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Abstract

Boosting algorithms build highly accurate pre-
diction mechanisms from a collection of low-
accuracy predictors. To do so, they employ the
notion of weak-learnability. The starting point of
this paper is a proof which shows that weak learn-
ability is equivalent to linear separability withℓ1
margin. While this equivalence is a direct conse-
quence of von Neumann’s minimax theorem, we
derive the equivalence directly using Fenchel du-
ality. We then use our derivation to describe a
family of relaxations to the weak-learnability as-
sumption that readily translates to a family of re-
laxations of linear separability with margin. This
alternative perspective sheds new light on known
soft-margin boosting algorithms and also enables
us to derive several new relaxations of the no-
tion of linear separability. Last, we describe and
analyze an efficient boosting framework that can
be used for minimizing the loss functions derived
from our family of relaxations. In particular, we
obtain efficient boosting algorithms for maximiz-
ing hard and soft versions of theℓ1 margin.

1 Introduction

Boosting is a popular and successful method for building
highly accurate predictors from a set of low-accuracy base
predictors. For an overview see for example [FS99, Sch03,
MR03]. The first boosting algorithm was used for showing
the equivalence between weak learnability and strong learn-
ability [Sch90]. Weak learnability means that for any distri-
bution over a set of examples there exists a single feature,
also referred to as weak hypothesis, that performs slightly
better than random guessing. Schapire [Sch90] was the first
to show that if the weak learnability assumption holds then
it is possible to construct a highly accurate classifier, to the
point that it perfectly classifies all the examples in the train-
ing set. This highly accurate classifier is obtained by taking
the sign of a weighted combination of weak hypotheses. Put
another way, [Sch90] showed that if the weak learnability as-
sumption holds then the set of examples is linearly separable.

Studying the generalization properties of the AdaBoost
algorithm, Schapire et al. [SFBL97] showed that AdaBoost

in fact finds a linear separator with a large margin. How-
ever, AdaBoost does not converge to the max margin so-
lution [RW05, RSD07]. Interestingly, the equivalence be-
tween weak learnability and linear separability is not only
qualitative but also quantitative: weak learnability withedge
γ is equivalent to linear separability with anℓ1 margin of
γ. We give a precise statement and a simple proof of the
equivalence in Thm. 4. We note that the equivalence can be
also derived from von Neumann’s minimax theorem [vN28].
Nevertheless, our proof is instructive and serves as a building
block for the derivation of our main results.

Since the weak learnability assumption is equivalent to
linear separability, it implies that the weak-learnability as-
sumption is non-realistic due to its high sensitivity to even
small amounts of label noise. For example, assume that we
have a dataset that is perfectly separable with a large margin
with the exception of two examples. These two examples
share the same instance but attain opposite labels. Since such
a dataset is non-separable, the weak learnability assumption
fails to hold as well. To cope with this problem, we must
somehow relax the weak learnability, which is equivalent to
relaxing the linear separability assumption. In this paper
we propose a family of relaxations of the linear separabil-
ity assumption, which stems from the equivalence of weak-
learnability and linear-separability. The guiding tool isto
first define a natural family of relaxations of the weak learn-
ability assumption, and then analyze its implication on the
separability assumption.

In addition to our analysis and relaxations outline above,
we also propose and analyze an algorithmic framework for
boosting that efficiently solve the problems derived from our
family of relaxations. The algorithm finds anǫ accurate
solution after performing at mostO(log(m)/ǫ2) iterations,
wherem is the number of training examples. The number
of iterations upper bounds the number of different weak-
hypotheses constituting the solution. Therefore, we cast a
natural trade-off between the desired accuracy level,ǫ, of
the (possibly relaxed) margin attained by the weight vector
learned by the boosting algorithm, and the sparseness of the
resulting predictor. In particular, we obtain new algorithms
for maximizing the hard and softℓ1 margin. We also provide
anO(m log(m)) procedure for entropic projections ontoℓ∞
balls. Combined with this procedure, the total complexity
of each iteration of our algorithm for minimizing the softℓ1
margin is almost the same as the complexity of each iteration



of AdaBoost, assuming that the complexity of each activa-
tion of the weak learning algorithm requiresΩ(m) time.

Related Work As mentioned above, the equivalence be-
tween weak learnability and linear separability withℓ1 mar-
gin is a direct consequence of von Neumann’s minimax the-
orem in game theory [vN28]. Freund and Schapire [FS96]
were the first to use von Neumann’s result to draw a con-
nection between weak learnability and separability. They
showed that if the weak learnability assumption holds then
the data is linearly separable. The exact quantification of the
weak learnability parameter and theℓ1 margin parameter was
spelled out later in [RW05].

Schapire et al. [SFBL97] showed that the AdaBoost al-
gorithm finds a large margin solution. However, as pointed
out by [RW05, RSD07], AdaBoost does not converge to the
max margin solution. Ratsch and Warmuth [RW05] sug-
gested an algorithm called AdaBoost∗ which converges to
the maximal margin solution inO(log(m)/ǫ2) iterations.
The family of algorithms we propose in this paper entertains
the same convergence properties. Rudin et al. [RSD07] pro-
vided a more accurate analysis of the margin attained by Ad-
aBoost and also presented algorithms for achieving the max-
margin solution. However, their algorithm may takeO(1/ǫ3)
iterations to find anǫ accurate predictor.

The above algorithms are effective when the data is lin-
early separable. Over the years, many boosting algorithms
were suggested for non-separable datasets. We list here few
examples. The LogLoss Boost algorithm [CSS02] tries to
minimize the cumulative logistic loss, which is less sensi-
tive to noise. MadaBoost [DW00] is another example of an
algorithm that copes with non-separability. It does so by
capping from the above the importance weights produced
by the boosting algorithm. MadaBoost shares similarities
with some of the relaxations presented in this paper. How-
ever, MadaBoost does not exploit the aforementioned equiv-
alence and has a convergence rate that seems to be inferior
to the rate obtained by the relaxations we consider in this
paper. Another notable example for a boosting algorithm
that works well in the non-separable case and is noise toler-
ant is the BrownBoost algorithm [Fre01]. BrownBoost uses
the error-function (erf) as a margin-based loss function. The
error-function reaches an asymptote when its input (margin
in the context of BrownBoost) tends to−∞. It thus consti-
tutes a robust alternative to a convex loss function, includ-
ing the LogLoss function. Since the error function is non-
convex, all the results presented in this paper are not applica-
ble to BrownBoost. In the support vector machine literature,
the common relaxation of the separability assumption is ob-
tained by using the hinge-loss (see for example [CST00]).
Warmuth, Glocer and Ratsch [WGR07] recently proposed
the SoftBoost algorithm that directly minimizes the hinge-
loss function. The relaxation described in [WGR07] is a
special case of the family of relaxations we present in this
paper. The SoftBoost algorithm also builds on the idea of re-
laxing the weak learnability assumption by capping the max-
imal weight of a single example. A similar idea was also
used by the SmoothBoost algorithm [Ser03]. Our presen-
tation leads to an interesting perspective on this relaxation,
showing that maximizing the margin while minimizing the
hinge-loss is equivalent to maximizing the average margin

of thek examples with the worst margin. This equivalence is
also implied from the work presented in [WGR07]. More im-
portantly, in this paper we present a much simple algorithm
which does not employ a convex optimization procedure on
each round of boosting. Our approach stands in contrast to
the algorithm of [WGR07], which requires “totally correc-
tive” updates (see also [WLR06]) and needs to solve a rather
complex optimization problem on each iteration.

The family of boosting algorithms we derive is reminis-
cent of the boosting algorithm proposed by Zhang [Zha03].
However, our analysis is different and allows us to: (i) pro-
vide an analytic solution for the step size; (ii) tackle com-
plicated loss functions, including cases when the loss func-
tion does not take an explicit form. Our analysis stems
from the primal-dual view of online convex programming
[SSS06a, SSS07, SS07] and also borrows ideas from the
analysis given in [SVL07]. The main difference between our
analysis and that of [SVL07, Zha03] is that we do not impose
any assumption on the second order derivatives of the objec-
tive function. Instead, we rely on a duality argument and
require a strongly convex assumption on the Fenchel conju-
gate of the loss function. As we show, in many interesting
cases, it is simple to verify that our assumption holds, while
it is very complex to analyze the second order derivatives of
the loss function in hand.

Throughout this paper, we focus on the analysis of the
empirical loss over the training set. There has been exten-
sive work on obtaining generalization bounds for boosting
algorithms and for margin-based hypotheses. We refer the
reader for example to [SFBL97, MBB98, KPL01]. A com-
plimentary question, left out of the scope of this paper, is
whether the equivalence between weak learnability and lin-
ear separability with margin can be exploited for obtaining
improved generalization bounds.

2 Notation and basic definitions

Let (x1, y1), . . . , (xm, ym) be a sequence ofm examples,
where for alli, xi ∈ X andyi ∈ {+1,−1}. LetH be a set
of base hypotheses, namely, eachh ∈ H is a function from
X into [+1,−1]. For simplicity, we assume thatH is finite
and thusH = {h1, . . . , hn}. LetA be a matrix of sizem×n
over[+1,−1] where the(i, j) entry ofA isAi,j = yi hj(xi).
We note that boosting algorithms solely use the matrixA and
do not directly work with the set of examples. Therefore,
throughout the rest of the paper we focus on the properties
of the matrixA.

We denote column vectors with bold face letters, e.g.d

andw, and use the notationd†,w† for denoting their corre-
sponding row vectors. The inner product between vectors is
denoted by〈d,w〉 = d

†
w. We denote byA† the transpose

of the matrixA. The vector obtained by multiplying a matrix
A with a vectord is designated asAd and itsith element as
(Ad)i.

The set of non-negative real numbers is denoted asR+

and the set of integers{1, . . . , n} as[n]. Them dimensional
probability simplex is denoted bySm = {d ∈ R

m
+ : ‖d‖1 =

1}. We denote them dimensionalℓ1 ball of radiusr by
B

m
1 (r) = {w ∈ R

m : ‖w‖1 ≤ r}. For the unitℓ1 ball,
we often omitr and use the shorthandBm

1 . Similarly, we
denote them dimensionalℓp ball by B

m
p (r) = {w ∈ R

m :



‖w‖p ≤ r} and again omitr whenever it is equals to1.

Definition 1 (separability with ℓ1 margin γ) A matrixA is
linearly separable withℓ1 marginγ if there existsw ∈ B

n
1

such thatmini∈[m](Aw)i ≥ γ, andγ is the largest scalar
that satisfies the above inequality, namely,

γ = max
w∈Bn

1

min
i∈[m]

(Aw)i .

Definition 2 (γ-weak-learnability) A matrix A is γ-weak-
learnable if for all d ∈ S

m there existsj ∈ [n] such that
|(d†A)j | ≥ γ, andγ is the largest scalar that satisfies the
above. Namely,

γ = min
d∈Sm

max
j∈[n]

|(d†A)j | .

We next give a few basic definitions from convex anal-
ysis. A setS ⊂ R

n is convex if for any two vectors
d1,d2 in S, all the line betweend1 and d2 is also inS,
that is, {αd1 + (1 − α)d2 : α ∈ [0, 1]} ⊆ S. A func-
tion f : S → R is closed and convex if for any scalarr,
the level set{d : f(d) ≤ r} is closed and convex. We al-
low functions to output+∞ and denote bydom(f) the set
{d : f(d) < +∞}. The core of a setC ∈ R

n, denoted
core(C), is the set of all points inx ∈ C such that for all
d ∈ R

n there existsτ ′ > 0 for which for all τ ∈ [0, τ ′]
we havex + τd ∈ C. The Fenchel conjugate of a function
f : S → R is defined as

f⋆(θ) = max
d∈S

〈d,θ〉 − f(d) . (1)

If f is closed and convex thenf⋆⋆ = f .
Our derivation makes an extensive use of the following

theorem.

Theorem 3 (Fenchel Duality: Theorem 3.3.5 in [BL06])
Let f : R

m → R ∪ {∞} and g : R
n :→ R ∪ {∞} be

two closed and convex functions and letA be a matrix of
dimensionm× n. Then,

max
w
−f⋆(−Aw)− g⋆(w) ≤ min

d

f(d) + g(d†A) .

The above holds with equality if in addition we have

0 ∈ core
(

dom(g)−A†dom(f)
)

.

We denote an arbitrary norm by‖ · ‖ and its dual norm
by ‖ · ‖⋆. That is,

‖w‖⋆ = max
d:‖d‖≤1

〈w,d〉 .

Two dual norms that we extensively use are‖w‖1 =
∑

i |wi|
and‖w‖∞ = maxi |wi|.

For a setC, we denote byIC(d) the indicator function of
C, that is,IC(d) = 0 if d ∈ C and otherwiseIC(d) = ∞.
The definition of‖w‖⋆ implies that the Fenchel conjugate of
IC(d) whereC = {d : ‖d‖ ≤ 1}, is the function‖ · ‖⋆.
To conclude this section, we would like to point the reader to
Table 1 which summarizes our notations.

Table 1: Summary of notations.

x,x† column vector and its transpose
〈x,v〉 inner product(= x

†
v)

A matrix of sizem × n
S

m m dimensional probability simplex
B

m
p (ν) ℓp ball {w ∈ R

m : ‖w‖p ≤ ν}
IC(d) indicator function (= 0 if d ∈ C and= ∞ else)
[x]+ vector whoseith element equalsmax{0, xi}
‖ · ‖, ‖ · ‖⋆ norm and its dual norm
f, f⋆ function and its Fenchel conjugate
e

i all zeros vector except1 in theith position
[m] the set{1, . . . , m}

3 Weak-learnability and linear-separability

In this section we establish the equivalence between weak
learnability and linear separability withℓ1 margin. As men-
tioned before, this result can be derived from von Neumann’s
minimax theorem. The purpose of the proof below is to un-
derscore the duality between weak learnability and separa-
bility, which becomes useful in the next sections.

Theorem 4 A matrixA is γ-weak-learnable if and only if it
is linearly separable withℓ1 margin ofγ.

Proof: We prove the theorem using Fenchel duality
(Thm. 3). For convenience, we refer to the optimization
problem on the right (left) hand side of Thm. 3 as the primal
(dual) optimization problem. Letf be the indicator function
of them-dimensional simplex, i.e.f(d) = 0 if d ∈ S

m and
otherwisef(d) = ∞, and letg(w) = ‖w‖∞. Then, the
primal problem is

P ⋆ = min
d

f(d) + g(d†A) = min
d∈Sm

‖d†A‖∞ .

The definition ofγ-weak-learnability conveys thatA is P ⋆-
weak-learnable. Next, we turn to the dual problem. The
Fenchel conjugate ofg is the indicator function of the setB

n
1

(see Sec. 2) and the Fenchel conjugate off is

f⋆(θ) = max
d∈Rm

〈θ,d〉 − f(d) = max
d∈Sm

〈θ,d〉 = max
i∈[m]

θi .

Therefore,

D⋆ = max
w∈Rn

−f⋆(−Aw)− g⋆(w) = max
w∈Bn

1

min
i∈[m]

(Aw)i .

Definition 1 implies thatA is separable withℓ1 margin of
D⋆. To conclude our proof, it is left to show thatP ⋆ = D⋆.
First, we note that forw = 0 the value ofD is zero, and thus
D⋆ ≥ 0. Therefore, ifP ⋆ = 0 then0 = P ⋆ ≥ D⋆ ≥ 0
so in this case we clearly haveP ⋆ = D⋆. Assume now
that P ⋆ = γ > 0. Based on Thm. 3 and the definition of
the core operator, it suffices to show that for any vectorv

there existsτ ′ > 0 such that for allτ ∈ [0, τ ′] we have
τ v /∈ {A†

d : d ∈ S
m}. This property holds true since for

anyd ∈ S
m we have‖A†

d‖∞ ≥ P ⋆ while for sufficiently
smallτ ′ we must have‖τv‖∞ < P ⋆ for all τ ∈ [0, τ ′].



4 A family of relaxations

In the previous section we showed that weak learnability is
equivalent to separability. The separability assumption is
problematic since even a perturbation of a singe example can
break it. In this section we propose a family of relaxations of
the separability assumption. The motivation for these relax-
ations stems from the equivalence between weak-learnability
and separability. The main idea is to first define a natural
family of relaxations of the weak learnability assumption,
and then analyze the implication to the separability assump-
tion. To simplify the presentation, we start with a particu-
lar relaxation that was studied in [Ser03, WLR06]. We then
generalize the example and describe the full family of relax-
ations.

4.1 A first relaxation:
capped probabilities and soft margin

To motivate the first simple relaxation, consider a matrixA
whoseith row equals to the negation of itsjth row. That
is, our training set contains an instance which appears twice,
each time with a different label. Clearly, this training setis
not separable even though the rest of the training set can be
perfectly separable with a large margin. The equivalence be-
tween weak learnability and linear separability implies that
A is also not weak learnable. To derive this property directly,
construct the distributiond with di = dj = 1

2 (anddr = 0

for r 6= i andr 6= j) and note thatd†A = 0.
In the above example, the weak learnability assumption

fails because we place excessive weight on the problematic
examplesi, j. Indeed, it was observed that AdaBoost over-
weighs examples, which partially explains its poor perfor-
mance on noisy data. To overcome this problem, it was
suggested (see for instance [Ser03, WLR06]) to restrict the
set of admissible distributions by capping the maximum im-
portance weight of each example. That is, the weak learner
should return a weak hypothesis only when its input distri-
bution satisfies‖d‖∞ ≤ 1

k
, for a predefined integerk ∈ [m].

Plugging the above restriction ond into Definition 2 we
obtain the following relaxed weak learnability value,

ρ = min
d∈Sm:‖d‖∞≤

1
k

max
j∈[n]

|(d†A)j | . (2)

Assume that a matrixA satisfies the above withρ > 0. The
immediate question that surfaces is what is the implication
on the separability properties ofA? To answer this question,
we need to refine the duality argument given in the proof of
Thm. 4.

Letf(d) be the indicator function ofSm∩B
m
∞( 1

k
) and let

g(w) = ‖w‖∞. The optimization problem given in Eq. (2)
can be rewritten asmind f(d) + g(d†A). To derive the dual
optimization problem, we find the Fenchel conjugate off ,

f⋆(θ) = max
d∈Sm:‖d‖∞≤

1
k

〈d,θ〉 .

To maximize the inner product〈d,θ〉 we should allocate the
largest admissible weight to the largest element ofθ, allocate
the largest of the remaining weights to the second largest
element ofθ, and so on and so forth. For eachi ∈ [m],

let si(θ) be theith largest element ofθ, that is,s1(θ) ≥
s2(θ) ≥ . . .. Then, the above argument yields

f⋆(θ) =
1

k

k
∑

j=1

sj(θ) .

Combining the form off⋆ with Thm. 3 we obtain that the
dual problem of Eq. (2) is

max
w∈Bn

1

1

k

k−1
∑

j=0

sm−j(Aw) . (3)

Using the same technique as in the proof of Thm. 4 it is easy
to verify that strong duality holds as well. We therefore ob-
tain the following corollary.

Corollary 5 LetA be a matrix and letk ∈ [m]. For a vector
θ, letAvgMink(θ) be the average of thek smallest elements
of θ. Letρ be as defined in Eq. (2). Then,

max
w∈Bn

1

AvgMink(Aw) = ρ .

Let us now discuss the role of the parameterk. First, ifk = 1
then the functionAvgMink reduces to the minimum over the
vector provided as its argument, and therefore we revert back
to the traditional definition of margin. Whenk = m, the
only admissible distribution is the uniform distribution.In
this case, it is easy to verify that the optimal weight vector
associateswj = 1 with the feature that maximizes|(d†A)j |
(while d being the uniform distribution) andwj = 0 with
the rest of the features. That is, the performance of the opti-
mal strong hypothesis is equal to the performance of the best
single weak hypothesis, and no boosting process takes place.
The interesting regime is whenk is proportional tom, for
examplek = 0.1m. In this case, ifρ > 0, then we are guar-
anteed that90% of the examples can be separated by margin
of at leastρ.

It is also possible to setk based on knowledge of the
number of noisy examples in the training set and the sepa-
rability level of the rest of the examples. For example, as-
sume that all butν of the examples are separable with mar-
gin γ. Then, the worst objective value thatw can attain is,
AvgMink(Aw) = −ν+(k−ν)γ

k
. Constraining the right hand

side of this equality above to be at leastγ
2 and solving fork

yields that fork ≥ 2ν(γ + 1)/γ at leastm − k examples
attain a margin value of at leastγ/2.

4.2 A general relaxation scheme

We now generalize the above relaxation and present our gen-
eral relaxation scheme. To do so, we first rewrite Eq. (2) as
follows. DenoteC = B

m
∞(1/k) and recall thatIC(d) is the

indicator function of the setC. We can now rewrite Eq. (2)
as

ρ = min
d∈Sm

(

max
j∈[n]

|(d†A)j |+ IC(d)

)

. (4)

The general relaxation scheme is obtained by replacingIC

with a large family of functions. Before specifying the prop-
erties of allowed functions, let us first define the following
generalized notion of weak learnability.



Definition 6 ((ρ, f)-weak-learnability) Let f be an arbi-
trary function. A matrixA is (ρ, f)-weak-learnable if

ρ = min
d∈Sm

(

max
j∈[n]

|(d†A)j |+ f(d)

)

.

Intuitively, we can think onρ as the minimum of the maximal
edge plus a regularization termf(d). In the case of capped
importance weights, the regularization function is a barrier
function that does not penalize distributions insideB

m
∞(1/k)

and places an infinite penalty for the rest of the distributions.
The following theorem shows how the fact that a ma-

trix A is (ρ, f)-weak-learnable affects its separability prop-
erties. To remind the reader, we denote bye

i the vector
whoseith element is1 and the rest of its elements are zero.
The notation[x]+ represents the vector whoseith element is
max{0, xi}.

Theorem 7 Let f be a convex function,ρ be a scalar,
and A be a (ρ, f)-weak-learnable matrix. If the following
assumptions hold,
(i) mind f(d) = 0,
(ii) 0 ∈ core(dom(f)),
(iii) ∀θ ∈ R

m, ∀i ∈ [m], ∀α ∈ [0, 1], the Fenchel conjugate
of f satisfies

f⋆(θ) ≥ f⋆(θ − α θi e
i)

then,

max
w∈Bn

1
,γ∈R

(

γ − f⋆([γ −Aw]+)
)

= ρ .

The proof of the theorem is again based on the Fenchel du-
ality theorem. The vector[γ − Aw]+ appearing in the dual
problem is the vector of hinge-losses. Before diving into the
details of the proof, let us give two concrete family of func-
tions that satisfy the requirement given in the theorem.

Example 1 Letf be the indicator function of a ball of radius
ν, {d : ‖d‖ ≤ ν}, where‖ ·‖ is an arbitrary norm andν is a
scalar such that the intersection of this ball with the simplex
is non-empty. Then,f⋆(w) = ν ‖w‖⋆ and the condition
given in the theorem clearly holds. In this case, we obtain
that

max
w∈Bn

1
,γ∈R

(

γ−ν ‖[γ−Aw]+‖⋆

)

= min
d∈Sm:‖d‖≤ν

‖d†A‖∞ .

In particular, if ‖ · ‖ is the ℓ∞ norm we obtain again the
example of capped sample weights. Since the1-norm and
∞-norm are dual we get that in the dual problem we are
maximizing the margin parameterγ while minimizing the cu-
mulative hinge-loss. Combining this fact with Corollary 5 we
get that

AvgMink(Aw) = max
γ∈R

(

γ − 1
k

m
∑

i=1

[γ − (Aw)i]+

)

.

The right hand side of the above is usually called the “soft-
margin”. The above equality tells us that the soft margin
is equivalent to the average margin of thek worst examples
(see also [WLR06, SSWB98]).

Example 2 Let f(d) = ν ‖d‖ where‖ · ‖ is an arbitrary
norm andν is a scalar. Then,f⋆(w) is the indicator function
of the ball of radiusν with respect to the dual norm{w :
‖w‖⋆ ≤ ν}. The condition given in the theorem clearly
holds here as well and we obtain the dual problem

max
w∈Bn

1
,γ∈R

γ s.t. ‖[γ −Aw]+‖⋆ ≤ ν .

That is, we are now maximizing the margin subject to a con-
straint on the vector of hinge-losses.

We now turn to proving Thm. 7. First, we need the fol-
lowing lemma which characterizes the Fenchel conjugate of
f + ISm .

Lemma 8 Assume thatf satisfies the conditions given in
Thm. 7 and denotẽf(d) = f(d) + ISm(d). Then,

f̃⋆(θ) = −max
γ∈R

(γ − f⋆([γ + θ]+)) .

Proof: We first rewritef̃⋆ as

f̃⋆(θ) = max
d

−f(d)− (ISm(d)− 〈θ,d〉)

= −

(

min
d

f(d) + (ISm(d)− 〈θ,d〉)

)

Denoteg(d) = ISm(d) − 〈θ,d〉. It is easy to verify that
g⋆(x) = maxi(θi + xi). Next, note that0 ∈ core(dom(f))
by assumption and thatdom(g) = S

m. Therefore, strong
duality holds and we can use Thm. 3 which yields,

−f̃⋆(θ) = max
x

(−f⋆(x)− g⋆(−x))

= max
x

(

−f⋆(x)−max
i

(θi − xi)
)

.

Let Cγ = {x : ∀i, xi ≥ θi + γ}. We show in the sequel
that for anyγ, the vector[θ + γ]+ is a minimizer off⋆(x)
overx ∈ Cγ . Combining this with the above expression for
−f̃⋆(θ) we get that

−f̃⋆(θ) = max
γ

(γ − f⋆([θ + γ]+)) ,

as required. Therefore, it is left to show that the vector
[θ + γ]+ is indeed a minimizer off⋆(x) overCγ . Clearly,
[θ + γ]+ ∈ C. In addition, for anyx ∈ Cγ we can make
a sequence of modifications tox until x = [θ + γ]+ as fol-
lows. Take some elementi. If xi > [θi + γ]+ then based on
assumption (iii) of Thm. 7 we know that

f⋆

(

x−
xi − [θi + γ]+

xi

xie
i

)

≤ f⋆(x) .

If xi < [θi + γ]+ we must have that[θi + γ]+ = 0 since we
assume thatx ∈ Cγ and thusxi ≥ θi + γ. Thus,xi < 0 but
now using assumption (iii) of Thm. 7 again we obtain that
f⋆(x − xie

i) ≤ f⋆(x). Repeating this for everyi ∈ [m]
makesx equals to[θ + γ]+ while the value off⋆(x) is non-
increasing along this process. We therefore conclude that
[θ + γ]+ is a minimizer off⋆(x) overx ∈ Cγ and our proof
is concluded.



Based on the above lemma the proof of Thm. 7 is easily
derived.
Proof:[of Thm. 7] The proof uses once more the Fenchel
duality theorem. Define the functioñf(d) = f(d) +
ISm(d). Therefore, Thm. 3 tells us that the dual
of the problem mind f̃(d) + ‖d†A‖∞ is the problem

maxw∈Bn
1

(

−f̃⋆(−Aw)
)

. Using Lemma 8 we obtain that

the dual of the problem given in Definition 6 is the same
maximization problem as stated in the theorem. To con-
clude the proof it is left to show that strong duality also holds
here. First, using the assumptionmind f(d) = 0 we get that
f⋆(0) = 0. By settingw = 0 andγ = 0 we get that the
dual problem is bounded below by zero. Thus, ifρ = 0 then
strong duality holds. Ifρ > 0 then we can use the fact that
dom(f̃) ⊆ dom(f) and therefore the same arguments as in
the end of the proof of Thm. 4 holds here as well.

5 Boosting algorithms

In this section we derive a boosting algorithm for solving
the max-relaxed-margin problem described in the previous
section, namely,

max
w∈Bn

1

max
γ∈R

(γ − f⋆([γ −Aw]+)) . (5)

The function f⋆ should satisfy the conditions stated in
Thm. 7. In particular, iff⋆(x) = ν ‖x‖1 we obtain the soft
margin problem

max
w∈Bn

1

max
γ∈R

(

γ − ν

m
∑

i=1

[γ − (Aw)i]+

)

, (6)

while if f⋆(x) = maxi xi then we obtain the non-relaxed
max margin problem

max
w∈Bn

1

min
i∈[m]

(Aw)i .

The boosting algorithm for solving Eq. (5) is described
in Fig. 1. To simplify the presentation, let us first describethe
algorithm for the non-relaxed max-margin problem, that is,
f⋆(x) = maxi xi. As we have shown in the proof of Thm. 4,
the corresponding Fenchel conjugatef(d) is the indicator
function ofSm. The algorithm initializes the weight vector
to be the zero vector,w1 = 0. On roundt, we define a
distribution over the examples

dt = argmax
d∈Sm

(

〈−Awt,d〉 − (f(d) + β h(d))
)

= argmin
d∈Sm

(

〈Awt,d〉+ (f(d) + β h(d))
)

,

where h(d) is the relative entropy function. Since we
are now dealing with the casef(d) = ISm , we can use
Lemma 18 in the appendix and get thatdt is the gradient
of the Fenchel conjugate of the functionβh(d). In the ap-
pendix we list several Fenchel conjugate pairs. In particular,
the Fenchel conjugate of the relative entropy is the soft-max
function

h⋆(θ) = log

(

1
m

m
∑

i=1

eθi

)

.

INPUT: matrixA ∈ [+1,−1]m,n

Relaxation functionf⋆

Desired accuracyǫ

DEFINE: h(d) =
∑m

i=1 di log(di) + log(m)

f(d) = Fenchel conjugate off⋆

INITIALIZE : w1 = 0, β = ǫ
2 log(m)

FOR t = 1, 2, . . . , T

dt = argmin
d∈Sm

(

〈Awt,d〉+ (f(d) + β h(d))
)

jt ∈ arg maxj |(d
†
tA)j |

(w.l.o.g. assumesign(d†
tA)jt

= 1)

ηt = max
{

0,min
{

1,
β d

†
t A(ejt−wt)

‖A(ejt−wt)‖2
∞

}}

wt+1 = (1− ηt)wt + ηt e
jt

OUTPUT: wT+1

Figure 1: A Boosting Algorithm for maximizing the relaxed
margin given in Eq. (5).

Using the property(βh)⋆(θ) = βh⋆(θ/β) we obtain that

dt,i ∝ e
−

1
β

(Awt)i .

That is, the log of the probability assigned to theith exam-
ple is negatively proportional to the margin of the example
according to the current weight vectorwt. Therefore, the al-
gorithm allocates larger importance weights to the erroneous
examples, in a similar fashion to the weighting scheme of
examples of many other boosting algorithms, such as Ad-
aBoost.

Next, we perform a step analogous to calling a weak-
learner by finding a single column ofA with the best edge.
We would like to note that it is possible to extend the algo-
rithm so that the weak learner may find a column whose edge
is only approximately optimal. For simplicity we confine the
description to weak learners that return the column with the
largest edge. Finally, we setwt+1 to be the convex combi-
nation ofwt and the new hypothesis. The coefficient of the
convex combination, denotedηt, is calculated analytically
based on our analysis. Note that the update form guarantees
that‖wt‖1 ≤ 1 for all t.

The sole modification of the algorithm when running
with other relaxation functions is concerned with the defi-
nition of dt. In Sec. 5.2 we further elaborate on how to solve
the optimization problem which appears in the definition of
dt. We provide a few general tools and also present an effi-
cient procedure for the case wheref is the indicator function
of B

m
∞(ν).
The following theorem provides analysis of the rate of

convergence of the algorithm.

Theorem 9 Assume that the algorithm given in Fig. 1 is run
for T = Ω(log(m)/ǫ2) iterations. Then, the algorithm out-
puts anǫ-accurate solution,

max
γ

(γ − f⋆([γ −AwT+1]+)) ≥ ρ − ǫ ,



whereρ is the optimal value of the solution as defined in
Thm. 7.

Before turning into the proof of Thm. 9 let us first dis-
cuss its implications. First we note that the number of itera-
tions of the algorithm upper bounds the number of non-zero
elements of the solution. Therefore, we have a trade-off be-
tween the desired accuracy level,ǫ, and the level of sparsity
of the solution,wT+1.

The algorithm can be used for maximizing the hard mar-
gin using O(log(m)/ǫ2) iterations. In this case, the al-
gorithm shares the simplicity of the popular AdaBoost ap-
proach. The rate of convergence we obtain matches the rate
of the AdaBoost⋆ described by Ratsch and Warmuth [RW05]
and is better than the rate obtained in Rudin et al. [RSD07].
We note also that ifA is γ-separable and we setǫ = γ/2
then we would find a solution with half the optimal mar-
gin in O(log(m)/γ2) iterations. AdaBoost seemingly at-
tains an exponentially fast decay of the empirical error of
e−γ2T . Thus,T should be at least1/γ2. Further careful
examination also reveals a factor oflog(m) in the conver-
gence rate of AdaBoost. Therefore, our algorithm attains the
same rate of convergence of AdaBoost while both algorithms
obtain a margin which is half of the optimal margin. (See
also the margin analysis of AdaBoost described in Rudin et
al. [RSD07].)

We can also use the algorithm for maximizing the soft
margin given in Eq. (6). In Sec. 5.2 we show how to cal-
culatedt in Õ(m) time. Therefore, the complexity of the
resulting algorithm is roughly the same as the complexity
of AdaBoost. The bound on the number of iterations that
we obtain matches the bound of the SoftBoost algorithm, re-
cently proposed by Warmuth et al. [WLR06]. However, our
algorithm is simpler to implement and the time complexity
of each iteration of our algorithm is substantially lower than
the one described in [WLR06].

5.1 Proof of convergence rate

To motivate our proof technique, let us focus first on the
max-margin case without any relaxation. As we showed be-
fore, the AdaBoost algorithm approximates the max opera-
tor, maxi θi, with a soft-max operator,log( 1

m

∑

i eθi), also
known as the exp-loss. We can think of this approximation
as another form of relaxation of the max margin. To distin-
guish this type of relaxation from the family of relaxations
described in the previous section, we refer to it as an “algo-
rithmic” relaxation, since this relaxation is driven by algo-
rithmic factors and not directly by the concept of relaxing
the margin. The algorithmic relaxation of AdaBoost encap-
sulates the following relaxation of weak learnability: replace
the indicator function of the simplex with the relative en-
tropy function over the simplex, which we denote byh(d)
(see also the definition in Fig. 1). The advantage of endow-
ing the simplex with the relative entropy stems from the fact
that the relative entropy isstronglyconvex with respect to the
ℓ1 norm, as we formally define now.

Definition 10 A continuous functionf is σ-strongly convex
over a convex setS with respect to a norm‖ · ‖ if S is con-
tained in the domain off and for allv,u ∈ S andα ∈ [0, 1]

we have

f(αv + (1− α)u) ≤ α f(v) + (1− α) f(u)

−
σ

2
α (1− α) ‖v − u‖2 .

In the above definition, ifσ = 0 we revert back to the
standard definition of convexity. Strong convexity quantifies
the difference between the value of the function at the con-
vex combination and the convex combination of the values of
the function. The relative entropy is1-strongly convex with
respect to theℓ1 norm over the probabilistic simplex (see
Lemma 16 in [SS07]). Few important properties ofstrongly
convex functions are summarized in Lemma 18 (in the ap-
pendix). We use these properties in our proofs below.

Continuing with our motivating discussion, we view
the algorithmic relaxation of AdaBoost as a replacement of
the convex functionISm(d) by the strongly convex func-
tion h(d). More generally, recall the definitioñf(d) =
f(d)+ ISm(d) from Sec. 4 and that solving Eq. (5) is equiv-
alent to maximizing−f̃⋆(−Aw) overw ∈ B

n
1 . As in the

algorithmic relaxation of AdaBoost, we replacẽf(d) by the
function

f̂(d) = f̃(d) + β h(d) ,

whereβ ∈ (0, 1). Since for alld ∈ S
m we have0 ≤ h(d) ≤

log(m), by settingβ = ǫ/(2 log(m)) we obtain that

∀d ∈ S
m, f̂(d)− ǫ/2 ≤ f̃(d) ≤ f̂(d) .

Using Lemma 19 in the appendix we obtain that

∀θ, f̂⋆(θ) ≤ f̃⋆(θ) ≤ f̂⋆(θ) + ǫ/2 . (7)

The above implies that maximizing−f̂⋆(−Aw) gives anǫ/2
accurate solution to the problem of maximizing−f̃⋆(−Aw).
This argument holds for the entire family of functions dis-
cussed in Sec. 4. An appealing property of strong convex-
ity that we exploit is that by adding a convex function to a
strongly convex function we retain at least the same strong
convexity level. Therefore, for all the functions̃f(d) dis-
cussed in Sec. 4 the correspondingf̂(d) retains the strongly
convex property of the relative entropy.

The algorithm in Fig. 1 is designed for maximizing
−f̂⋆(−Aw) over B

n
1 . Based on the above discussion, this

maximization translates to an approximate maximization of
−f̃⋆(−Aw). Using again Thm. 3 we obtain that

max
w∈Bn

1

−f̂⋆(−Aw) ≤ min
d

f̂(d) + ‖d†A‖∞ .

Denote byD(w) andP(d) the dual and primal objec-
tive values of the above equation. We also denote byǫt the
sub-optimality value attained at iterationt of the algorithm,
namely,

ǫt = max
w∈Bn

1

D(w)−D(wt) .

The following key lemma lower bounds the improvement of
the algorithm in terms of its current sub-optimality.

Lemma 11 Let ǫt be the sub-optimality value of the algo-
rithm in Fig. 1 at iterationt and assume thatǫt ≤ 1. Then,
ǫt − ǫt+1 ≥ β ǫ2t /8.



Proof: Denote∆t = ǫt−ǫt+1 and based on the definition of
ǫt we clearly have that∆t = D(wt+1)−D(wt). To simplify
our notation, we use the shorthandj for jt andη for ηt. Since

wt+1 = (1− η)wt + ηej

we get that

∆t = D(wt + η(ej −wt))−D(wt) .

Using the definition ofD we further rewrite∆t as

∆t = f̂⋆(−Awt)− f̂⋆(−Awt − η A (ej −wt)) . (8)

The key property that we use is thatf̂⋆ is the Fenchel con-
jugate of aβ-strongly convex function over the simplex with
respect to theℓ1 norm. Therefore, using Lemma 18 in the
appendix, we know that for anyθ1 andθ2:

f̂⋆(θ1 + θ2)− f̂⋆(θ1) ≤ 〈∇,θ2〉+
‖θ2‖

2
∞

2β
,

where∇ = arg maxd〈θ1,d〉 − f̂(d). Combining this prop-
erty with Eq. (8) and using the definition ofdt we obtain
that

∆t ≥ η 〈dt, A (ej −wt)〉 −
η2 ‖A (ej −wt)‖

2
∞

2β
. (9)

Using the assumptionA ∈ [+1,−1]m×n, the fact thatwt ∈
B

n
1 , and the triangle inequality we get that

‖A (ej −wt)‖∞ ≤ 2

and thus

∆t ≥ η 〈dt, A (ej −wt)〉 − 2 η2/β . (10)

Next, we show that〈dt, A (ej − wt)〉 = P(dt) − D(wt).
To to so, we first use Lemma 17 to get that〈dt,−Awt〉 =

f̂(dt) + f̂⋆(−Awt) and second we use the definition ofj

to get that〈dt, A e
j〉 = ‖d†

t A‖∞. Combining this with
Eq. (10) yields

∆t ≥ η (P(dt)−D(wt))− 2 η2/β . (11)

The weak duality property tells us thatP(dt) ≥
maxw∈Bn

1
D(w) and therefore∆t ≥ η ǫt − 2 η2/β. Denote

η′ = ǫt β/4 and note thatη′ ∈ [0, 1]. Had we setηt = η′ we
could have obtained that∆t ≥ β ǫ2t /8 as required. Since we
setηt to be the maximizer of the expression in Eq. (9) over
[0, 1], we get an even larger value for∆t. This concludes our
proof.

Based on Lemma 11 the proof of Thm. 9 easily follows.
Proof:[(of Thm. 9)] We first show thatǫ1 ≤ 1. To see this,
we use the weak duality to get thatǫ1 ≤ P(d1) − D(w1).
Next, we recall that in the proof of Lemma 11 we have shown
that for all t, P(dt) − D(wt) = 〈dt, A(ejt − wt)〉. Since
w1 = 0 we get thatǫ1 ≤ 〈d1, Ae

j1〉 = ‖d†
1A‖∞ ≤ 1.

We can now apply Lemma 11 fort = 1 and get that
ǫ2 ≤ ǫ1. By induction, we obtain that Lemma 11 holds for
all t. Applying Lemma 20 (given in the appendix) we get
thatǫt ≤

8
β(t+1) .

Plugging the definition ofβ = ǫ/(2 log(m)) into the
upper bound onǫT+1 we getǫT+1 ≤

16 log(m)
(T+2)ǫ . Therefore, if

T + 2 ≥ 32 log(m)/ǫ2 we get thatǫT+1 ≤ ǫ/2. Finally, Let
ǫ′ be the error ofwT+1 on the originalf̃ then using Eq. (7)
we obtain thatǫ′ ≤ ǫT+1 + ǫ/2 = ǫ.

5.2 Efficient implementation for soft margin

In this section we provide an efficient procedure for calcu-
lating the distributiondt as described in Fig. 1 whenf(d) is
the indicator function of{d : ‖d‖∞ ≤ ν}. As we showed
above, this case corresponds to the maximization of the soft
margin.

We first present a lemma that provides us with an al-
ternative method for findingd, which is based on Bregman
divergences. The Bregman divergence with respect to a con-
vex functionh between two vectorsd andd0 is defined as,

Bh(d‖d0) = h(d)− h(d0)− 〈∇h(d0),d− d0〉 .

See [CZ97] for a rigorous definition of the Bregman diver-
gence.

Lemma 12 Let h : S → R be a strongly convex and dif-
ferentiable function, letf be a convex function, and denote
f̂ = h + f . Let θ be a vector and denoted0 = ∇h⋆(θ),
whereh⋆ is the Fenchel conjugate ofh. Then,

∇f̂⋆(θ) = argmin
d

(Bh(d‖d0) + f(d)) .

Proof: Sinceh is strongly convex and differentiable we have
that∇h(d0) = θ. Therefore,

∇f̂⋆(θ) = argmax
d

〈d,θ〉 − f̂(d)

= argmin
d

h(d)− 〈d,θ〉+ f(d)

= argmin
d

h(d)− 〈d,∇h(d0)〉+ f(d)

= argmin
d

Bh(d‖d0) + f(d) .

Applying the above lemma withf = IC for some convex set
C we obtain the following corollary.

Corollary 13 Assume that the conditions stated in
Lemma 12 hold and thatf(d) = IC(d) for some con-
vex setC. Then,

∇(h + f)⋆(θ) = argmin
d∈C

Bh(d‖∇h⋆(θ)) .

We now get back to the problem of findingdt whenf(d)
is IC(d) for C = {d : ‖d‖∞ ≤ ν}. Based on Corollary 13
we can first define the distribution vectord0 such thatd0,i ∝
exp(− 1

β
(Awt)i) and then set

dt = argmin
d∈Sm:‖d‖∞≤ν

Bh(d‖d0) . (12)

We are therefore left with the problem of solving the en-
tropic projection problem given in Eq. (12). A similar prob-
lem was tackled by Herbster and Warmuth [HW01], who
providedO(m log(m)) andO(m) algorithms for perform-
ing entropic projections. For completeness, in the rest of this
section we outline the simplerO(m log(m)) algorithm. To
do so, we first show that the entropic projection preserves the
relative order of components of the projected vector.

Lemma 14 Letdt be the solution of Eq. (12) and leti, j be
two indices such thatd0,i > d0,j . Then,dt,i ≥ dt,j .



INPUT: A vectord0 ∈ S
m and a scalarν ∈ (0, 1)

Sortd0 in non-increasing order⇒ u

INITIALIZE : Z =
∑m

r=1 ur

FOR i = 1, ...,m

θ =
1− ν (i− 1)

Z
IF θui ≤ ν

BREAK

ENDIF

Z ← Z − ui

ENDFOR

OUTPUT: dt s.t. dt,r = min{ν, θd0,r}

Figure 2: AnO(m log(m)) Procedure for solving the En-
tropic Projection problem defined by Eq. (12).

Proof: Assume that the claim of the proof is not true. Let
i and j be two indices which violate the claim, therefore
dt,i < dt,j . We now construct a vector̃d which resides in
S

m and whose components do not exceedν. We set all the
components of̃dt, except for theith andjth components, to
be equal to the corresponding components ofdt. Next, we
setd̃t,i = dt,j andd̃t,j = dt,i. Clearly,d̃t constitutes a fea-
sible solution. Taking the difference between the Bregman
divergence of the two vectors each tod0 we get,

Bh(dt‖d0)−Bh(d̃t‖d0) = (dj − di) log(d0,i/d0,j) > 0 ,

which contradicts the fact thatdt is the vector attaining the
smallest Bregman divergence tod0.

Without loss of generality, assume thatd0 is sorted in a
non-increasing order. Therefore, using Lemma 14 we know
thatdt has the form(ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0) where
for eachr ∈ {i, . . . , j} we havedt,r ∈ (0, ν). Moreover, the
following lemma provides us with a simple way to find all
the rest of the elements ofdt.

Lemma 15 Assume thatd0 is sorted in a non-increasing or-
der and thatdt = (ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0). Then,
for all r ∈ {i, . . . , j} we have

dt,r = θ d0,r where θ =
1− ν (i− 1)
∑j

r=i d0,r

.

Proof: Let v denotes the gradient ofBh(d‖d0) with respect
to d atdt, namely,

vi = log(dt,i) + 1− log(d0,i) .

Let I = {i, . . . , j}. Note that for the elements inI the opti-
mization problem has a single linear equality constraint and
the solution is in the interior of the set(0, ν)|I|. Therefore,
using Corollary 2.1.3 in [BL06] we obtain that there exists a
constantθ′ such that for alli ∈ I, vi = θ′−1 or equivalently

∀i ∈ I, dt,i = dt,0 eθ′−1 .

Let us denoteθ = eθ′−1. Using this form in the equation
∑

i dt,i = 1 we get that,

1 =

m
∑

r=1

dt,r = ν(i− 1) + θ

j
∑

r=i

d0,r ,

which immediately yields thatθ attains the value stated in
the lemma.

We are left with the problem of finding the indicesi and
j. The next lemma tells us that not a single element of the
optimal vector attains a value of zero.

Lemma 16 Assume that the vectord0 is provided in a non-
increasing order of elements and that all of its elements are
positive. Then, the optimal solution of Eq. (12) is of the form,
(ν, . . . , ν, dt,i, . . . , dt,m) wheredt,m > 0.

Proof: Plugging the value ofθ from the previous lemma
into the objective function and performing simple algebraic
manipulations we obtain the following objective value,

Bh(dt‖d0) =

i−1
∑

r=1

ν log( ν
d0,r

) + (1− ν(i− 1)) log(θ) .

Therefore, the objective is monotonically increasing inθ.
This in turn implies that we should setθ to be as small as
possible in order to find the minimal Bregman divergence.
Next, note that the value ofθ as defined in Lemma 15 is de-
creasing as a function ofj. The optimal solution is obtained
for j = m.

Finally, we are left with the task of finding the index
i. Once it is found we readily obtainθ, which immediately
translates into a closed form solution fordt. Lemma 14 in
conjunction with a property presented in the sequel, implies
that thefirst index for whichdt, as defined by Lemma 15
with j = m, constitutes the optimal index fori. The pseudo-
code describing the resulting efficient procedure for solv-
ing the problem in Eq. (12) is given in Fig. 2. The al-
gorithm starts by sorting the vectord0. Then, it checks
each possible indexi of the sorted vector as the position
to stop capping the weights. More formally, given an in-
dex i the algorithm checks whetherdt can take the form
(ν, . . . , ν, dt,i, . . . , dt,m) wheredt,i < ν. To check each
index i the algorithm calculatesθ as given by Lemma 15.
The same lemma also implies thatdt,i = θd0,i. Thus, if the
assumption on the indexi is correct, the following inequal-
ity must hold,ν > dt,i = θd0,i. In case the indexi un-
der examination indeed satisfies the inequality the algorithm
breaks out of the loop. Therefore, the algorithm outputs the
feasible solution with the smallest number of weights at the
boundν. It thus remains to verify that the feasible solution
with the smallest number of capped weights is indeed opti-
mal. This property follows from a fairly straightforward yet
tedious lemma which generalizes Lemma 3 from [SSS06b]
and is thus omitted. Note also that the time complexity of the
resulting algorithm isO(m log(m))) which renders it appli-
cable to boosting-based applications with large datasets.

6 Discussion

The starting point of this paper was an alternative view of
the equivalence of weak-learnability and linear-separability.
This view lead us to derive new relaxations of the notion of
margin, which are useful in the noisy non-separable case. In
turn, the new relaxations of the margin motivated us to derive
new boosting algorithms which maintain distributions over



the examples that are restricted to a subset of the simplex.
There are a few future direction research we plan to pursue.
First, we would like to further explore additional constraints
of the distributiondt, such as addingℓ2 constraints. We also
would like to replace the relative entropy penalty for the dis-
tributiondt with binary entropies of each of the components
of dt with respect to the two dimensional vector( 1

2 , 1
2 ). The

result is a boosting-based apparatus for the log-loss. Last,
we would like to explore alternative formalisms for the pri-
mal problem that also modify the definition of the function
g(d) = ‖d†A‖∞, which may lead to a regularization term of
the vectorw rather than the domain constraint we currently
have.

A Technical lemmas

The first lemma states a sufficient condition under which the
Fenchel-Young inequality holds with equality. Its proof can
be found in ([BL06], Proposition 3.3.4).

Lemma 17 Let f be a closed and convex function and let
∂f(w) be its differential set atw. Then, for allθ ∈ ∂f(w)
we have,f(w) + f⋆(θ) = 〈θ,w〉 .

The next lemma underscores the importance of strongly
convex functions. The proof of this lemma follows from
Lemma 18 in [SS07].

Lemma 18 Letf be a closed andσ-strongly convex function
overS with respect to a norm‖ · ‖. Let f⋆ be the Fenchel
conjugate off . Then,f⋆ is differentiable and its gradient
satisfies∇f⋆(θ) = arg maxw∈S 〈w,θ〉 − f(w). Further-
more, for allθ1,θ2 ∈ R

n, we have

f⋆(θ1 + θ2)− f⋆(θ1) ≤ 〈∇f⋆(θ1),θ2〉+
1

2σ
‖θ2‖

2
⋆

Lemma 19 Letf, g be two functions and assume that for all
w ∈ S we haveg(w) ≥ f(w) ≥ g(w)−c for some constant
c. Then,g⋆(θ) ≤ f⋆(θ) ≤ g⋆(θ) + c.

Proof: There exists somew′ s.t.

g⋆(θ) = 〈w′,θ〉 − g(w′)

≤ 〈w′,θ〉 − f(w′)

≤ max
w
〈w,θ〉 − f(w) = f⋆(θ) .

This proves the first inequality. The second inequality fol-
lows from the fact that the conjugate ofg(w)−c is g⋆(θ)+c.

Lemma 20 Let 1 ≥ ǫ1 ≥ ǫ2 ≥ ... be a sequence such that
for all t ≥ 1 we haveǫt − ǫt+1 ≥ r ǫ2t for some constant
r ∈ (0, 1/2). Then, for allt we haveǫt ≤

1
r(t+1) .

Proof: We prove the lemma by induction. First, fort = 1 we
have 1

r(t+1) = 1
2r
≥ 1 and the claim clearly holds. Assume

that the claim holds for somet. Then,

ǫt+1 ≤ ǫt − rǫ2t ≤
1

r(t+1) −
1

r(t+1)2 , (13)

where we used the fact that the functionx − rx2 is mono-
tonically increasing in[0, 1/(2r)] along with the inductive
assumption. We can rewrite the right-hand side of Eq. (13)
as

1
r(t+2)

(

(t+1)+1
t+1 · (t+1)−1

t+1

)

= 1
r(t+2)

(

(t+1)2−1
(t+1)2

)

.

The term(t+1)2−1
(t+1)2 is smaller than1 and thusǫt+1 ≤

1
r(t+2) ,

which concludes our proof.

B Fenchel conjugate pairs

We now list a few useful Fenchel-conjugate pairs. Proofs
can be found in ([BV04] Section 3.3, [BL06] Section 3.3.,
[SS07] Section A.3).

f(d) f⋆(θ)

IC(d) for C = {d : ‖d‖ ≤ ν} ν ‖θ‖⋆

ISm(d) maxi θi

ISm(d) +
Pm

i=1
di log( di

1/m
) log

`

1

m

Pm
i=1

eθi
´

1

2
‖d‖2 1

2
‖θ‖2

⋆

c f(d) for c > 0 c f⋆(θ/c)

f(d + d0) f⋆(θ) − 〈θ,d0〉

f(cd) for c 6= 0 f⋆(θ/c)
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