On the Equivalence of Weak Learnability and Linear Separability:
New Relaxations and Efficient Boosting Algorithms
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Abstract

Boosting algorithms build highly accurate pre-
diction mechanisms from a collection of low-
accuracy predictors. To do so, they employ the
notion of weak-learnability. The starting point of
this paper is a proof which shows that weak learn-
ability is equivalent to linear separability with
margin. While this equivalence is a direct conse-
guence of von Neumann’s minimax theorem, we
derive the equivalence directly using Fenchel du-
ality. We then use our derivation to describe a
family of relaxations to the weak-learnability as-
sumption that readily translates to a family of re-
laxations of linear separability with margin. This
alternative perspective sheds new light on known
soft-margin boosting algorithms and also enables
us to derive several new relaxations of the no-
tion of linear separability. Last, we describe and
analyze an efficient boosting framework that can
be used for minimizing the loss functions derived
from our family of relaxations. In particular, we
obtain efficient boosting algorithms for maximiz-
ing hard and soft versions of tife margin.
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in fact finds a linear separator with a large margin. How-
ever, AdaBoost does not converge to the max margin so-
lution [RWO05, RSDO7]. Interestingly, the equivalence be-
tween weak learnability and linear separability is not only
qualitative but also quantitative: weak learnability wéttige

~ is equivalent to linear separability with & margin of

~v. We give a precise statement and a simple proof of the
equivalence in Thm. 4. We note that the equivalence can be
also derived from von Neumann’s minimax theorem [vN28].
Nevertheless, our proof is instructive and serves as aihgild
block for the derivation of our main results.

Since the weak learnability assumption is equivalent to
linear separability, it implies that the weak-learnapilits-
sumption is non-realistic due to its high sensitivity to eve
small amounts of label noise. For example, assume that we
have a dataset that is perfectly separable with a large margi
with the exception of two examples. These two examples
share the same instance but attain opposite labels. Siolke su
a dataset is non-separable, the weak learnability assompti
fails to hold as well. To cope with this problem, we must
somehow relax the weak learnability, which is equivalent to
relaxing the linear separability assumption. In this paper
we propose a family of relaxations of the linear separabil-
ity assumption, which stems from the equivalence of weak-
learnability and linear-separability. The guiding tooltis
first define a natural family of relaxations of the weak learn-
ability assumption, and then analyze its implication on the
separability assumption.

Boosting is a popular and successful method for building
highly accurate predictors from a set of low-accuracy base In addition to our analysis and relaxations outline above,
predictors. For an overview see for example [FS99, Sch03,we also propose and analyze an algorithmic framework for
MRO3]. The first boosting algorithm was used for showing boosting that efficiently solve the problems derived from ou
the equivalence between weak learnability and strong{earn family of relaxations. The algorithm finds anaccurate
ability [Sch90]. Weak learnability means that for any distr ~ solution after performing at mog(log(m)/e?) iterations,
bution over a set of examples there exists a single feature,wherem is the number of training examples. The number
also referred to as weak hypothesis, that performs slightly of iterations upper bounds the number of different weak-
better than random guessing. Schapire [Sch90] was the firsthypotheses constituting the solution. Therefore, we cast a
to show that if the weak learnability assumption holds then natural trade-off between the desired accuracy leyebf
it is possible to construct a highly accurate classifierhtot  the (possibly relaxed) margin attained by the weight vector
point that it perfectly classifies all the examples in thétra  learned by the boosting algorithm, and the sparseness of the
ing set. This highly accurate classifier is obtained by tgkin resulting predictor. In particular, we obtain new alganith
the sign of a weighted combination of weak hypotheses. Putfor maximizing the hard and soft margin. We also provide
another way, [Sch90] showed that if the weak learnability as anO(mlog(m)) procedure for entropic projections ortQ
sumption holds then the set of examples is linearly separabl balls. Combined with this procedure, the total complexity
Studying the generalization properties of the AdaBoost of each iteration of our algorithm for minimizing the séft
algorithm, Schapire et al. [SFBL97] showed that AdaBoost margin is almost the same as the complexity of each iteration



of AdaBoost, assuming that the complexity of each activa- of thek examples with the worst margin. This equivalence is
tion of the weak learning algorithm requir@$m) time. also implied from the work presented in [WGRO07]. More im-
. . portantly, in this paper we present a much simple algorithm

Related Work ~ As mentioned above, the equivalence be- \hich does not employ a convex optimization procedure on
tween weak learnability and linear separability withmar-  a5ch round of boosting. Our approach stands in contrast to
ginis a direct consequence of von Neumann’s minimax the- the algorithm of [WGRO07], which requires “totally correc-
orem in game theory [VN28]. Freund and Schapire [FS96] tjye” updates (see also [WLRO06]) and needs to solve a rather
were the first to use von Neumann’s result to draw a con- complex optimization problem on each iteration.
nection between weak learnability and separability. They — The family of boosting algorithms we derive is reminis-
showed that if the weak learnability assumption holds then ¢ent of the boosting algorithm proposed by Zhang [Zha03].
the data is Iln_e_arly separable. The exact_quantlflcatloheaft However, our analysis is different and allows us to: (i) pro-
weak learnability parameter and themargin parameterwas yjige an analytic solution for the step size; (ii) tackle com-
spelled out later in [RWO5]. plicated loss functions, including cases when the loss-func

‘Schapire et al. [SFBL97] showed that the AdaBoost al- tjon does not take an explicit form. Our analysis stems
gorithm finds a large margin solution. However, as pointed from the primal-dual view of online convex programming
out by [RWO05, RSD07], AdaBoost does not converge to the [sss06a, SSS07, SS07] and also borrows ideas from the
max margin solution. Ratsch and Warmuth [RWOS5] sug- analysis given in [SVL07]. The main difference between our
gested an algorithm called AdaBoosthich converges to analysis and that of [SVL07, Zha03] is that we do not impose
the maximal margin solution i (log(m)/e”) iterations.  any assumption on the second order derivatives of the objec-
The family of algorithms we propose in this paper entertains tiye function. Instead, we rely on a duality argument and
the same convergence properties. Rudin et al. [RSDO7] pro-require a strongly convex assumption on the Fenchel conju-
vided a more accurate analysis of the margin attained by Ad- gate of the loss function. As we show, in many interesting
aBoost and also presented algorithms for achieving the max-cases it is simple to verify that our assumption holds, evhil

margin solution. However, their algorithm may ta®él /) it is very complex to analyze the second order derivatives of
iterations to find ar accurate predictor. the loss function in hand.
The above algorithms are effective when the data is lin- Throughout this paper, we focus on the analysis of the

early separable. Over the years, many boosting algorithmsempjirical loss over the training set. There has been exten-
were suggested for non-separable datasets. We list here fewjve work on obtaining generalization bounds for boosting
examples. The LogLoss Boost algorithm [CSS02] tries to ajgorithms and for margin-based hypotheses. We refer the
minimize the cumulative logistic loss, which is less sensi- reader for example to [SFBL97, MBB98, KPLO1]. A com-
tive to noise. MadaBoost [DWOO] is another example of an plimentary question, left out of the scope of this paper, is
algorithm that copes with non-separability. It does so by whether the equivalence between weak learnability and lin-
capping from the above the importance weights produced ear separability with margin can be exploited for obtaining
by the boosting algorithm. MadaBoost shares similarities jmproved generalization bounds.

with some of the relaxations presented in this paper. How-

ever, MadaBoost does not exploit the aforementioned equiv-2  Notation and basic definitions

alence and has a convergence rate that seems to be inferior

to the rate obtained by the relaxations we consider in this Let (x1,¥1),---, (Xm,¥m) be a sequence of. examples,
paper. Another notable example for a boosting algorithm where for alli, x; € X andy; € {+1,—1}. Let’H be a set
that works well in the non-separable case and is noise toler-of base hypotheses, namely, edqck H is a function from

ant is the BrownBoost algorithm [Fre01]. BrownBoost uses X into [+1, —1]. For simplicity, we assume th& is finite

the error-function (erf) as a margin-based loss functidre T and thusH = {hg, ..., h,}. Let A be a matrix of sizen x n
error-function reaches an asymptote when its input (margin over[+1, —1] where thg(i, j) entry of Ais A; ; = y; h;(x;).
in the context of BrownBoost) tends tecc. It thus consti- We note that boosting algorithms solely use the matrand

tutes a robust alternative to a convex loss function, includ do not directly work with the set of examples. Therefore,
ing the LogLoss function. Since the error function is non- throughout the rest of the paper we focus on the properties
convex, all the results presented in this paper are not@ppli  of the matrixA.

ble to BrownBoost. In the support vector machine literature We denote column vectors with bold face letters, elg.
the common relaxation of the separability assumption is ob- andw, and use the notatiod’, w' for denoting their corre-
tained by using the hinge-loss (see for example [CSTO00]). sponding row vectors. The inner product between vectors is
Warmuth, Glocer and Ratsch [WGRO07] recently proposed denoted by(d, w) = dfw. We denote byA' the transpose
the SoftBoost algorithm that directly minimizes the hinge- of the matrixA. The vector obtained by multiplying a matrix
loss function. The relaxation described in [WGRO07] is a A with a vectord is designated add and itsith element as
special case of the family of relaxations we present in this (Ad);.

paper. The SoftBoost algorithm also builds on the idea of re- The set of non-negative real numbers is denoteR® as
laxing the weak learnability assumption by capping the max- and the set of integefd,, . . . ,n} as[n]|. Them dimensional
imal weight of a single example. A similar idea was also probability simplex is denoted /" = {d € R : ||d||; =
used by the SmoothBoost algorithm [Ser03]. Our presen-1}. We denote then dimensional¢; ball of radiusr by
tation leads to an interesting perspective on this relarati  BY'(r) = {w € R™ : ||w||; < r}. For the unité; ball,
showing that maximizing the margin while minimizing the we often omitr and use the shortharigf®. Similarly, we
hinge-loss is equivalent to maximizing the average margin denote then dimensionak, ball by B;*(r) = {w € R™ :



lwl||, <} and again omit whenever it is equals tb.

Definition 1 (separability with ¢; margin ) A matrixA is
linearly separable withY; margin - if there existsw € B}
such thatmin;c,,,) (Aw); > ~, and~ is the largest scalar
that satisfies the above inequality, namely,

v = max min (Aw); .
weBy  ie[m]

Definition 2 (y-weak-learnability) A matrix A is y-weak-
learnable if for alld € S™ there exists € [n] such that
|(dTA);| > v, and~ is the largest scalar that satisfies the
above. Namely,

= mi dTA)| .
7 = min jrréf[ﬁl( )il

We next give a few basic definitions from convex anal-
ysis. A setS C R”™ is convex if for any two vectors
dq,d, in S, all the line betweerd; andd is also in S,
that is, {ad; + (1 — a)d2 : « € [0,1]} € S. A func-
tion f : S — R is closed and convex if for any scalar
the level sef{d : f(d) < r} is closed and convex. We al-
low functions to output-oo and denote bylom(f) the set
{d : f(d) < +oo}. The core of a se€ € R", denoted
core(C), is the set of all points ix € C such that for all
d € R" there exists’ > 0 for which for all 7 € [0, 7]
we havex + 7d € C. The Fenchel conjugate of a function
f S — Risdefined as

fr(0) = max (d,0) — f(d) .

1)

If fis closed and convex theft* = f.
Our derivation makes an extensive use of the following
theorem.

Theorem 3 (Fenchel Duality: Theorem 3.3.5 in [BLO6])
Letf : R™ — RU{oc0} andg : R" :— R U {o0} be
two closed and convex functions and letbe a matrix of
dimensionn x n. Then,

max —f*(—Aw) — g*(w) < mdin f(d)+g(dTA) .
The above holds with equality if in addition we have

0 € core (dom(g) — ATdom(f))

We denote an arbitrary norm By || and its dual norm
by || - |- Thatis,

IIWII*:dm>§1<W7 ) -

Two dual norms that we extensively use gwe||; = . |w;|
and||w||eo = max; |w;|.

For a set’, we denote by (d) the indicator function of
C, thatis,Ic(d) = 0if d € C and otherwisd(d) = cc.
The definition of||w ||, implies that the Fenchel conjugate of
Ic(d) whereC = {d : ||d|| < 1}, is the function|| - |...

To conclude this section, we would like to point the reader to small~’ we must havé|rv||., < P* forall r € [0, 7'].

Table 1 which summarizes our notations.

Table 1: Summary of notations.
X, x| column vector and its transpose

(x,v) inner produci(= x'v)

A matrix of sizem x n

sm m dimensional probability simplex

B, (v) Ly ball{w € R™ : [|[w]|, < v}

Ic(d) indicator function & 0 if d € C and= oo else)
[x]+ vector whoseth element equalsiax{0, z; }
-1, Il - I« norm and its dual norm

i function and its Fenchel conjugate

e all zeros vector exceqtin theith position
the set{1,...,m}

3 Weak-learnability and linear-separability

In this section we establish the equivalence between weak
learnability and linear separability with margin. As men-
tioned before, this result can be derived from von Neumann’s
minimax theorem. The purpose of the proof below is to un-
derscore the duality between weak learnability and separa-
bility, which becomes useful in the next sections.

Theorem 4 A matrix A is y-weak-learnable if and only if it
is linearly separable witlf; margin of~.

Proof: We prove the theorem using Fenchel duality
(Thm. 3). For convenience, we refer to the optimization
problem on the right (left) hand side of Thm. 3 as the primal
(dual) optimization problem. Lef be the indicator function
of them-dimensional simplex, i.ef(d) = 0if d € S™ and
otherwisef(d) = oo, and letg(w) = ||w||- Then, the
primal problem is

* i tA) — min ldf
P* = min f(d) + g(d'4) = min [|d'Af|e .

The definition ofy-weak-learnability conveys that is P*-
weak-learnable. Next, we turn to the dual problem. The
Fenchel conjugate agfis the indicator function of the s&f
(see Sec. 2) and the Fenchel conjugatg f

f7(8) = max(6,d) — f(d) = max(f,d) = max ;.

Therefore,

D*: _fx 7A s — 3 A i
g~/ AW T = e i (A

Definition 1 implies thatA is separable witl{; margin of
D*. To conclude our proof, it is left to show that* = D*.
First, we note that fow = 0 the value ofD is zero, and thus
D* > 0. Therefore, ifP* 0then0 = P* > D* > 0
so in this case we clearly haye* = D*. Assume now
that P* = v > 0. Based on Thm. 3 and the definition of
the core operator, it suffices to show that for any vestor
there existsr’ > 0 such that for all- € [0,7'] we have
v ¢ {Afd : d € S™}. This property holds true since for
anyd € S™ we have||ATd||,, > P* while for sufficiently
|



4 A family of relaxations let s;(8) be theith largest element of, that is, s, (0) >
2(0) > .... Then, the above argument yields

k
Z 5j(6) .

Combining the form off* with Thm. 3 we obtain that the
dual problem of Eq. (2) is

In the previous section we showed that weak learnability is i
equivalent to separability. The separability assumpt®n i
problematic since even a perturbation of a singe example can () =
break it. In this section we propose a family of relaxatiohs o
the separability assumption. The motivation for thesexrela
ations stems from the equivalence between weak-leartyabili
and separability. The main idea is to first define a natural
family of relaxations of the weak learnability assumption, =
and then analyze the implication to the separability assump max — Z Sm_i(AW) . (3)
j=0

e

tion. To simplify the presentation, we start with a particu- weBy k
lar relaxation that was studied in [Ser03, WLRO06]. We then
generalize the example and describe the full family of relax Using the same technique as in the proof of Thm. 4 it is easy
ations. to verify that strong duality holds as well. We therefore ob-
tain the following corollary.
4.1 Afirst relaxation:
capped probabilities and soft margin Corollary 5 Let A be a matrix and lek € [m]. For a vector

To motivate the first simple relaxation, consider a mattix 9, let AvgMin, (6) be the average of thesmallest elements

whoseith row equals to the negation of ifgh row. That of 6. Letp be as defined in Eq. (2). Then,

is, our training set contains an instance which appeargiwic max AvgMin, (Aw) = p .

each time with a different label. Clearly, this training et weB?

not separable even though the rest of the training set can be , o
perfectly separable with a large margin. The equivalenee be L€t us now discuss the role of the paraméteFirst, if & = 1
tween weak learnability and linear separability implieatth ~ then the functio’AvgMin, reduces to the minimum over the

Aiis also not weak learnable. To derive this property directly Vector provided as its argument, and therefore we revek bac
construct the distributiod with d; = d; = & (andd, = 0 to the traditional definition of margin. Wheh = m, the

) . ta only admissible distribution is the uniform distributiomn
for qr?ét;\::\(lj)g\i Qxiﬁp?gtfhrfxlei Te;)fnability assumption this case, it is easy to verify that the optimal weight vector
, ’ ; . . associatesy; = 1 with the feature that maximizegd' A);|
fails because we place excessive weight on the problematic, . 4 . P )
examples, j Indeped it was observedgthat AdaBgost over- (while d being the uniform dl_strlbutlon) and; = 0 with .
weiahs exgrﬁ les w’hich artially explains its boor perfor- the rest of the features. That is, the performance of the opti
9 PIes, P y €xp P P mal strong hypothesis is equal to the performance of the best

mance on noisy data. To overcome this problem, it was single weak hypothesis, and no boosting process takes.place
suggested (see for instance [Ser03, WLRO06]) to restrict theThg interestin};pregime’is whenis propgr?ional tom, forp

set of admissible distributions by capping the maximum im- examplek — 0.1m. In this case, ify > 0, then we are guar-

portance weight of each example. That is, the weak learner ;
should return a weak hypothesis only when its input distri- g?g?g;g;%% of the examples can be separated by margin

bution satisfie§d| o < §, for a predefined integér ¢ [m]. It is also possible to set based on knowledge of the

I?Iugglng the. above restriction ahinto Dgflnltlon 2we number of noisy examples in the training set and the sepa-
obtain the following relaxed weak learnability value, rability level of the rest of the examples. For example, as-
?) sume that all but of the examples are separable with mar-

gin v. Then, the worst objective value that can attain is,
AvgMin, (Aw) = M Constraining the right hand
Assume that a matrixd satisfies the above with > 0. The side of this equality above to be at legsand solving fork
immediate question that surfaces is what is the implication yields that fork > 2v(y + 1)/v at leastm — k examples
on the separability properties df? To answer this question, attain a margin value of at leagf2.
we need to refine the duality argument given in the proof of )
Thm. 4. 4.2 A general relaxation scheme

Let f(d) be the indicator function ™ NB™7 (+) andlet  We now generalize the above relaxation and present our gen-
g(w) = ||w||. The optimization problem given in Eq. (2) eral relaxation scheme. To do so, we first rewrite Eq. (2) as
can be rewritten asiing f(d) + g(d'A). To derive the dual  follows. DenoteC' = B (1/k) and recall that(d) is the

p = min max |(dTA);] .
desm:|dfjo <t €M

optimization problem, we find the Fenchel conjugatef of indicator function of the sef’. We can now rewrite Eq. (2)
as
@) = max 1<d70> . _ d'a I(d 4
desmil|d] <t p = qmin ( jﬂé?ﬁ( )il +Io( )) : 4)

To maximize the inner productl, 8) we should allocate the  The general relaxation scheme is obtained by replafing
largest admissible weight to the largest elemertt,@ilocate with a large family of functions. Before specifying the prop
the largest of the remaining weights to the second largesterties of allowed functions, let us first define the following
element off, and so on and so forth. For eathe [m], generalized notion of weak learnability.



Definition 6 ((p, f)-weak-learnability) Let f be an arbi- Example 2 Let f(d) = v ||d|| where|| - || is an arbitrary

trary function. A matrix4 is (p, f)-weak-learnable if norm andv is a scalar. Thenf*(w) is the indicator function
of the ball of radiusv with respect to the dual norrfw :
p = min (max (dFA); + £ )) . lwll. < v}. The condition given in the theorem clearly
des™ \j€[n] holds here as well and we obtain the dual problem
Intuitively, we can think orp as the minimum of the maximal max v st [y = Awli[ <v.
edge plus a regularization terfifd). In the case of capped weBT yeR
importance weights, the regularization function is a &It That is, we are now maximizing the margin subject to a con-
function that does not penalize distributions inskig(1/%) straint on the vector of hinge-losses.

and places an infinite penalty for the rest of the distrimgio
The following theorem shows how the fact that a ma-
trix A is (p, f)-weak-learnable affects its separability prop-
erties. To remind the reader, we denote ddythe vector
whoseith element isl and the rest of its elements are zero.
The notatiorx]; represents the vector who&h element is

We now turn to proving Thm. 7. First, we need the fol-
lowing lemma which characterizes the Fenchel conjugate of
[+ Ism.

Lemma 8 Assume thayf satisfies the conditions given in

max{0, z}. Thm. 7 and denoté(d) = f(d) + Ism (d). Then,
Theorem 7 Let f be a convex functionp be a scalar, *(0) = — — (v +0 )
and A be a(p, f)-weak-learnable matrix. If the following 776 Jer =1y +6l4))
assumptions hold, -
(i) ming f(d) = 0, Proof: We first rewritef* as
(i) 0 € core(dom(f)), .
(i) VO € R™, Vi € [m], Ya € [0, 1], the Fenchel conjugate f70) = max —f(d) = (Ism(d) - (6,d))
of f satisfies
| — (o (@) + () - (0, )
[7(0) = f7(0 —abie)
then, Denoteg(d) = Is»(d) — (@,d). It is easy to verify that
g*(x) = max;(6; + z;). Next, note thad € core(dom(f))
max (’y — (v - AW]+)) =p. by assumption and thatom(g) = S™. Therefore, strong
webie duality holds and we can use Thm. 3 which yields,
The proof of the theorem is again based on the Fenchel du- —f*0) = max(—f*x) - g*(—x))
ality theorem. The vectdry — A w],. appearing in the dual x
problem is the vector of hinge-losses. Before diving in® th —  max (ﬂc*(x) ~ max(6; — Ii)>
(Jjetails of the.proof, let us give two concrete family of func- x i )
tions that satisfy the requirement given in the theorem. LetC, = {x : Vi,z; > 0; +~}. We show in the sequel

that for anyy, the vector[@ + ~] is a minimizer of f*(x)
overx € C,. Combining this with the above expression for

—f*(8) we get that

Example 1 Let f be the indicator function of a ball of radius
v,{d : ||d|| < v}, where||-| is an arbitrary norm and is a
scalar such that the intersection of this ball with the siexpl

is non-empty. Thenf*(w) = v|w|, and the condition _ (g = _ (19

given in the theorem clearly holds. In this case, we obtain 1(6) max (v = f7(10+91+))

that as required. Therefore, it is left to show that the vector
max (7,,, ||[77Aw]+||*) - min  [[d7 A - [0 + 7]+ is indeed a minimizer of*(x) overC,. Clearly,

weBT,yeR desm:||d||<v [0 + 1]+ € C. In addition, for anyx € C., we can make

In particular, if || - || is the £, norm we obtain again the a sequence of modifications ountil x = 16 + 7], as fol-

lows. Take some elementlf z; > [6; + +]+ then based on

example of capped sample weights. Sinceltmerm and assumption (iii) of Thm. 7 we know that

oo-norm are dual we get that in the dual problem we are

maximizing the margin parametemwhile minimizing the cu- . i — [0+ .
mulative hinge-loss. Combining this fact with Corollary & w f < - zie ) < fr(x).
get that !
m If z; < [0; + ]+ we must have thdb; + +]+ = 0 since we
AveMin, (A _ 1 _ assume that € C,, and thusr; > 6; 4+ ~. Thus,z; < 0 but
veMiny (Aw) = max@ k Z ) now using assumption (iii) of Thm. 7 again we obtain that

= *(x — x2;€') < f*(x). Repeating this for every € [m)]

The right hand side of the above is usually called the “soft- makesx equals td6 + 4]+ while the value off*(x) is non-
margin”. The above equality tells us that the soft margin increasing along this process. We therefore conclude that

is equivalent to the average margin of thavorst examples [0 + 7]+ is a minimizer off*(x) overx € C., and our proof
(see also [WLR06, SSWB98])). is concluded. ]



Based on the above lemma the proof of Thm. 7 is easily
derived.
Proof:[of Thm. 7] The proof uses once more the Fenchel

duality theorem. Define the functiofi(d) = f(d) +
Ism(d).  Therefore, Thm. 3 tells us that the dual

of the problemming f(d) + ||dfA|. is the problem
maXyepr (ff‘*(wa) . Using Lemma 8 we obtain that

the dual of the problem given in Definition 6 is the same
maximization problem as stated in the theorem. To con-
clude the proof it is left to show that strong duality alsodwol
here. First, using the assumptioring f(d) = 0 we get that
f*(0) = 0. By settingw = 0 andvy = 0 we get that the
dual problem is bounded below by zero. Thug i 0 then
strong duality holds. I > 0 then we can use the fact that

dom(f) C dom(f) and therefore the same arguments as in
the end of the proof of Thm. 4 holds here as well. |

5 Boosting algorithms

In this section we derive a boosting algorithm for solving
the max-relaxed-margin problem described in the previous
section, namely,

max max (= —Awls) . ()

weB?  yER
The function f* should satisfy the conditions stated in
Thm. 7. In particular, iff*(x) = v ||x||; we obtain the soft
margin problem

max max
weBT?  y€ER

<7 —vy - (AW)i]+> . (6)
1=1
while if f*(x) = max; z; then we obtain the non-relaxed
max margin problem
max min (Aw); .
weBT  ie[m]

The boosting algorithm for solving Eq. (5) is described
in Fig. 1. To simplify the presentation, let us first desctite
algorithm for the non-relaxed max-margin problem, that is,
f*(x) = max; ;. As we have shown in the proof of Thm. 4,
the corresponding Fenchel conjuggtéd) is the indicator
function of S™. The algorithm initializes the weight vector
to be the zero vectorw; = 0. On roundt, we define a
distribution over the examples

d = argmax ((~Awi,d) — (f(d) +Fh(d))
deSm,

= argmin ((Awhd} +(f(d)+ 5h(d))) )
deSm,

where h(d) is the relative entropy function. Since we
are now dealing with the casf(d) = Is», we can use
Lemma 18 in the appendix and get thhtis the gradient
of the Fenchel conjugate of the functigiu(d). In the ap-
pendix we list several Fenchel conjugate pairs. In paricul
the Fenchel conjugate of the relative entropy is the soft-ma

function
m
log (72 Z eei>
i=1

h(6)

INPUT: matrix A € [+1, —1]™"
Relaxation functionf™*
Desired accuracy
DEFINE: h(d) = Y"1, d;log(d;) + log(m)
f(d) = Fenchel conjugate gf*
INITIALIZE: w; =0, 0= We(m)
Fort=1,2,...,T

(¢Awe, )+ (F(d) + Bh(d)))

d; = argmin
desm

ji € arg max; |(d} A);]
(w.l.0.g. assumeign(d} A);, = 1)

J)

B . BdlA(e’t —w,)
7; = max {O,mln {17 M
w1 = (1 —m)we + 7, €7

OUTPUT: W41

Figure 1: A Boosting Algorithm for maximizing the relaxed
margin given in Eqg. (5).

Using the propertysh)*(8) = Sh*(0//3) we obtain that
1
dyjxe P
That is, the log of the probability assigned to title exam-
ple is negatively proportional to the margin of the example
according to the current weight vecter,. Therefore, the al-
gorithm allocates larger importance weights to the erraeeo
examples, in a similar fashion to the weighting scheme of
examples of many other boosting algorithms, such as Ad-
aBoost.

Next, we perform a step analogous to calling a weak-
learner by finding a single column of with the best edge.

We would like to note that it is possible to extend the algo-
rithm so that the weak learner may find a column whose edge
is only approximately optimal. For simplicity we confine the
description to weak learners that return the column with the
largest edge. Finally, we set; ., to be the convex combi-
nation ofw; and the new hypothesis. The coefficient of the
convex combination, denoteg, is calculated analytically
based on our analysis. Note that the update form guarantees
that||w;||; < 1forall¢.

The sole modification of the algorithm when running
with other relaxation functions is concerned with the defi-
nition ofd;. In Sec. 5.2 we further elaborate on how to solve
the optimization problem which appears in the definition of
d;. We provide a few general tools and also present an effi-
cient procedure for the case wheftés the indicator function
of B2 (v).

The following theorem provides analysis of the rate of
convergence of the algorithm.

(Awt)1 )

Theorem 9 Assume that the algorithm given in Fig. 1 is run
for T = Q(log(m)/€?) iterations. Then, the algorithm out-
puts ane-accurate solution,

max (y— f(ly —Awrnli)) 2 p — ¢,



wherep is the optimal value of the solution as defined in
Thm. 7.

Before turning into the proof of Thm. 9 let us first dis-
cuss its implications. First we note that the number of itera
tions of the algorithm upper bounds the number of non-zero
elements of the solution. Therefore, we have a trade-off be-
tween the desired accuracy leveland the level of sparsity
of the solutionw ;.

The algorithm can be used for maximizing the hard mar-
gin using O(log(m)/€?) iterations. In this case, the al-
gorithm shares the simplicity of the popular AdaBoost ap-
proach. The rate of convergence we obtain matches the rat
of the AdaBoost described by Ratsch and Warmuth [RWO05]
and is better than the rate obtained in Rudin et al. [RSDO07].
We note also that ifA is v-separable and we set= ~/2
then we would find a solution with half the optimal mar-
gin in O(log(m)/~?) iterations. AdaBoost seemingly at-
tains an exponentially fast decay of the empirical error of

e="*T. Thus,T should be at least/+2. Further careful
examination also reveals a factor log(m) in the conver-
gence rate of AdaBoost. Therefore, our algorithm attaias th
same rate of convergence of AdaBoost while both algorithms
obtain a margin which is half of the optimal margin. (See
also the margin analysis of AdaBoost described in Rudin et
al. [RSDO07].)

We can also use the algorithm for maximizing the soft
margin given in Eq. (6). In Sec. 5.2 we show how to cal-
culated, in O(m) time. Therefore, the complexity of the
resulting algorithm is roughly the same as the complexity
of AdaBoost. The bound on the number of iterations that
we obtain matches the bound of the SoftBoost algorithm, re-
cently proposed by Warmuth et al. [WLRO6]. However, our
algorithm is simpler to implement and the time complexity
of each iteration of our algorithm is substantially lowearh
the one described in [WLRO06].

5.1 Proof of convergence rate

To motivate our proof technique, let us focus first on the
max-margin case without any relaxation. As we showed be-
fore, the AdaBoost algorithm approximates the max opera-
tor, max; 6;, with a soft-max operatotpg(- 3, ), also
known as the exp-loss. We can think of this approximation
as another form of relaxation of the max margin. To distin-
guish this type of relaxation from the family of relaxations
described in the previous section, we refer to it as an “algo-
rithmic” relaxation, since this relaxation is driven by alg
rithmic factors and not directly by the concept of relaxing
the margin. The algorithmic relaxation of AdaBoost encap-
sulates the following relaxation of weak learnability: leepe

the indicator function of the simplex with the relative en-
tropy function over the simplex, which we denote h{d)
(see also the definition in Fig. 1). The advantage of endow-
ing the simplex with the relative entropy stems from the fact
that the relative entropy stronglyconvex with respect to the

£1 norm, as we formally define now.

Definition 10 A continuous functiorf is o-strongly convex
over a convex sef with respect to a nornfj - || if S is con-
tained in the domain of and for allv,u € S anda € [0, 1]

we have

flav+ (1 -aju) < af(v)+(1-a)f(a)

o
—§oz(1—o¢)Hv—uH2.

In the above definition, i& = 0 we revert back to the
standard definition of convexity. Strong convexity quaesfi
the difference between the value of the function at the con-
vex combination and the convex combination of the values of
the function. The relative entropy isstrongly convex with
respect to the/; norm over the probabilistic simplex (see

demma 16 in [SS07]). Few important propertiessabngly

convex functions are summarized in Lemma 18 (in the ap-
pendix). We use these properties in our proofs below.

Continuing with our motivating discussion, we view
the algorithmic relaxation of AdaBoost as a replacement of
the convex function/s= (d) by the strongly convex func-
tion A(d). More generally, recall the definitiofi(d) =
f(d)+ Isw (d) from Sec. 4 and that solving Eq. (5) is equiv-
alent to maximizing— f*(—Aw) overw € B}. As in the
algorithmic relaxation of AdaBoost, we replagéd) by the
function

fd) = f(@)+phd)
whereg € (0, 1). Since for alld € S™ we haved < h(d) <
log(m), by settings = ¢/(2log(m)) we obtain that

vdeS™, f(d)—e/2 < f(d) < f(d) .
Using Lemma 19 in the appendix we obtain that
VO, f*(0) < f*(0) < f*(6)+e/2 . @)

The above implies that maximizingf*(—Aw) gives are/2
accurate solution to the problem of maximiziag* (—Aw).

This argument holds for the entire family of functions dis-
cussed in Sec. 4. An appealing property of strong convex-
ity that we exploit is that by adding a convex function to a
strongly convex function we retain at least the same strong
convexity level. Therefore, for all the function§d) dis-
cussed in Sec. 4 the correspond'f(gi) retains the strongly
convex property of the relative entropy.

The algorithm in Fig. 1 is designed for maximizing
—f*(—Aw) overB?. Based on the above discussion, this
maximization translates to an approximate maximization of
—f*(—Aw). Using again Thm. 3 we obtain that

*
—f*(—A
max —f*( w)
Denote byD(w) andP(d) the dual and primal objec-
tive values of the above equation. We also denote,lihe
sub-optimality value attained at iteratiorof the algorithm,
namely,

< min f(d) + A7 4| -

€ = vI‘PeEJiEX’;’D(W) — D(wy) .
The following key lemma lower bounds the improvement of
the algorithm in terms of its current sub-optimality.

Lemma 11 Let ¢, be the sub-optimality value of the algo-
rithm in Fig. 1 at iterationt and assume that, < 1. Then,

Et—6t+1 Z 565/8



Proof: DenoteA; = ¢, —€;+1 and based on the definition of
e we clearly have that; = D(wy41)—D(w;). To simplify
our notation, we use the shorthapfbr j, andr for n,. Since
Wit = (1= n)w; +ne’
we get that
Ay = D(w;+n(ed —wy)) —D(wy) .

Using the definition o> we further rewriteA; as

Ay = fH(—Awy) — f*(—Awy —nA(el —w,)) . (8)

The key property that we use is thAt is the Fenchel con-
jugate of g3-strongly convex function over the simplex with
respect to the¢; norm. Therefore, using Lemma 18 in the
appendix, we know that for arf); and@-:

162113
28 7
whereV = arg maxq(6;,d) — f(d). Combining this prop-

erty with Eq. (8) and using the definition af, we obtain
that

Ay > n{dy, A(e! —wy))

F¥(01+02) — f*(01) < (V,02) +

_ P lA(ed —wy)
20

Using the assumptioA € [+1, —1]™*", the fact thatw, €
BT, and the triangle inequality we get that

1A (€7 — wi)lloo <2

12
. (9

and thus

Ay > n(ds, A(e! —wi)) —20°/8 . (10)
Next, we show thatd;, A (e’ — w;)) = P(d;) — D(wy).
To to so, we first use Lemma 17 to get thdt, — A w;) =
f(dy) + f*(—Aw,) and second we use the definition pf
to get that(d,, Ae’) = ||d] A|... Combining this with
Eq. (10) yields

Ay > n(P(dy) = D(we)) —20%/8. (11)
The weak duality property tells us thaP(d;) >
maxwepr D(w) and therefore\, > ne, — 21? /3. Denote
1 = & (/4 and note thaty € [0,1]. Had we set), = ' we
could have obtained that; > 3 ¢7/8 as required. Since we
setn, to be the maximizer of the expression in Eq. (9) over
[0, 1], we get an even larger value fdy;. This concludes our
proof. |

Based on Lemma 11 the proof of Thm. 9 easily follows.
Proof:[(of Thm. 9)] We first show that; < 1. To see this,
we use the weak duality to get that < P(d;) — D(w1).
Next, we recall that in the proof of Lemma 11 we have shown
that for all¢, P(d;) — D(w;) = (d;, A(e’* — wy)). Since
w1 = 0 we getthat; < (dy, Ade/) = ||d] Al < 1.

We can now apply Lemma 11 fdr= 1 and get that
€2 < €1. By induction, we obtain that Lemma 11 holds for
all t. Applying Lemma 20 (given in the appendix) we get
thate, < 57y

Plugging the definition of3 = €/(2log(m)) into the

upper bound ol 1 we geter; < 1?ka2(;?- Therefore, if

T +2 > 32log(m)/e* we get thatr; < ¢/2. Finally, Let
¢’ be the error ofw_; on the originalf then using Eq. (7)
we obtainthat’ < er 1 +¢€/2 =¢e. [ |

5.2 Efficient implementation for soft margin

In this section we provide an efficient procedure for calcu-
lating the distributiond; as described in Fig. 1 whef(d) is

the indicator function ofd : ||d|l« < v}. As we showed
above, this case corresponds to the maximization of the soft
margin.

We first present a lemma that provides us with an al-
ternative method for findind, which is based on Bregman
divergences. The Bregman divergence with respect to a con-
vex functionh between two vectord andd, is defined as,

By(d|do) = h(d) — h(do) — (Vh(do),d — do) -
See [CZ97] for a rigorous definition of the Bregman diver-
gence.

Lemma 12 Leth : S — R be a strongly convex and dif-
ferentiable function, lef be a convex function, and denote
f = h+ f. Let® be a vector and denotd, = V/*(6),
whereh* is the Fenchel conjugate &f Then,

Vi(6) = axgmin (Bu(d]do) + £(d) -

Proof: Sinceh is strongly convex and differentiable we have
thatVh(dg) = 6. Therefore,
vf*(6)

arg(rjnax (d,0) — f(d)

= arg;nin h(d) — (d,0) + f(d)
= arg;nin h(d) — (d, Vh(do)) + f(d)

argénin By (d||do) + f(d) .

Applying the above lemma witli = I for some convex set
C we obtain the following corollary.

Corollary 13 Assume that the conditions stated in
Lemma 12 hold and thaf(d) = I¢(d) for some con-
vex seC'. Then,

V(h+ )" (0) = ar(;gerréin B (d||VR*(0)) .

We now get back to the problem of findidg whenf (d)
is Ic(d) for C = {d : ||d||e < v}. Based on Corollary 13
we can first define the distribution vecids such thaid ; «
exp(—5(Aw;);) and then set

d; = argmin  Bp(d|do) . (12)
desS™:||d|| e <v

We are therefore left with the problem of solving the en-
tropic projection problem given in Eq. (12). A similar prob-
lem was tackled by Herbster and Warmuth [HWO01], who
providedO(mlog(m)) and O(m) algorithms for perform-
ing entropic projections. For completeness, in the redtief t
section we outline the simplep(m log(m)) algorithm. To
do so, we first show that the entropic projection preserves th
relative order of components of the projected vector.

Lemma 14 Letd, be the solution of Eq. (12) and létj be
two indices such thaty ; > dy ;. Thend, ; > d; ;.



INPUT: A vectordy € S™ and a scalar € (0,1)
Sortdy in non-increasing order = u
INITIALIZE: Z ="
ForRi=1,....m
1-v(@E—-1)
b= 7
IF Qu; <v
BREAK
ENDIF
Z — 7 — U;
ENDFOR
OuUTPUT: d; S.t. d;, = min{v,0dy .}

=1 Ur

Figure 2: AnO(mlog(m)) Procedure for solving the En-
tropic Projection problem defined by Eqg. (12).

Proof: Assume that the claim of the proof is not true. Let
1 and j be two indices which violate the claim, therefore
d:; < d¢;. We now construct a vectat which resides in
S™ and whose components do not exceedNe set all the
components ofl;, except for theth and;jth components, to
be equal to the corresponding componentsl of Next, we
setd;; = d;; andd, ; = d. ;. Clearly,d; constitutes a fea-
sible solution. Taking the difference between the Bregman
divergence of the two vectors eachdg we get,

B(d¢||do) — Bu(dy||do) = (d; — d;)log(do,i/do ) >0

which contradicts the fact thal; is the vector attaining the
smallest Bregman divergencedg. |

Without loss of generality, assume tlh is sorted in a
non-increasing order. Therefore, using Lemma 14 we know
thatd, has the form(v, ..., v, d;;,...,d: ;,0,...,0) where
foreachr € {i,...,j} we haved, , € (0,v). Moreover, the
following lemma provides us with a simple way to find all
the rest of the elements df.

Lemma 15 Assume thadly is sorted in a non-increasing or-

der and thatd, = (v,...,v,ds,...,d:;,0,...,0). Then,
forall r € {i,...,j} we have
1-— -1
diy — Od, where 0 — 1= V(=1
Zf« zdoﬂ’

Proof: Letv denotes the gradient @, (d|/d) with respect
tod atd;, namely,
U4 log(dy,i) +1 — log(do,i) -

Let] = {i,...,j}. Note that for the elements ihthe opti-
mization problem has a single linear equality constraimt an
the solution is in the interior of the sé, v)!!l. Therefore,
using Corollary 2.1.3 in [BLO6] we obtain that there exists a
constan®’ such that for alt € I, v; = 6’ — 1 or equivalently

Viel, dy;=dioe’ .
1

Let us denote = e~
> dii = 1 we get that,

m J
1= d,=v(i—1)+0> do,
r=1 r=t

. Using this form in the equation

which immediately yields thad attains the value stated in
the lemma. [}

We are left with the problem of finding the indiceand
j. The next lemma tells us that not a single element of the
optimal vector attains a value of zero.

Lemma 16 Assume that the vectel is provided in a non-
increasing order of elements and that all of its elements are
positive. Then, the optimal solution of Eq. (12) is of therfor
(V7 Lo, dtﬂ;, ey dt,m,) Wheredt,m > 0.

Proof: Plugging the value of) from the previous lemma
into the objective function and performing simple algebrai
manipulations we obtain the following objective value,

Zz/log

Therefore, the objective is monotonically increasingfin
This in turn implies that we should sétto be as small as
possible in order to find the minimal Bregman divergence.
Next, note that the value éfas defined in Lemma 15 is de-
creasing as a function gf The optimal solution is obtained
forj=m |

Finally, we are left with the task of finding the index
i. Once it is found we readily obtaiy which immediately
translates into a closed form solution f@y. Lemma 14 in
conjunction with a property presented in the sequel, insplie
that thefirst index for whichd;, as defined by Lemma 15
with j = m, constitutes the optimal index for The pseudo-
code describing the resulting efficient procedure for solv-
ing the problem in Eq. (12) is given in Fig. 2. The al-
gorithm starts by sorting the vectel,. Then, it checks
each possible index of the sorted vector as the position
to stop capping the weights. More formally, given an in-
dex i the algorithm checks whethel; can take the form
(v,...,v,de,...,dem) Whered,; < v. To check each
mdem the algorlthm calculate8 as given by Lemma 15.
The same lemma also implies that; = 6d, ;. Thus, if the
assumption on the indexis correct, the following inequal-
ity must hold,v > d;; = 6dp;. In case the index un-
der examination indeed satisfies the inequality the algrit
breaks out of the loop. Therefore, the algorithm outputs the
feasible solution with the smallest number of weights at the
boundv. It thus remains to verify that the feasible solution
with the smallest number of capped weights is indeed opti-
mal. This property follows from a fairly straightforwardtye
tedious lemma which generalizes Lemma 3 from [SSS06b]
and is thus omitted. Note also that the time complexity of the
resulting algorithm i) (m log(m))) which renders it appli-
cable to boosting-based applications with large datasets.

By(d¢||do) = (1—v(i—1))log(d) .

6 Discussion

The starting point of this paper was an alternative view of
the equivalence of weak-learnability and linear-sepéitgbi
This view lead us to derive new relaxations of the notion of
margin, which are useful in the noisy non-separable case. In
turn, the new relaxations of the margin motivated us to @eriv
new boosting algorithms which maintain distributions over



the examples that are restricted to a subset of the simplex

First, we would like to further explore additional constrtai

of the distributiond;, such as adding, constraints. We also
would like to replace the relative entropy penalty for the-di
tribution d; with binary entropies of each of the components
of d; with respect to the two dimensional vectd, 3). The
result is a boosting-based apparatus for the Iog -loss., Last
we would like to explore alternative formalisms for the pri-
mal problem that also modify the definition of the function
g(d) = ||df A|| s, which may lead to a regularization term of
the vectorw rather than the domain constraint we currently
have.

A Technical lemmas

The first lemma states a sufficient condition under which the
Fenchel-Young inequality holds with equality. Its proohca
be found in ([BLO6], Proposition 3.3.4).

Lemma 17 Let f be a closed and convex function and let
Jf(w) be its differential set atv. Then, for allg € 0f(w)
we havef(w) + f*(0) = (8,w) .

The next lemma underscores the importance of strongly
convex functions. The proof of this lemma follows from
Lemma 18 in [SS07].

Lemma 18 Let f be a closed and-strongly convex function
over S with respect to a nornj| - ||. Let f* be the Fenchel
conjugate off. Then, f* is differentiable and its gradient
satisfiesV f*(0) = argmaxwes (w,0) — f(w). Further-
more, for all@, 8, € R™, we have

F(61+6) ~ f(61) < + ool

(Vf*(61),62)

Lemma 19 Let f, g be two functions and assume that for all
w € Swe havgy(w) > f(w) > g(w) —cfor some constant
c. Theng*(0) < f*(0) < ¢g*(0) + c.

Proof: There exists some’ s.t.
g (0) = (w',0)—g(w)
S <W/7 9> - f(W/)
< max(w,6) — f(w) = [*(6).

This proves the first inequality. The second inequality fol-
lows from the fact that the conjugate gffw) —cis g*(6)+c.
[ |

Lemma 20 Letl > ¢; > €5 > ... be a sequence such that
for all ¢ > 1 we havee; — €41 > re; for some constant

r € (0,1/2). Then, for allt we haves; < (t+1)

Proof: We prove the lemma by induction. First, fo= 1 we
haver(tﬂ) = % > 1 and the claim clearly holds. Assume

that the claim holds for some Then,

2 1 1
€r+1 < € — T€ < Ty T rErD? o (13)

where we used the fact that the functien- rz2 is mono-
There are a few future direction research we plan to pursue.

tonically increasing in0,1/(2r)] along with the inductive
assumption. We can rewrite the right-hand side of Eq. (13)
as

1 ((t+1)+1 ) (t+1)71) 1 ((t+1)271)
r(t+2) t+1 t+1 - r(t+2) (t+1)2 :
t+1)%—
The term! (ESDE ! is smaller thari and thuse, 1 < (t+2)
which concludes our proof. ]

B Fenchel conjugate pairs

We now list a few useful Fenchel-conjugate pairs. Proofs
can be found in ([BV04] Section 3.3, [BL0O6] Section 3.3.,
[SS07] Section A.3).

f(d) f7(6)
Ic(d) for €' =A{d: ||d]| < v} v |61l
Ism (d) max; 91
Ism(d) + 3202, di 10g(1£/17im) log (7 227, e”)
3ldP? slelz
cf(d)fore>0 cf*(0/c)
f(d+do) f(8) —(6,do)
f(cd)forec#0 [ (0/c)
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