
Logarithmic Regret Algorithms for Strongly Convex
Repeated Games

Shai Shalev-Shwartz1 and Yoram Singer1,2

1 School of Computer Sci. & Eng., The Hebrew University, Jerusalem 91904, Israel
2 Google Inc. 1600 Amphitheater Parkway, Mountain View, CA 94043, USA

May 20, 2007

Abstract

Many problems arising in machine learning can be cast as a convex optimization
problem, in which a sum of a loss term and a regularization term is minimized. For
example, in Support Vector Machines the loss term is the average hinge-loss of a vec-
tor over a training set of examples and the regularization term is the squared Euclidean
norm of this vector. In this paper we study an algorithmic framework for strongly con-
vex repeated games and apply it for solving regularized loss minimization problems.
In a convex repeated game, a predictor chooses a sequence of vectors from a convex
set. After each vector is chosen, the opponent responds with a convex loss function
and the predictor pays for applying the loss function to the vector she chose. The
regret of the predictor is the difference between her cumulative loss and the minimal
cumulative loss achievable by a fixed vector, even one that is chosen in hindsight. In
strongly convex repeated games, the opponent is forced to choose loss functions that
are strongly convex. We describe a family of prediction algorithms for strongly convex
repeated games that attain logarithmic regret.

1 Introduction

A convex repeated game is a two players game that is performed in a sequence of consec-
utive rounds. On round t of the repeated game, the first player chooses a vector wt from a
convex set S. Next, the opponent responds with a convex loss function gt : S → R. Finally,
the first player suffers an instantaneous loss gt(wt). We study the game from the viewpoint
of the first player which we also call the predictor. The goal of the predictor is to minimize
its regret. Formally, the regret after T iterations of the game is defined to be

T∑
t=1

gt(wt)−min
u∈S

T∑
t=1

gt(u).

In strongly convex repeated games, each function gt must be σ-strongly convex. Intu-
itively, the scalar σ measures how much the function gt stretches above its tangents. The
formal definition is given in the next section. For strongly convex repeated games, we pro-
pose a strategy for the predictor that guarantees a regret bound of O(log(T) L

σ), where L
is a (generalized) Lipschitz coefficient of the functions {gt} that will be defined in later
sections.

1

Strongly convex repeated games are instrumental for solving regularized loss minimiza-
tion problems of the form

min
w∈S

σf(w) +
1
m

m∑
i=1

`i(w) . (1)

For example, in Support vector machines f(w) = 1
2‖w‖

2
2 and `i(w) = max{0, 1 −

yi〈w,xi〉} for some pair (xi, yi) ∈ Rn × {+1,−1}. The parameter σ is a non-negative
scalar that balances the tradeoff between the loss and regularization terms. Denote by P (w)
the objective function in Eq. (1). As we show in the next section, a function g that can be
written as a sum g(w) = σf(w) + h(w), where f(·) and g(·) are convex, is σ-strongly
convex w.r.t. f(·). Assuming that the loss functions {`i} are convex we obtain that P (w) is
σ-strongly convex w.r.t. f(·). Therefore, setting gt(·) = P (·) for all t and using a strategy
for the predictor that attain logarithmic regret we immediately obtain a solver for Eq. (1)
for which

min
t∈[T]

P (wt) ≤ 1
T

T∑
t=1

P (wt) ≤ min
u∈S

P (u) + O

(
log(T) L

T σ

)
.

The cost of each iteration of the above procedure scales linearly with m. An alternative
approach is to set gt = σf(w) + `i(w), where i is chosen randomly from [m]. For this
approach, we are able to obtain a similar convergence rate that holds with high probability.

The rest of this paper is organized as follows. We start in Sec. 2 by establishing our
notation and pointing to a few mathematical tools used throughout the paper. Our algo-
rithmic framework for strongly convex repeated games is presented and analyzed in Sec. 3.
Next, in Sec. 4, we outline the applicability of the framework for solving regularized loss
minimization problems.

2 Mathematical Background

In this section we establish our notation and give references to a few mathematical tools
used throughout the paper. We denote scalars with lower case letters (e.g. x), and vectors
with bold face letters (e.g. x). The inner product between vectors x and w is denoted by
〈x,w〉. Sets are designated by upper case letters (e.g. S). The set of non-negative real
numbers is denoted by R+. For any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k].
A norm of a vector x is denoted by ‖x‖. The dual norm is defined as ‖λ‖? = sup{〈x,λ〉 :
‖x‖ ≤ 1}. For example, the Euclidean norm, ‖x‖2 = (〈x,x〉)1/2 is dual to itself and the
`1 norm, ‖x‖1 =

∑
i |xi|, is dual to the `∞ norm, ‖x‖∞ = maxi |xi|.

We next recall a few definitions from convex analysis. The reader familiar with convex
analysis may proceed to Definition 1. For a more thorough introduction see for example [1,
4]. A set S is convex if for any two vectors w1,w2 in S, all the line between w1 and w2 is
also within S. That is, for any α ∈ [0, 1] we have that αw1 + (1 − α)w2 ∈ S. A set S is
open if every point in S has a neighborhood lying in S. A set S is closed if its complement
is an open set. A function f : S → R is closed and convex if for any scalar α ∈ R, the level
set {w : f(w) ≤ α} is closed and convex.

The Fenchel conjugate of a function f : S → R is defined as

f?(θ) = sup
w∈S

(〈w,θ〉 − f(w)) .

2

Since f? is defined as a supremum of linear functions it is convex. If in addition f is closed
and convex then the Fenchel conjugate of f? is f itself. Throughout this paper we work
solely with functions that are close.

A vector λ is a sub-gradient of a function f at v if

∀u ∈ S, f(u)− f(v) ≥ 〈u− v,λ〉 .

The differential set of f at v, denoted ∂f(v), is the set of all sub-gradients of f at v. A
function f is convex iff ∂f(v) is non-empty for all v ∈ S. If f is convex and differentiable
at v then ∂f(v) consists of a single vector which amounts to the gradient of f at v and is
denoted by ∇f(v). As a consequence we obtain that a differential function f is convex iff
for all v,u ∈ S we have that

f(u)− f(v)− 〈u− v,∇f(v)〉 ≥ 0 .

The left-hand side of the above inequality is called the Bregman divergence between u
and v and is denoted as

Bf (u‖v) = f(u)− f(v)− 〈u− v,∇f(v)〉 . (2)

For example, the function f(v) = 1
2‖v‖

2
2 yields the divergence Bf (u‖v) = 1

2‖u − v‖2
2.

Since f is convex, the Bregman divergence is non-negative.
The focus of this paper is on strongly convex functions.

Definition 1 A closed and convex function f is σ-strongly convex over S with respect to a
norm ‖ · ‖ if

∀u,v ∈ S, ∀λ ∈ ∂f(v), f(u)− f(v)− 〈u− v,λ〉 ≥ σ
‖u− v‖2

2
.

A direct generalization of the above definition is by replacing the squared norm at the
right-hand side of the inequality with a Bregman divergence.

Definition 2 A convex function g is σ-strongly convex over S with respect to a convex and
differentiable function f if

∀u,v ∈ S, ∀λ ∈ ∂g(v), g(u)− g(v)− 〈u− v,λ〉 ≥ σBf (u‖v) .

The following lemma provides a sufficient condition for strong convexity of g w.r.t. f .

Lemma 1 Assume that f is a differentiable and convex function and let g = σf + h where
h is also a convex function. Then, g is σ-strongly convex w.r.t. f .

Proof Let v,u ∈ S and choose a vector λ ∈ ∂g(v). Since ∂g(v) = ∂h(v) + σ∂f(v), we
have that there exists λ1 ∈ ∂h(v) s.t. λ = λ1 +∇f(v). Thus,

g(u)− g(v)− 〈u− v,λ〉 = Bf (u‖v) + h(u)− h(v)− 〈λ1,u− v〉 ≥ Bf (u‖v) ,

where the last inequality follows from the convexity of h.

When a function is 1-strongly convex, we often omit the reference to the constant 1.
Two notable examples of strongly convex functions which we use are given in the following
examples.

3

Example 1 The function f(w) = 1
2‖w‖

2
2 is strongly convex over S = Rn with respect to

the `2 norm. Its conjugate function is f?(θ) = 1
2‖θ‖

2
2. More generally, for q > 1, the

function f(w) = 1
2‖w‖

2
q is strongly convex over S = Rn with respect to the `q norm. Its

conjugate function is f?(θ) = 1
2‖θ‖

2
p, where 1

p + 1
q = 1.

Example 2 The function f(w) =
∑n

i=1 wi log(wi
1/n) is strongly convex over the proba-

bilistic simplex, S = {w ∈ Rn
+ : ‖w‖1 = 1}, with respect to the `1 norm. For a proof see

Lemma 8 in Appendix A. Its conjugate function is f?(θ) = log(1
n

∑n
i=1 exp(θi)).

Strongly convex functions play an important role in our analysis mainly due to the
following lemma.

Lemma 2 Let f be a differential and σ-strongly convex function over S with respect to a
norm ‖ · ‖ . Then,

1. f? is differentiable and ∇f?(θ) = argmax
w∈S

〈w,θ〉 − f(w) .

2. ∀θ ∈ Rn, ∀u ∈ S, 〈u−∇f?(θ),θ −∇f(∇f?(θ))〉 ≤ 0 .

Proof The first claim is Lemma 6 in Appendix A. Denote v = ∇f?(θ), we have that

v = argmax
w∈S

〈w,θ〉 − f(w) .

Denote the objective of the maximization problem by P (w). The assumption that f is dif-
ferentiable implies that P is also differentiable with∇P (w) = θ−∇f(w). The optimality
of v implies that for all u ∈ S

〈u− v,∇P (v)〉 ≤ 0 ,

which concludes our proof since ∇P (v) = θ −∇f(v).

3 A Logarithmic Regret Algorithmic Framework for Strongly
Convex Repeated Games

In this section we describe our algorithmic framework for playing strongly convex repeated
games. Recall that we study the game from the viewpoint of the predictor and would like
to have a logarithmic regret bound. The predictor constructs her sequence of vectors as
follows:

• Parameters: A function f : S → R and a scalar σ > 0

• Initialize: w1 ∈ S

• For t = 1, 2, . . . , T

– Play: wt

– Receive function gt from opponent

– Update:

4

1. Choose λt ∈ ∂gt(wt)
2. Set ηt = 1/(σt)
3. Set wt+1 = ∇f? (∇f(wt)− ηtλt)

Before we turn to the analysis of the algorithm, let us first describe a couple of specific
examples which we also use in Sec. 4.

Example 3 Let S be a closed convex set and let f(w) = 1
2‖w‖

2
2. The conjugate of f is,

f?(θ) = max
w∈S

〈w,θ〉 − 1
2
‖w‖2

2 =
1
2
‖θ‖2

2 −min
w∈S

1
2
‖w − θ‖2

2 .

Based on Lemma 2 we also obtain that ∇f?(θ) is the projection of θ onto S, that is,

∇f?(θ) = argmin
w∈S

‖w − θ‖2
2 .

Therefore, the update of our algorithm can be written as

wt+1 = argmin
w∈S

‖w − (wt − ηtλt)‖2
2 .

When gt is differentiable, this specific update procedure was previously proposed in [2].
Note that when S is the n’th dimensional ball of radius ρ, S = {w | ‖w‖ ≤ ρ}, the
projection of θ on S amounts to scaling θ by min{1, ρ

‖θ‖}.

Example 4 Let S be the n’th dimensional probability simplex,

S = {w|
n∑

j=1

wj = 1 , ∀j : wj ≥ 0} ,

and let f(w) =
∑n

j=1 wj log(wj) + log(n). The conjugate of f is,

f?(θ) = max
w∈S

〈w,θ〉 −
n∑

j=1

wj log(wj)− log(n)

= − log(n)−min
w∈S

n∑
j=1

wj log
(wj

eθj

)
.

Using again Lemma 2 we obtain that ∇f?(θ) is the (entropic) projection of θ onto the
simplex S, that is,

∇f?(θ) = argmin
w∈S

n∑
j=1

wj log
(wj

eθj

)
.

Algebraic manipulations yield that step (3), namely wt+1 = ∇f? (∇f(wt)− ηtλt), when
∇f?(θ) is of the above form, can be written as follows,

wt+1,j =
wt,je

−ηtλt,j

Zt
where Zt =

n∑
r=1

wt,re
−ηtλt,r .

5

In this case we recovered a well known version of the exponentiated gradient (EG)
algorithm [3]. The set S can be further restricted. In Sec. 4 we describe an algorithm that
uses the function f of this example with a more restricted domain S defined as

S = {w|
n∑

j=1

wj = 1 , ∀j : wj ≥ ε} .

In App. B we describe an efficient algorithm for solving step (3) for this more complex
domain S.

3.1 Analysis

In this section we analyze our algorithmic framework. Specifically, we show that if the
opponent chooses σ-strongly convex functions w.r.t. f then the regret of the predictor is
logarithmic. First, we need the following lemma.

Lemma 3 Let f be a 1-strongly convex function w.r.t. a norm ‖ · ‖ over S and u be an
arbitrary vector in S. Then,

〈wt − u,λt〉 ≤
Bf (u‖wt)−Bf (u‖wt+1)

ηt
+ ηt

‖λt‖2
?

2
.

Proof Denote ∆t = Bf (u‖wt) − Bf (u‖wt+1). Expanding the definition of Bf we have
that

∆t = 〈u−wt+1,∇f(wt+1)−∇f(wt)〉+ Bf (wt+1‖wt) .

Since f is 1-strongly convex w.r.t. ‖ · ‖ we have that

∆t ≥ 〈u−wt+1,∇f(wt+1)−∇f(wt)〉+
1
2
‖wt+1 −wt‖2 . (3)

Let us denote by θt the term ∇f(wt)− ηtλt. Using the second part of Lemma 2 with θ set
to be θt and rewriting ∇f?(θt) as wt+1 (see step 3 above) we get that,

0 ≥ 〈u−∇f?(θt),θt −∇f(∇f?(θt))〉
= 〈u−wt+1,θt −∇f(wt+1)〉
= 〈u−wt+1,∇f(wt)− ηtλt −∇f(wt+1)〉 .

Rearranging terms we we obtain that

〈u−wt+1,∇f(wt+1)−∇f(wt)〉 ≥ ηt〈wt+1 − u,λt〉 .

Combining the above with Eq. (3) gives that

∆t ≥ ηt〈wt+1 − u,λt〉+
1
2
‖wt+1 −wt‖2

= ηt〈wt − u,λt〉 − 〈wt+1 −wt, ηtλt〉+
1
2
‖wt+1 −wt‖2 .

Applying the inequality

|〈v,θ〉| ≤ ‖v‖ ‖θ‖? =
1
2
‖v‖2 +

1
2
‖θ‖2

? −
1
2

(‖v‖ − ‖θ‖?)
2 ≤ 1

2
‖v‖2 +

1
2
‖θ‖2

? ,

6

which holds for all v and θ, we obtain that

∆t ≥ ηt〈wt − u,λt〉 −
1
2
‖wt+1 −wt‖2 − 1

2
‖ηtλt‖2

? +
1
2
‖wt+1 −wt‖2

= ηt〈wt − u,λt〉 −
η2

t

2
‖λt‖2

? .

Theorem 1 Let f be a 1-strongly convex function w.r.t. a norm ‖ · ‖ over S. Assume that
for all t, gt is a σ-strongly convex function w.r.t. f . Additionally, let L be a scalar such that
1
2‖λt‖2

? ≤ L for all t. Then, the following bound holds for all T ≥ 1,

T∑
t=1

gt(wt)−
T∑

t=1

gt(u) ≤ L

σ
(1 + log(T)) .

Proof From Lemma 3 we have that

〈wt − u,λt〉 ≤
Bf (u‖wt)−Bf (u‖wt+1)

ηt
+ ηt

‖λt‖2
?

2
. (4)

Since gt is σ-strongly convex w.r.t. f we can bound the left-hand side of the above inequal-
ity as follows,

〈wt − u,λt〉 ≥ gt(wt)− gt(u) + σBf (u‖wt) . (5)

Combining Eq. (4) with Eq. (5), and using the assumption 1
2‖λt‖2

? ≤ L we get that

gt(wt)− gt(u) ≤
(

1
ηt
− σ

)
Bf (u‖wt)−

1
ηt

Bf (u‖wt+1) + ηtL .

Summing over t we obtain

T∑
t=1

(gt(wt)− gt(u)) ≤
(

1
η1
− σ

)
Bf (u‖w1)−

(
1
ηT

)
Bf (u‖wT+1)+

T∑
t=2

Bf (u‖wt)
(

1
ηt
− 1

ηt−1
− σ

)
+ L

T∑
t=1

ηt .

Plugging the value of ηt in the above inequality, we obtain that the first and third summands
on the right-hand side of the inequality vanish and that the second summand is negative.
We therefore get,

T∑
t=1

(gt(wt)− gt(u)) ≤ L

T∑
t=1

ηt =
L

σ

T∑
t=1

1
t
≤ L

σ
(log(T) + 1) .

7

4 Regularized Loss Minimization

In this section we describe an application of our algorithmic framework from the previous
section for solving regularized loss minimization problems of the form given in Eq. (1).
For concreteness, we describe the usage of our framework for finding a solution for a clas-
sification problem with the hinge-loss and with `2 regularization. This problem was widely
studied and is known as the support vector machine (SVM) problem. The second setting we
discuss is logistic regression for classification with `1 regularization. We would like to note
though that our approach is clearly applicable to other learning problems such as regression
learning with other regularization functions that adhere with our setting.

Our first concrete derivation focuses on solving the SVM optimization problem, which
is defined as follows,

min
w∈Rn

σ

2
‖w‖2

2 +
1
m

m∑
i=1

max{0, 1− yi〈w,xi〉} , (6)

where for all i ∈ [m] we have (xi, yi) ∈ Rn × {−1,+1}. Denote by g(w) the objective
function in Eq. (6). Additionally, let S = {w : ‖w‖2 ≤ 1/

√
σ}. The following lemma

shows that the problem in Eq. (6) is equivalent to the problem.

min
w∈S

σ

2
‖w‖2

2 +
1
m

m∑
i=1

max{0, 1− yi〈w,xi〉} . (7)

Note that the sole difference between Eq. (6) and Eq. (7) is the additional restriction of w
to the domain S ⊂ Rn.

Lemma 4 The norm of the optimum of the optimization problem defined in Eq. (6) is
bounded above by 1/

√
σ.

Proof Let us denote the optimal solution of Eq. (6) by w?. The dual problem of the
optimization problem defined in Eq. (6) is

max
α∈[0,1/m]m

m∑
i=1

αi −
1
2σ
‖

m∑
i=1

αiyixi‖2 .

Let α? be an optimal solution of the dual problem. Since strong duality holds, we obtain
that at the optimum the dual objective and the primal objective coincide, that is,

σ

2
‖w?‖2 +

1
m

m∑
i=1

max{0, 1− yi〈w,xi〉} =
m∑

i=1

α?
i −

1
2σ
‖

m∑
i=1

α?
i yixi‖2 . (8)

In addition, at the optimum we have that w? = 1
σ

∑m
i=1 α?

i yixi. Plugging this equality into
Eq. (8) and rearranging terms yields

σ‖w?‖2 =
m∑

i=1

α?
i −

1
m

m∑
i=1

max{0, 1− yi〈w,xi〉} ≤ 1 .

8

We now turn to the description of the algorithm for solving Eq. (7) based on our frame-
work from Sec. 3. Initially, we set w1 to any vector in S. On iteration t of the algorithm, we
first choose a set It ⊆ [m]. Then, we replace the objective in Eq. (7) with an instantaneous
objective function,

gt(w) =
σ

2
‖w‖2 +

1
|It|

∑
i∈It

max{0, 1− yi〈w,xi〉} .

Note that gt is σ-strongly convex w.r.t. f(w) = 1
2‖w‖

2
2 (see Lemma 1). Next, we set the

learning rate ηt = 1/(σt) and update

wt+1 = min
w∈S

‖w − (wt − ηtλt)‖2 , (9)

where λt ∈ ∂gt(wt). For example, we can set

λt = σ wt −
1
|It|

∑
i:yi〈wt,xi〉<1

yi xi .

Assume that ‖xi‖ ≤ R for all i, then we have

‖λt‖ ≤ σ‖wt‖+ R ≤
√

σ + R .

Based on Example 3 and Thm. 1 we obtain the following corollary.

Corollary 1 Assume that for all i ∈ [m] the norm of xi is at most R. Let w1, . . . ,wT be
defined according to Eq. (9) and let u be an arbitrary vector in S. Then,

T∑
t=1

gt(wt) ≤
T∑

t=1

gt(u) +
(
√

σ + R)2

2σ
(1 + log(T)) .

If we set It = [m] for all t then gt(w) is exactly the objective of Eq. (7), which we
denoted by g(w). The convexity of g(w) implies that

g

(
1
T

T∑
t=1

wt

)
≤ 1

T

T∑
t=1

g(wt) .

Using the above inequality and Corollary 1, we immediately obtain the following corollary.

Corollary 2 Assume that the conditions stated in Corollary 1 hold and It = [m] for all t
and let w̄ = 1

T

∑T
t=1 wt. Then,

g (w̄) ≤ g(w?) +
(
√

σ + R)2 (1 + log(T))
2σ T

.

When It 6= [m], Corollary 2 no longer holds. The next theorem bridges this gap as it
implies that the same convergence rate still holds in expectation if we randomly choose a
stopping time.

Theorem 2 Assume that the conditions stated in Corollary 1 hold and for all t, It is chosen
i.i.d. from [m]. Additionally, let r be a random index uniformly distributed over [T]. Then,

EI1,...,IT
Er[g(wr)] ≤ g(w?) +

(
√

σ + R)2 (1 + log(T))
2σ T

.

9

For a proof, see [5].
The above theorem implies that, in expectation, the stochastic version of the algorithm

would converge as fast as the deterministic version. In the next theorem, whose proof is
also given in [5], we provide a concentration bound.

Theorem 3 Under the assumptions of Thm. 2. Let δ ∈ (0, 1). Then, with probability of at
least 1− δ over the choice of (I1, . . . , IT) and of the index r the following bound holds,

g(wr) ≤ g(w?) +
(
√

σ + R)2 (1 + log(T))
2σ T δ

.

Our second concrete derivation is for logistic regression with `1 regularization. For
simplicity, we assume here that the weights of the predcitor we learn are positive. As with
the SVM classification problem, we have a set of instance-label pairs (xi, yi) ∈ Rn ×
{−1,+1}. The regularized problem on hand now is defined as follows,

min
w∈S

σ

 n∑
j=1

wj log(wj) + log(n)

+
1
m

m∑
i=1

log
(
1 + e−yi〈w,xi〉

)
, (10)

where the domain S is defined as follows,

S =

w |
n∑

j=1

wj = 1 , ∀j : wj ≥ ε

 . (11)

The specific algorithm that we obtain for this setting follows the following steps. We start
with any vector in S for w1. In the absence of any prior knowledge, a sensible choice is the
vector whose components are all equal to 1/n. Following the very scheme employed for
SVM, on iteration t of the algorithm, we first choose a set It ⊆ [m]. Then, we replace the
objective in Eq. (10) with an instantaneous objective function,

gt(w) = σ

 n∑
j=1

wj log(wj) + log(n)

+
1
|It|

∑
i∈It

log
(
1 + e−yi〈w,xi〉

)
.

We now use Lemma 1 again to get that gt is σ-strongly convex with respect to f(w) =∑
j wj log(wj) + log(n). As in the case of SVM, we set ηt = 1/(σt) while performing the

update that matches f(w). From example 4 this update takes the form,

wt+1 = arg min
w∈S

n∑
j=1

wj log
(wj

eθj

)
, (12)

where θj = log(wt,j)− ηtλt,j . As in the previous example, λt ∈ ∂gt(wt). Note that since
gt(w) is differentiable over S we can simply set,

λt,j = σ(log(wt,j) + 1)− 1
|It|

∑
i∈It

yixi,j

1 + eyi〈wt,xi〉
.

From Lemma 8 we know that f is 1-strongly convex with respect to the `1 norm. Therefore,
we need to bound the `∞ norm of λt in order to be able to use Thm. 1. The fact that wt ∈ S
implies that | log(wt,j)| ≤ log(1/ε). Thus, if we assume that ‖xi‖∞ ≤ R for all i, we get
that,

‖λt‖∞ ≤ σ(log(1/ε) + 1) + R .

We can now apply Thm. 1 again to obtain the following corollary.

10

Corollary 3 Assume that for all i ∈ [m] the `∞ norm of xi is at most R. Let w1, . . . ,wT

be defined according to Eq. (12) and let u be an arbitrary vector in S. Then,

T∑
t=1

gt(wt) ≤
T∑

t=1

gt(u) +
(σ(log(1/ε) + 1) + R)2

2σ
(1 + log(T)) .

When It 6= [m] we also obtain corollaries analogous to the corollaries obtained for SVM. It
remains to show that the update given by Eq. (12) can be computed efficiently. We describe
an efficient solution for Eq. (12) in App. B.

A Technical Lemmas and Proofs

The following lemma states that if λ ∈ ∂f(w) then Fenchel-Young inequality holds with
equality.

Lemma 5 Let f be a closed and convex function and let ∂f(v) be its differential set at v.
Then, for all λ′ ∈ ∂f(v) we have, f(v) + f?(λ′) = 〈λ′,v〉 .

Proof Since λ′ ∈ ∂f(v), we know that f(w) − f(v) ≥ 〈λ′,w − v〉 for all w ∈ S.
Equivalently

〈λ′,v〉 − f(v) ≥ sup
w∈S

(
〈λ′,w〉 − f(w)

)
.

The right-hand side of the above equals to f?(λ′) and thus,

〈λ′,v〉 − f(v) ≥ f?(λ′) ⇒ 〈λ′,v〉 − f?(λ′) ≥ f(v) . (13)

The assumption that f is closed and convex implies that f is the Fenchel conjugate of f?.
Thus,

f(v) = sup
λ

(〈λ,v〉 − f?(λ)) ≥ 〈λ′,v〉 − f?(λ′) .

Combining the above with Eq. (13) gives,

〈λ′,v〉 − f?(λ′) ≥ f(v) and f(v) ≥ 〈λ′,v〉 − f?(λ′) .

Therefore, each of the two inequalities above must hold with equality which concludes the
proof.

Lemma 6 Let f be a closed and σ-strongly convex function over S with respect to a norm
‖ · ‖ . Then, f? is differentiable and ∇f?(θ) = arg maxw∈S 〈w,θ〉 − f(w).

Proof Since f is strongly convex the maximizer of maxw∈S〈w,θ〉 − f(w) exists and is
unique (see [1] page 19). Denote it by π(θ). Since f? is a convex function, to prove the
lemma it suffices to show that ∂f?(θ) = {π(θ)}. From the definition of π(θ) we clearly
have that

∀u ∈ S, 〈π(θ),θ〉 − f(π(θ)) ≥ 〈u,θ〉 − f(u) ,

and thus θ ∈ ∂f(π(θ)). Therefore, using Lemma 5 we obtain that

〈π(θ),θ〉 = f(π(θ)) + f?(θ) . (14)

11

Let λ be an arbitrary vector and to simplify our notation denote w = π(θ) and u = π(λ).
Based on Eq. (14) we have that,

f?(λ)− f?(θ) = 〈u,λ〉 − f(u)− 〈w,θ〉+ f(w)
= f(w)− f(u)− 〈w − u,λ〉+ 〈w,λ− θ〉
≥ 〈w,λ− θ〉 ,

which implies that w ∈ ∂f?(θ). Finally, we show that w is the only element in ∂f?(θ) and
thus w = ∇f?(θ). Let w0 ∈ ∂f?(θ). Thus f?(θ) = 〈w0,θ〉 − f(w0) = 〈w,θ〉 − f(w).
But the uniqueness of the solution of maxw∈S〈w,θ〉 − f(w) implies that w0 = w.

The following lemma yields another criterion for strong convexity.

Lemma 7 Assume that f is differential. Then f is strongly convex iff

〈∇f(u)−∇f(v),u− v〉 ≥ ‖u− v‖2 . (15)

Proof Assume f is strongly convex. Then,

〈∇f(u),v − u〉 ≤ f(u)− f(v)− 1
2
‖u− v‖2

〈∇f(v),u− v〉 ≤ f(v)− f(u)− 1
2
‖v − u‖2

Adding these two inequalities we obtain Eq. (15). Assume now that Eq. (15) holds. Define
h(α) = f(v + α(u− v)), and denote w = v + α(u− v). Then,

h′(α)− h′(0) = 〈∇f(w)−∇f(v),u− v〉 =
1
α
〈∇f(w)−∇f(v),w − v〉 .

Using Eq. (15) we obtain that

h′(α)− h′(0) ≥ 1
α
‖w − v‖2 = α‖u− v‖2 .

Therefore,

f(u)− f(v)− 〈∇f(v),u− v〉 = h(1)− h(0)− h′(0)

=
∫ 1

0
(h′(α)− h′(0))dα ≥ 1

2
‖u− v‖2 .

Lemma 8 The function f(w) =
∑n

i=1 wi log(wi
1/n) is strongly convex over the probabilis-

tic simplex, S = {w ∈ Rn
+ : ‖w‖1 = 1}, with respect to the `1 norm.

Proof Based on Lemma 7, it suffices to show that for all u,v ∈ S we have

〈∇f(u)−∇f(v),u− v〉 ≥ ‖u− v‖2
1 . (16)

12

The i’th element of ∇f(u) is log(ui) + 1 + log(n) and thus we need to show that∑
i

(log(ui)− log(vi))(ui − vi) ≥ ‖u− v‖2
1 .

Let xi = (log(ui)−log(vi))(ui−vi). Note that the terms log(ui)−log(vi) and ui−vi share
the same sign thus xi ≥ 0. Denote I = {i ∈ [n] : xi > 0}. Based on the Cauchy-Schwartz
inequality, we can bound the right-hand side of the above as follows

‖u− v‖2
1 =

(∑
i

|ui − vi|

)2

≤

(∑
i∈I

√
xi
|ui − vi|√

xi

)2

≤

∑
j∈I

xj

 (∑
i∈I

|ui − vi|2

xi

)

=

∑
j∈I

(log(uj)− log(vj)) (uj − vj)

 (∑
i∈I

ui − vi

log(ui)− log(vi)

)

= 〈∇f(u)−∇f(v),u− v〉

(∑
i∈I

ui − vi

log(ui)− log(vi)

)
.

Therefore, to prove that Eq. (16) holds it suffices to show that∑
i∈I

ui − vi

log(ui)− log(vi)
≤ 1. (17)

To do so, we next show that for all i

ui − vi

log(ui)− log(vi)
≤ ui + vi

2
. (18)

This inequality immediately implies that Eq. (17) holds since by summing over i ∈ I we
get that the left hand side of Eq. (17) is bounded above by (‖u‖1 + ‖v‖1)/2 = 1. The
left-hand side of Eq. (18) is positive and thus we can assume without loss of generality that
ui ≥ vi. Fix vi and consider the function

φ(u) = 2(u− vi)− (u + vi)(log(u)− log(vi)) .

Clearly, φ(vi) = 0. In addition, the derivative of φ is negative,

φ′(u) = 2− log(u)− u + vi

u
+ log(vi) = 1 + log(

vi

u
)− vi

u
≤ 0 ,

where to derive the last inequality we used the inequality log(a) ≤ a − 1. Therefore, φ is
monotonically non-increasing and thus φ(u) < 0 in (vi, 1]. We have therefore shown that
Eq. (18) holds and our proof is concluded.

13

B Efficient Solution of Eq. (12)

In this section we describe an efficient solution to the following problem,

arg min
w∈S

n∑
j=1

wj log
(wj

eθj

)
where S =

w |
n∑

j=1

wj = 1 , ∀j : wj ≥ ε

 . (19)

For brevity, we denote uj = eθj . We start by writing the Lagrangian of the above con-
strained optimization problem,

L =
n∑

j=1

wj log(wj/uj) + θ

 n∑
j=1

wj − 1

−
n∑

j=1

βj(wj − ε) ,

Here, θ is an unconstrained Lagrange multiplier and {βj} is a set of non-negative Lagrange
multipliers for the inequality constraints, wj ≥ ε. By taking the derivative of L with respect
to ui, we get that at the optimum the following should hold,

log(wi)− log(ui) + 1 + θ − βi = 0 .

After rearranging terms, taking the exponent of the above equation, we can rewrite the
above equation as follows,

wi = uie
βi/Z ,

where Z = exp−(θ + 1). Since, θ is a Lagrange multiplier for the constraint
∑

j uj = 1
we can also write Z as,

Z =
n∑

j=1

uje
βj .

From KKT conditions we know that at the saddle point (w?, θ?, {β?
i }) of the Lagrangian L

the following holds,
β?

i (w?
i − ε) = 0 .

Therefore, if the i’th coordinate of the optimal solution is strictly greater than ε we must
have that β?

i = 0. In the case where w?
i = ε the Lagrange multiplier β?

i is simply con-
strained to be non-negative, β?

i ≥ 0. Thus, the optimal solution can be rewritten in the
following distilled form,

w?
i =

{
ui/Z w?

i > ε
ε otherwise

, (20)

where Z is set such that
∑

i w
?
i = 1. The lingering question is what components of u?

we need to set to ε. The following Lemma paves the way to an efficient procedure for
determining the components of w? which are equal ε.

Lemma 9 Let w? denote optimal solution of Eq. (19) and let i and j be two indices such
that, (i) ui ≤ uj and (ii) w?

j = ε, then w?
i = ε.

Proof Assume by contradiction that w?
i > ε. We now use the explicit form of the optimal

solution and write,
w?

i = uie
β?

i /Z and w?
j = uje

β?
j /Z .

14

Input:
Sorted vector u ∈ Rn

+(uj ≤ uj+1)
minimal value constraint ε > 0

Initialize:
Z =

∑n
i=1 ui

For l = 1, . . . , n:
If ul/Z ≥ ε Then

l? = l − 1
Break

EndIf
Z = Z + εZ−ul

1−lε

Output: w?

w?
j = uj/Z for j = l? + 1, . . . , n

w?
j = ε for j = 1, . . . , l?

Figure 1: Pseudo-code of the efficient projection algorithm.

Since w?
j = ε we get that β?

j ≥ 0 while the fact that w?
i > ε implies that β?

i = 0. (See also
Eq. (20).) Combining these two facts we get that,

w?
i = ui/Z ≤ uj/Z ≤ uje

β?
j /Z = w?

j = ε .

Thus, w?
i ≤ ε which stands in contradiction to the assumption w?

i > ε.

The above lemma implies that we if sort the elements of u in an ascending order, then
there exists and index l? such that the optimal solution w? takes the following form,

w? = (ε, . . . , ε,
ul?+1

Z
,
ul?+2

Z
, . . . ,

un

Z
) .

We are therefore left with the task of finding l?. We do so by examining all possible
values for l ∈ {1, . . . , n}. Given a candidate value for l?, denoted l, we need to check the
feasibility of the solution induced by the assumption l? = l. We next calculate Z for this
choice of l. Since the role of Z is to enforce the constraint

∑
j w?

j = 1 we get that,

Z =

∑n
j=l+1 uj

1− lε
.

If l indeed induces a feasible solution then for all j > l we must have that uj/Z > ε.
Since we assume that the vector u is sorted in an ascending order it is enough to verify that
ul+1/Z > ε. In case that we find more than a single feasible solution, it is easy to verify that
the smallest candidate for l? should be taken. Last, we would like to note that the condition
ul+1/Z > ε can be efficiently calculated if we simply keep track of partial sums. Each
partial sum is of the form

∑n
j=l+1 uj and is computed from its predecessor

∑n
j=l uj . The

pseudo-code describing the entire algorithm is given in Fig.1.

15

References

[1] J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization. Springer,
2006.

[2] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online
convex optimization. In COLT, 2006.

[3] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–64, January 1997.

[4] R.T. Rockafellar and R.J.B Wets. Variational Analysis. Springer, New York, 1998.

[5] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In ICML, 2007.

16

	Introduction
	Mathematical Background
	A Logarithmic Regret Algorithmic Framework for Strongly Convex Repeated Games
	Analysis

	Regularized Loss Minimization
	Technical Lemmas and Proofs
	Efficient Solution of Eq. (12)

