prove that by the time the stopping condition is met we
have obtained an ε-accurate solution.) Finally, we set wt+1 to be the convex combination of wt and the new
hypothesis. The coefficient of the convex combination, denoted ηt, is calculated analytically based on our
analysis. Note that the update form guarantees that ‖wt‖1 ≤ 1 for all t.

The sole modification of the algorithm when running with other relaxation functions is concerned with
the definition of dt. In Sec. 5.3 we further elaborate on how to solve the optimization problem which
appears in the definition of dt. We provide a few general tools and also present an efficient procedure for
the case where f is the indicator function of Bm∞(ν). The following theorem provides analysis of the rate of
convergence of the algorithm.

Theorem 9. The algorithm given in Fig. 1 terminates after at most 32 log(m)/ε2 iterations and returns an
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ε-accurate solution, namely,

max
γ

(γ − f?([γ −Awt]+)) ≥ ρ − ε ,

where ρ is the optimal value of the solution as defined in Thm. 7.

Before turning to the proof of Thm. 9 let us first discuss its implications. First we note that the number
of iterations of the algorithm upper bounds the number of non-zero elements of the solution. Therefore, we
have a trade-off between the desired accuracy level, ε, and the level of sparsity of the solution.

The algorithm can be used for maximizing the hard margin using O(log(m)/ε2) iterations. In this case,
the algorithm shares the simplicity of the popular AdaBoost approach. The rate of convergence we obtain
matches the rate of the AdaBoost? described by Ratsch and Warmuth [2005] and is faster than the rate
obtained in Rudin et al. [2007]. We note also that if A is γ-separable and we set ε = γ/2 then we would
find a solution with half the optimal margin in O(log(m)/γ2) iterations. AdaBoost seemingly attains an
exponentially fast decay of the empirical error of e−γ

2t. Thus, t should be at least 1/γ2. Further careful
examination also reveals a factor of log(m) in the convergence rate of AdaBoost. Therefore, our algorithm
attains the same rate of convergence of AdaBoost while both algorithms obtain a margin which is half of the
optimal margin. (See also the margin analysis of AdaBoost described in Rudin et al. [2007].)

We can also use the algorithm for maximizing the soft margin given in Eq. (6). In Sec. 5.3 we show how
to calculate dt in Õ(m) time (where Õ(·) designates the asymptotic complexity up to logarithmic terms).
Therefore, the complexity of the resulting algorithm is roughly the same as the complexity of AdaBoost. The
bound on the number of iterations that we obtain matches the bound of the SoftBoost algorithm, recently
proposed by Warmuth et al. [2006]. However, our algorithm is simpler to implement and the time complexity
of each iteration of our algorithm is substantially lower than the one described in Warmuth et al. [2006]. See
also the discussion in Sec. 5.2.

5.1 Proof of convergence rate

To motivate our proof technique, let us focus first on the max-margin case without any relaxation. As we
showed before, the AdaBoost algorithm approximates the max operator, maxi θi, with a soft-max operator,
log( 1

m

∑
i e
θi), also known as the exp-loss. We can view this approximation as another form of relaxation

of the max margin. To distinguish this type of relaxation from the family of relaxations described in the
previous section, we refer to it as an “algorithmic” relaxation, since this relaxation is driven by algorithmic
factors and not directly by the concept of relaxing the margin. The algorithmic relaxation of AdaBoost
encapsulates the following relaxation of weak learnability: replace the indicator function of the simplex
with the relative entropy function over the simplex, which we denote by h(d). (See also the definition in
Fig. 1.) The advantage of endowing the simplex with the relative entropy stems from the fact that the relative
entropy is strongly convex with respect to the `1 norm, as we formally define now.

Definition 10. A continuous function f is σ-strongly convex over a convex set S with respect to a norm ‖ · ‖
if S is contained in the domain of f and for all v,u ∈ S and α ∈ [0, 1] we have

f(αv + (1− α) u) ≤ α f(v) + (1− α) f(u)

−σ
2
α (1− α) ‖v − u‖2 .

In the above definition, if σ = 0 we revert back to the standard definition of convexity. Intuitively, when
S = R, σ is a lower bound on the second order derivative of f . Strong convexity quantifies the difference
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between the value of the function at the convex combination and the convex combination of the values of
the function. The relative entropy is 1-strongly convex with respect to the `1 norm over the probabilistic
simplex. (The strong convexity of the relative entropy is a well established result. For a concrete proof see
for example Lemma 16 in Shalev-Shwartz [2007].) A few important properties of strongly convex functions
are summarized in Lemma 18 (in the appendix). We use these properties in our proofs below.

Continuing with our motivating discussion, we view the algorithmic relaxation of AdaBoost as a re-
placement of the convex function ISm(d) by the strongly convex function h(d). More generally, recall
the definition f̃(d) = f(d) + ISm(d) from Sec. 4 and that solving Eq. (5) is equivalent to maximizing
−f̃?(−Aw) over w ∈ Bn1 . As in the algorithmic relaxation of AdaBoost, we replace f̃(d) by the function

f̂(d) = f̃(d) + β h(d) ,

where β ∈ (0, 1). Since for all d ∈ Sm we have 0 ≤ h(d) ≤ log(m), by setting β = ε/(2 log(m)) we
obtain that

∀d ∈ Sm, f̂(d)− ε/2 ≤ f̃(d) ≤ f̂(d) .

Using Lemma 19 in the appendix, the above also implies that

∀θ, f̂?(θ) ≤ f̃?(θ) ≤ f̂?(θ) + ε/2 . (7)

Thus, maximizing −f̂?(−Aw) gives an ε/2 accurate solution to the problem of maximizing −f̃?(−Aw).
This argument holds for the entire family of functions discussed in Sec. 4. An appealing property of strong
convexity that we exploit is that by adding a convex function to a strongly convex function we retain at least
the same strong convexity level. Therefore, for all the functions f̃(d) discussed in Sec. 4 the corresponding
f̂(d) retains the strongly convex property of the relative entropy.

The algorithm in Fig. 1 is designed for maximizing−f̂?(−Aw) over Bn1 . Based on the above discussion,
this maximization translates to an approximate maximization of −f̃?(−Aw). So, our next step is to show
how Fig. 1 solves the problem: maxw∈Bn

1
−f̂?(−Aw).

Let us denote
D(w) = −f̂?(−Aw) and P(d) = f̂(d) + ‖dTA‖∞ . (8)

Using again Thm. 3 we obtain that P and D are primal and dual objective values, that is,

max
w∈Bn

1

D(w) ≤ min
d
P(d) .

We also denote by εt the dual’s sub-optimality value attained at iteration t of the algorithm, namely,

εt = max
w∈Bn

1

D(w)−D(wt) .

The following lemma states that by the time the stopping condition of the algorithm in Fig. 1 is met, the
algorithm has obtained an ε-accurate solution.

Lemma 11. For all t we have εt = maxw∈Bn
1
D(w)−D(wt) ≤ 〈dt, A(ejt −wt)〉.

Proof. The weak duality property tells us thatP(dt) ≥ maxw∈Bn
1
D(w) and therefore εt ≤ P(dt)−D(wt).

We prove the lemma by showing that P(dt) − D(wt) = 〈dt, A (ej −wt)〉. First, using Lemma 17, stated
in the appendix, we get that for any pair, f̂ , f̂?, the following equality holds,

〈dt,−Awt〉 = f̂(dt) + f̂?(−Awt) .

Next, recall that from Eq. (8) we have that, f̂(dt) + f̂?(−Awt) = P(dt) − ‖dTt A‖∞ − D(wt). Next,
we use the definition of jt to rewrite ‖dTt A‖∞ as 〈dt, A ejt〉. We thus obtain that εt ≤ P(dt) − D(wt) =
〈dt,−Awt〉+ ‖dTt A‖∞ = 〈dt, A(ejt −wt)〉 which concludes the proof.
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Next, the following lemma lower bounds the improvement made by the boosting algorithm on each
iteration in terms of its current sub-optimality. The lemma essentially conveys that if the stopping condition
is not met then the update makes substantial progress towards the correct solution.

Lemma 12. Let εt be the sub-optimality value of the algorithm in Fig. 1 at iteration t and assume that
εt ≤ 1. Then, εt − εt+1 ≥ β ε2t /8.

Proof. Let us denote by ∆t the difference εt − εt+1. From the definition of εt, it clearly holds that ∆t =
D(wt+1)−D(wt). To simplify our notation, we use the shorthand j for jt and η for ηt. Since

wt+1 = (1− η)wt + ηej

we get that
∆t = D(wt + η(ej −wt))−D(wt) .

Using the definition of D(·) we further rewrite ∆t as

∆t = f̂?(−Awt)− f̂?(−Awt − η A (ej −wt)) . (9)

The key property that we use is that f̂? is the Fenchel conjugate of a β-strongly convex function over the
simplex with respect to the `1 norm. Therefore, using Lemma 18 from the appendix, we know that for any
θ1 and θ2,

f̂?(θ1 + θ2)− f̂?(θ1) ≤ 〈∇,θ2〉+
‖θ2‖2∞

2β
,

where ∇ = arg maxd〈θ1,d〉 − f̂(d). We now set θ1 = −Awt and θ2 = −η A (ej −wt)) and apply the
above strong-convexity inequality to Eq. (9) while using the definition of dt to obtain that,

∆t ≥ η 〈dt, A (ej −wt)〉 −
η2 ‖A (ej −wt)‖2∞

2β
. (10)

Using the assumption A ∈ [−1,+1]m×n, the constraint that wt ∈ Bn1 , and the triangle inequality we get
that

‖A (ej −wt)‖∞ ≤ ‖A ej‖∞ + ‖Awt‖∞ ≤ max
i,j
|Ai,j |(1 + ‖wt‖1) ≤ 2 ,

and thus
∆t ≥ η 〈dt, A (ej −wt)〉 − 2 η2/β . (11)

Combining Lemma 11 with the above inequality yields,

∆t ≥ η εt − 2 η2/β . (12)

Denote η′ = εt β/4 and note that η′ ∈ [0, 1]. Had we set ηt = η′ we would have obtained that ∆t ≥ β ε2t /8
as required. Since we set ηt to be the maximizer of the expression in Eq. (10) over [0, 1], we obtain a lower
bound on ∆t which is at least as large as the bound given by Eq. (12). This concludes our proof.

Based on Lemma 12 the proof of Thm. 9 easily follows.
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Proof of Thm. 9. First, using Lemma 11, the initialization of w1 = 0, and the assumptionA ∈ [−1,+1]m×n,
we get that

ε1 ≤ 〈d1, A(ej1 −w1)〉 = 〈d1, Aej1〉 ≤ 1 .

We can now apply Lemma 12 for t = 1 and get that ε2 ≤ ε1. By induction, we obtain that Lemma 12 holds
for all t. Applying Lemma 20 (provided in the appendix) we get that εt ≤ 8

β(t+1) .

Plugging the definition of β = ε/(2 log(m)) into the upper bound on εt we get εt ≤ 16 log(m)
(t+1)ε . Therefore,

if t + 1 ≥ 32 log(m)/ε2 we get that εt ≤ ε/2. Finally, let ε′ be the error of wt with respect to the original
function f̃ . Then, using Eq. (7) we obtain that ε′ ≤ εt + ε/2 ≤ ε.

5.2 Corrective vs. Totally Corrective Updates

The boosting algorithm outlined in Fig. 1 has the advantage that the runtime of each iteration is small.
Recently, Warmuth et al. [2006, 2008] proposed an alternative family of algorithms for maximizing the
soft margin given in Eq. (6). Their algorithms share a common construction which distills to replacing the
indicator function of the simplex with the relative entropy function, h(d). The main difference between the
algorithmic skeleton presented in this paper and the algorithms in [Warmuth et al., 2006, 2008] is that the
latter are “totally corrective”. Totally corrective algorithms readjust the weights of the features induced thus
far so as to minimize the boosting loss function. Once the weights have been optimized a new feature is
introduced through a call to the weak-learner.

We first show that the proof of the iteration bound given in Thm. 9 can be seamlessly adapted to the
setting of totally corrective updates. More precisely, consider the algorithm from Fig. 1, where the two last
lines are replaced with the following totally corrective update rule,

wt+1 = argmax
w∈Bn

1

D(w) s.t. ∀i /∈ {jr : r ≤ t}, wi = 0 . (13)

Clearly, the increase of D(w) at each iteration due to this update is at least as large as the increase attained
for D(w) had we set wt+1 as given in Fig. 1. Therefore, Lemma 12 holds for the totally corrective update
as well. The rest of the proof of Thm. 9 remains intact.

Since both the standard (called hence forth corrective) and totally corrective updates share the same
iteration bound, and since the runtime of each iteration is much smaller for the corrective update, it seems
that the corrective update is preferable over the totally corrective update. However, experimental evidence
presented by Warmuth et al. [2008] indicates that the totally corrective updates may yield improved con-
vergence. We leave further research on the theoretical understanding of totally corrective updates to future
work.

5.3 Efficient implementation for soft margins

In this section we provide an efficient procedure for calculating the distribution dt as described in Fig. 1
when f(d) is the indicator function of {d : ‖d‖∞ ≤ ν}. As we showed above, this case corresponds to the
maximization of the soft margin.

We first present a lemma that provides us with an alternative method for finding d, which is based on
Bregman divergences. The Bregman divergence with respect to a convex function h between two vectors d
and d0 is defined as,

Bh(d‖d0) = h(d)− h(d0)− 〈∇h(d0),d− d0〉 .

See Censor and Zenios [1997] for a rigorous definition of the Bregman divergence.

15



INPUT: A vector d0 ∈ Sm and a scalar ν ∈ (0, 1)
Sort d0 in non-increasing order ⇒ u

INITIALIZE: Z =
∑m

r=1 ur

FOR i = 1, ...,m

ξ =
1− ν (i− 1)

Z
IF ξui ≤ ν

BREAK

ENDIF

Z ← Z − ui
ENDFOR

OUTPUT: dt s.t. dt,r = min{ν, ξd0,r}

Figure 2: A sorting-based procedure for the entropic projection problem defined by Eq. (14).

Lemma 13. Let h : S → R be a strongly convex and differentiable function, let f be a convex function, and
denote f̂ = h + f . Let θ be a vector and denote d0 = ∇h?(θ), where h? is the Fenchel conjugate of h.
Then,

∇f̂?(θ) = argmin
d

(Bh(d‖d0) + f(d)) .

Proof. Since h is strongly convex and differentiable we have that∇h(d0) = θ. Therefore,

∇f̂?(θ) = argmax
d

〈d,θ〉 − f̂(d)

= argmin
d

h(d)− 〈d,θ〉+ f(d)

= argmin
d

h(d)− 〈d,∇h(d0)〉+ f(d)

= argmin
d

Bh(d‖d0) + f(d) .

Applying the above lemma with f = IC for some convex set C we obtain the following corollary.

Corollary 14. Assume that the conditions stated in Lemma 13 hold and that f(d) = IC(d) for some convex
set C. Then,

∇(h+ f)?(θ) = argmin
d∈C

Bh(d‖∇h?(θ)) .

We now get back to the problem of finding dt when f(d) is IC(d) for C = {d : ‖d‖∞ ≤ ν}. Based on
Corollary 14 we can first define the distribution vector d0 such that d0,i ∝ exp(− 1

β (Awt)i) and then set

dt = argmin
d∈Sm:‖d‖∞≤ν

Bh(d‖d0) . (14)

We are therefore left with the problem of solving the entropic projection problem given in Eq. (14).
A similar problem was tackled by Herbster and Warmuth [2001], who provided O(m log(m)) and O(m)
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algorithms for performing entropic projections. We would like though to distill the connection of previous
work to our setting. Thus, for completeness, in the rest of this section we describe the simpler, sorting-based,
O(m log(m)) algorithm. We deviate though from the description given in [Herbster and Warmuth, 2001]
and adapt the analysis given in [Duchi et al., 2008] to our setting. Since we mostly recast known results, we
give the core derivation of the algorithm and provide proofs in the appendix for central lemmas.

To make the connection to previous work, we first need to show that the entropic projection preserves
the relative order of components of the projected vector. Since this lemma was not provided in [Herbster
and Warmuth, 2001] we give its formal statement below while its proof is given in the appendix.

Lemma 15. Let dt be the solution of Eq. (14) and i, j be two indices such that d0,i > d0,j , then, dt,i ≥ dt,j .

Assume, without loss of generality, that d0 is sorted in a non-increasing order. Therefore, using Lemma 15
we know that dt takes the form (ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0) where for each r ∈ {i, . . . , j} we have
dt,r ∈ (0, ν). Moreover, the following lemma provides us with a simple way to find all the rest of the
elements of dt. This lemma as well is a variation on a similar lemma for Euclidean projections from [Duchi
et al., 2008] and its proof is also deferred to the appendix.

Lemma 16. Assume that d0 is sorted in a non-increasing order and that dt = (ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0).
Then, for all r ∈ {i, . . . , j} we have

dt,r = ξ d0,r where ξ =
1− ν (i− 1)∑j

r=i d0,r

.

We now face the problem of finding the indices i and j. As we now show, all of the elements of optimal
vector are non-zero. Formally, the optimal solution of Eq. (14) is of the form, (ν, . . . , ν, dt,i, . . . , dt,m)
where dt,m > 0. To show this property we plug the value of ξ from the previous lemma into the objective
function and after simple algebraic manipulations we obtain the following objective value,

Bh(dt‖d0) =
i−1∑
r=1

ν log( ν
d0,r

) + (1− ν(i− 1)) log(ξ) .

Therefore, the objective is monotonically increasing in ξ. This in turn implies that we should set ξ to be
as small as possible in order to find the minimal Bregman divergence. Last, note that the value of ξ as
defined in Lemma 16 is decreasing as a function of j. Therefore, the optimal solution is obtained for j = m,
meaning dt,m > 0.

Finally, we are left with the task of finding the index i. Once it is found we readily obtain ξ, which imme-
diately translates into a closed form solution for dt. Lemma 15 in conjunction with a property presented in
the sequel, implies that the first index for which dt,i < ν, where dt is as defined by Lemma 16 with j = m,
constitutes the optimal index for i. The pseudo-code describing the resulting efficient procedure for solving
the problem in Eq. (14) is given in Fig. 2. The algorithm starts by sorting the vector d0. Then, it checks each
possible index i of the sorted vector as the position to stop capping the weights. Concretely, given an index
i the algorithm checks whether dt can take the form (ν, . . . , ν, dt,i, . . . , dt,m) where dt,i < ν. To check each
index i the algorithm calculates ξ as given by Lemma 16. The same lemma also implies that dt,i = ξd0,i.
Thus, if the assumption on the index i is correct, the following inequality must hold, ν > dt,i = ξd0,i.
In case the index i under examination indeed satisfies the inequality the algorithm breaks out of the loop.
Therefore, the algorithm outputs the feasible solution with the smallest number of weights at the bound ν.
It thus remains to verify that the feasible solution with the smallest number of capped weights is indeed
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optimal. This property follows from Lemma 3 in [Shalev-Shwartz and Singer, 2006a]. Note also that the
time complexity of the resulting algorithm is O(m log(m))) which renders it applicable to boosting-based
applications with large datasets. Moreover, since we simply need to search for the index i which satisfies the
conditions of the lemmas above, the time complexity can be reduced to O(m) by replacing sorting with a
generalized median search. This improvement was described in Herbster and Warmuth [2001] for entropic
projections and in Duchi et al. [2008] for Euclidean projections.

6 Discussion

The starting point of this paper was an alternative view of the equivalence of weak-learnability and linear-
separability. This view lead us to derive new relaxations of the notion of margin, which are useful in the
noisy non-separable case. In turn, the new relaxations of the margin motivated us to derive new boosting
algorithms which maintain distributions over the examples that are restricted to a subset of the simplex.
There are a few future direction research we plan to pursue. First, we would like to further explore additional
constraints of the distribution dt, such as adding `2 constraints. We also would like to replace the relative
entropy penalty for the distribution dt with binary entropies of each of the components of dt with respect to
the two dimensional vector (1

2 ,
1
2). The result is a boosting-based apparatus for the log-loss. Last, we would

like to explore alternative formalisms for the primal problem that also modify the definition of the function
g(d) = ‖dTA‖∞, which may lead to a regularization term of the vector w rather than the domain constraint
we currently have.

A Technical lemmas

The first lemma states a sufficient condition under which the Fenchel-Young inequality holds with equality.
Its proof can be found in [Borwein and Lewis, 2006, Proposition 3.3.4].

Lemma 17. Let f be a closed and convex function and let ∂f(w) be its differential set at w. Then, for all
θ ∈ ∂f(w) we have, f(w) + f?(θ) = 〈θ,w〉 .

The next lemma underscores the importance of strongly convex functions. The proof of this lemma
follows from [Shalev-Shwartz, 2007, Lemma 18].

Lemma 18. Let f be a closed and σ-strongly convex function over S with respect to a norm ‖ · ‖. Let f? be
the Fenchel conjugate of f . Then, f? is differentiable and its gradient satisfies∇f?(θ) = arg maxw∈S 〈w,θ〉−
f(w). Furthermore, for all θ1,θ2 ∈ Rn, we have

f?(θ1 + θ2)− f?(θ1) ≤ 〈∇f?(θ1),θ2〉+
1

2σ
‖θ2‖2?

Lemma 19. Let f, g be two functions and assume that for all w ∈ S we have g(w) ≥ f(w) ≥ g(w) − c
for some constant c. Then, g?(θ) ≤ f?(θ) ≤ g?(θ) + c.

Proof. There exists some w′ s.t.

g?(θ) = 〈w′,θ〉 − g(w′)
≤ 〈w′,θ〉 − f(w′)
≤ max

w
〈w,θ〉 − f(w) = f?(θ) .
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This proves the first inequality. The second inequality follows from the fact that the conjugate of g(w)− c
is g?(θ) + c.

Lemma 20. Let 1 ≥ ε1 ≥ ε2 ≥ ... be a sequence such that for all t ≥ 1 we have εt − εt+1 ≥ r ε2t for some
constant r ∈ (0, 1/2). Then, for all t we have εt ≤ 1

r(t+1) .

Proof. We prove the lemma by induction. First, for t = 1 we have 1
r(t+1) = 1

2r ≥ 1 and the claim clearly
holds. Assume that the claim holds for some t. Then,

εt+1 ≤ εt − rε2t ≤ 1
r(t+1) −

1
r(t+1)2

, (15)

where we used the fact that the function x − rx2 is monotonically increasing in [0, 1/(2r)] along with the
inductive assumption. We can rewrite the right-hand side of Eq. (15) as

1
r(t+2)

(
(t+1)+1
t+1 · (t+1)−1

t+1

)
= 1

r(t+2)

(
(t+1)2−1
(t+1)2

)
.

The term (t+1)2−1
(t+1)2

is smaller than 1 and thus εt+1 ≤ 1
r(t+2) , which concludes our proof.

Proof of of Lemma 15. Assume that the claim of the proof is not true. Let i and j be two indices which
violate the claim, therefore dt,i < dt,j . We now construct a vector d̃ which resides in Sm and whose
components do not exceed ν. We set all the components of d̃t, except for the ith and jth components, to be
equal to the corresponding components of dt. Next, we set d̃t,i = dt,j and d̃t,j = dt,i. Clearly, d̃t constitutes
a feasible solution. Taking the difference between the Bregman divergence of the two vectors each to d0 we
get,

Bh(dt‖d0)−Bh(d̃t‖d0) = (dj − di) log(d0,i/d0,j) > 0 ,

which contradicts the fact that dt is the vector attaining the smallest Bregman divergence to d0.

Proof of Lemma 16. Let v denotes the gradient of Bh(d‖d0) with respect to d at dt, namely,

vi = log(dt,i) + 1− log(d0,i) .

Let I = {i, . . . , j}. Note that for the elements in I the optimization problem has a single linear equality
constraint and the solution is in the interior of the set (0, ν)|I|. Therefore, using Borwein and Lewis [2006,
Corollary 2.1.3] we obtain that there exists a constant ξ′ such that for all i ∈ I , vi = ξ′ − 1 or equivalently

∀i ∈ I, dt,i = dt,0 e
ξ′−1 .

Let us denote ξ = eξ
′−1. Using this form in the equation

∑
i dt,i = 1 we get that,

1 =
m∑
r=1

dt,r = ν(i− 1) + ξ

j∑
r=i

d0,r ,

which immediately yields that ξ attains the value stated in the lemma.
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B Fenchel conjugate pairs

We now list a few useful Fenchel-conjugate pairs. Proofs can be found in [Boyd and Vandenberghe, 2004,
Section 3.3], [Borwein and Lewis, 2006, Section 3.3], [Shalev-Shwartz, 2007, Section A.3].

f(d) f?(θ)

IC(d) for C = {d : ‖d‖ ≤ ν} ν ‖θ‖?
ISm(d) maxi θi

ISm(d) +
∑m
i=1 di log( di

1/m ) log
(

1
m

∑m
i=1 e

θi
)

1
2‖d‖

2 1
2‖θ‖

2
?

c f(d) for c > 0 c f?(θ/c)

f(d + d0) f?(θ)− 〈θ,d0〉

f(cd) for c 6= 0 f?(θ/c)
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