
A Primal-Dual Perspective of

Online Learning Algorithms⋆

Shai Shalev-Shwartz1 and Yoram Singer1,2

1 School of Computer Sci. & Eng., The Hebrew University, Jerusalem 91904, Israel
2 Google Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043, USA

{shais,singer}@cs.huji.ac.il

Abstract. We describe a novel framework for the design and analysis of
online learning algorithms based on the notion of duality in constrained
optimization. We cast a sub-family of universal online bounds as an opti-
mization problem. Using the weak duality theorem we reduce the process
of online learning to the task of incrementally increasing the dual objec-
tive function. The amount by which the dual increases serves as a new
and natural notion of progress for analyzing online learning algorithms.
We are thus able to tie the primal objective value and the number of
prediction mistakes using the increase in the dual.

1 Introduction

Online learning of linear classifiers is an important and well-studied domain in
machine learning with interesting theoretical properties and practical applica-
tions [6,7,10,11,14,15,17]. An online learning algorithm observes instances in a
sequence of trials. After each observation, the algorithm predicts a yes/no (+/−)
outcome. The prediction of the algorithm is formed by a hypothesis, which is a
mapping from the instance space into {+1,−1}. This hypothesis is chosen by
the online algorithm from a predefined class of hypotheses. Once the algorithm
has made a prediction, it receives the correct outcome. Then, the online algo-
rithm may choose another hypothesis from the class of hypotheses, presumably
improving the chance of making an accurate prediction on subsequent trials. The
quality of an online algorithm is measured by the number of prediction mistakes
it makes along its run.

In this paper we introduce a general framework for the design and analysis
of online learning algorithms. Our framework emerges from a new view on rel-
ative mistake bounds [15,19], which are the common thread in the analysis of
online learning algorithms. A relative mistake bound measures the performance
of an online algorithm relatively to the performance of a competing hypothesis.
The competing hypothesis can be chosen in hindsight from a class of hypothe-
ses, after observing the entire sequence of examples. For example, the original
mistake bound of the Perceptron algorithm [22], which was first suggested over

⋆ A preliminary version of this paper appeared at the 19th Annual Conference on
Learning Theory under the title “Online learning meets optimization in the dual”

50 years ago, was derived by using a competitive analysis, comparing the algo-
rithm to a linear hypothesis which achieves a large margin on the sequence of
examples. Over the years, the competitive analysis techniques were refined and
extended to numerous prediction problems by employing complex and varied
notions of progress toward a good competing hypothesis. The flurry of online
learning algorithms sparked unified analyses of seemingly different online algo-
rithms by Littlestone, Warmuth, Kivinen and colleagues [15,18]. Most notably
is the work of Grove, Littlestone, and Schuurmans [11] on a quasi-additive fam-
ily of algorithms, which includes both the Perceptron [22] and the Winnow [18]
algorithms as special cases. A similar unified view for regression was derived by
Kivinen and Warmuth [15,16]. Online algorithms for linear hypotheses and their
analyses became more general and powerful by employing Bregman divergences
for measuring the progress toward a good hypothesis [10,11,14].

We propose an alternative view of relative mistake bounds which is based
on the notion of duality in constrained optimization. Online mistake bounds
are universal in the sense that they hold for any possible predictor in a given
hypothesis class. We therefore cast the universal bound as an optimization prob-
lem. Specifically, the objective function we cast is the sum of an empirical loss
of a predictor and a complexity term for that predictor. The best predictor in
a given class of hypotheses, which can only be determined in hindsight, is the
minimizer of the optimization problem. In order to derive explicit quantitative
mistake bounds we make an immediate use of the fact that dual objective lower
bounds the primal objective. We therefore switch to the dual representation
of the optimization problem. We then reduce the process of online learning to
the task of incrementally increasing the dual objective function. The amount
by which the dual increases serves as a new and natural notion of progress. By
doing so we are able to tie together the primal objective value and the number
of prediction mistakes using the increase in the dual objective. The end result is
a general framework for designing online algorithms and analyzing them in the
mistake bound model.

We illustrate the power of our framework by studying two schemes for in-
creasing the dual objective. The first performs a fixed-size update which is based
solely on the last observed example. We show that this dual update is equiv-
alent to the primal update of the quasi-additive family of algorithms [11]. In
particular, our framework yields the tightest known bounds for several known
quasi-additive algorithms such as the Perceptron and Balanced Winnow. The
second update scheme we study moves further in the direction of optimization
techniques in several accounts. In this scheme the online learning algorithm may
modify its hypotheses based on multiple past examples. Moreover, the update
itself is constructed by maximizing, or approximately maximizing, the increase
in the dual. This second approach still entertains the same mistake bound of
the first scheme. Moreover, it also serves as a vehicle for deriving new online
algorithms which attain regret bounds with respect to the hinge-loss.

This paper is organized as follows. In Sec. 2 we begin with a formal pre-
sentation of online learning. Our new framework for designing and analyzing

online learning algorithms is introduced in Sec. 3. Next, in Sec. 4, we derive the
family of quasi-additive algorithms [11] by utilizing the newly introduced frame-
work and show that our analysis produces the best known mistake bounds for
these algorithms. In Sec. 5 we derive new online learning algorithms based on
our framework. We analyze the performance of these algorithms in the mistake
bound model as well as in the regret bound model in which the cumulative loss
of the online algorithm is compared to the cumulative loss of any competing hy-
pothesis. We recap and draw connections to earlier analysis techniques in Sec. 6.
Possible extensions of our work and concluding remarks are given in Sec. 7.

2 Problem Setting

In this section we introduce the notation used throughout the paper and formally
describe our problem setting. We denote scalars with lower case letters (e.g. x
and ω), and vectors with bold face letters (e.g. x and ω). The set of non-negative
real numbers is denoted by R+. For any k ≥ 1, the set of integers {1, . . . , k} is
denoted by [k].

Online learning of binary classifiers is performed in a sequence of trials. At
trial t the algorithm first receives an instance xt ∈ R

n and is then required to
predict the label associated with that instance. We denote the prediction of the
algorithm on the t’th trial by ŷt. For simplicity and concreteness we focus on
online learning of binary classifiers, namely, we assume that the labels are in
{+1,−1}. After the online learning algorithm has predicted the label ŷt, the
true label yt ∈ {+1,−1} is revealed and the algorithm pays a unit cost if its
prediction is wrong, that is, if yt 6= ŷt. The ultimate goal of the algorithm is
to minimize the total number of prediction mistakes it makes along its run. To
achieve this goal, the algorithm may update its prediction mechanism after each
trial so as to be more accurate in later trials.

In this paper, we assume that the prediction of the algorithm at each trial is
determined by a margin-based linear hypothesis. Namely, there exists a weight
vector ωt ∈ Ω ⊂ R

n where ŷt = sign(〈ωt,xt〉) is the actual binary prediction and
|〈ωt,xt〉| is the confidence in this prediction. The term yt 〈ωt,xt〉 is called the
margin of the prediction and is positive whenever yt and sign(〈ωt,xt〉) agree.
We evaluate the performance of a weight vector ω on a given example (x, y)
in one of two ways. First, we may check whether the prediction based on ω

results in a mistake which amounts to checking whether y = sign(〈ω,x〉) or not.
Throughout this paper, we use M to denote the number of prediction mistakes
made by an online algorithm on a sequence of examples (x1, y1), . . . , (xm, ym).
The second way we evaluate the predictions of an hypothesis is by using the
hinge-loss function, defined as,

ℓγ
(
ω; (x, y)

)
=

{
0 if y 〈ω,x〉 ≥ γ
γ − y 〈ω,x〉 otherwise

. (1)

The hinge-loss penalizes an hypothesis for any margin less than γ. Additionally,
if y 6= sign(〈ω,x〉) then ℓγ(ω; (x, y)) ≥ γ. Therefore, the cumulative hinge-loss

suffered over a sequence of examples upper bounds γM . Throughout the paper,
when γ = 1 we use the shorthand ℓ(ω; (x, y)).

As mentioned before, the performance of an online learning algorithm is
measured by the cumulative number of prediction mistakes it makes along its
run on a sequence of examples (x1, y1), . . . , (xm, ym). Ideally, we would like to
think of the labels as if they are generated by an unknown yet fixed weight
vector ω⋆ such that yi = sign(〈ω⋆,xi〉) for all i ∈ [m]. Moreover, in the utopian
case where the cumulative hinge-loss of ω⋆ on the entire sequence is zero, the
predictions that ω⋆ makes are all correct and with a confidence level of at least
γ. In this case, we would like M , the number of prediction mistakes of our online
algorithm, to be independent of m, the number of examples. Usually, in such
cases, M is upper bounded by F (ω⋆) where F : Ω → R is a function which
measures the complexity of ω⋆. In the more realistic case there does not exist
ω⋆ which correctly predicts the labels of all observed instances. In this case, we
would like the online algorithm to be competitive with any fixed hypothesis ω.
Formally, let λ and C be two positive scalars. We say that our online algorithm
is (λ,C)-competitive with the set of vectors in Ω, with respect to a complexity
function F and the hinge-loss ℓγ , if the following bound holds,

∀ ω ∈ Ω, λM ≤ F (ω) + C
m∑

i=1

ℓγ(ω; (xi, yi)) . (2)

The parameter C controls the trade-off between the complexity of ω (measured
through F) and the cumulative hinge-loss of ω. The parameter λ is introduced
for technical reasons that are provided in the next section. The main goal of this
paper is to develop a general paradigm for designing online learning algorithms
and analyze them in the mistake bound framework given in Eq. (2).

3 A primal-dual view of online learning

In this section we describe our methodology for designing and analyzing online
learning algorithms for binary classification problems. Let us first rewrite the
bound in Eq. (2) as follows,

λM ≤ min
ω∈Ω

P(ω) , (3)

where P(ω) denotes the right-hand side of Eq. (2). Let us also denote by P⋆ the
right-hand side of Eq. (3). To motivate our construction we start by analyzing
a specific online learning algorithm, denoted Follow-the-Regularized-Leader or
FoReL in short. Intuitively, we view the online learning task as incrementally
solving the optimization problem minω P(ω). However, while P(ω) depends on
the entire sequence of examples {(x1, y1), . . . , (xm, ym)}, the online algorithm is
confined to use on trial t only the first t − 1 examples of the sequence. To do
this, the FoReL algorithm simply ignores the examples {(xt, yt), . . . , (xm, ym)}

as they are not provided to the algorithm on trial t. Formally, let Pt(ω) denotes
the following instantaneous objective function,

Pt(ω) = F (ω) + C
t−1∑

i=1

ℓγ(ω; (xi, yi)) .

The FoReL algorithm sets ωt to be the optimal solution of Pt(ω)
over ω ∈ Ω. Since Pt(ω) depends only on the sequence of examples
{(x1, y1), . . . , (xt−1, yt−1)} it indeed adheres with the main requirement of an
online algorithm. The role of this algorithm is to emphasize the difficulties en-
countered in employing a primal algorithm and to pave the way to our ap-
proach which is based on the dual representation of the optimization problem
minω P(ω). The FoReL algorithm can be viewed as a modification of the follow-
the-leader algorithm, originally suggested by Hannan [12]. In contrast to follow-
the-leader algorithms, our regularized version of the algorithm also takes the
complexity of ω in the form of F (ω) into account when constructing its pre-
dictors. We would like to note that in general follow-the-leader algorithms may
not attain a mistake bound while under the assumptions outlined below the
regularized version of follow-the-leader does yield a mistake bound. Before pro-
ceeding to the mistake bound analysis, we also would like to mention that when
F (ω) = 1

2‖ω‖2
2 the algorithm reduces to a simple (and rather inefficient) adap-

tation of the SVM algorithm to an online setting (see also. [17,5,23]). When the
loss function is the squared-loss and the task is linear regression, the FoReL
algorithm is similar to the well known online ridge regression algorithm.

We now turn to the analysis of the FoReL algorithm. First, we need to intro-
duce additional notation. Let (x1, y1), . . . , (xm, ym) be a sequence of examples
and denote by E the set of trials on which the algorithm made a prediction
mistake,

E = {t ∈ [m] : sign(〈ωt,xt〉) 6= yt} . (4)

To remind the reader, the number of prediction mistakes of the algorithm is
denoted by M and thus M = |E|. To prove a bound of the form given in Eq. (3)
we associate a scalar, denoted vt, with each weight vector ωt. Intuitively, the
scalar vt measures the quality of ωt in predicting the labels. To ensure proper
normalization of the quality assessment we require that the quality value of the
initial weight vector is 0 and that the quality values of all weight vectors is at
most P⋆. The following lemma states that a sufficient condition for proving a
mistake bound is that the sequence of quality values v1, . . . , vm+1 corresponding
to the weight vectors ω1, . . . ,ωm+1 never decreases.

Lemma 1. Assume that an arbitrary online learning algorithm is presented with
the sequence of examples (x1, y1), . . . , (xm, ym) and let E be as defined in Eq. (4).
Assume in addition that we can associate a scalar vt with each weight vector ωt

constructed by the online algorithm such that the following requirements hold:

i. v1 = 0 ii. v1 ≤ v2 ≤ . . . ≤ vm+1 iii. vm+1 ≤ P⋆ .

Then, λM ≤ P⋆ where

λ =
1

M

∑

t∈E
(vt+1 − vt) .

Proof. Combining the three requirements and using the definition of λ give that

P⋆ ≥ vm+1 = vm+1 − v0 =

m∑

t=1

(vt+1 − vt) ≥
∑

t∈E
(vt+1 − vt) = M λ .

⊓⊔

The above lemma underlines a method for obtaining mistake bounds by finding a
sequence of quality values v1, . . . , vm+1 each of which is associated with a weight
vector used for prediction. These values should satisfy the conditions stated in
the lemma in order to prove mistake bounds. We now follow this line of proof
for analyzing the FoReL algorithm by defining vt = Pt(ωt).

Since the hinge-loss ℓγ(ω; (xt, yt)) is non-negative we get that for any vector
ω, Pt(ω) ≤ Pt+1(ω) and in particular Pt(ωt+1) ≤ Pt+1(ωt+1). The optimality
of each vector ωt with respect to Pt(ω) implies that Pt(ωt) ≤ Pt(ωt+1). Com-
bining the last two inequalities we get that Pt(ωt) ≤ Pt+1(ωt+1) and therefore
the second requirement in Lemma 1 holds. Assuming that minω F (ω) = 0, it is
immediate to show that P1(ω1) = 0 (first requirement). Finally, by definition we
have that Pm+1(ωm+1) = P⋆ and thus the third requirement holds as well. We
have thus obtained a (hypothetical) mistake bound of the from given in Eq. (3).
While this approach seems aesthetic, it is rather difficult to reason about the
increase in the instantaneous primal objective functions due to the change in ω

and thus λ might be excessively small and the bound is vacuous. In addition, we
obtained the monotonicity property of the sequence P1(ω1), . . . ,Pm+1(ωm+1)
(second requirement in Lemma 1) by relying on the optimality of each ωt with
respect to Pt(ω). The optimality of ωt is a specific property of the FoReL algo-
rithm and does not hold for many other online learning algorithms. These diffi-
culties surface the alternative dual-based approach which we explore throughout
this paper.

The notion of duality, commonly used in optimization theory, plays an impor-
tant role in obtaining lower bounds for the minimal value of the primal objective
(see for example [2]). As we show in the sequel, the benefit in using the dual
representation of P(ω) is two fold. First, we are able to express the increase in
the instantaneous dual representation of P(ω) through a simple recursive update
of the dual variables. Second, dual objective values are natural candidates for
obtaining lower bounds for the optimal primal objective values. Thus, by switch-
ing to the dual representation we obtain a monotonically increasing sequence of
dual objective values each of which is bounded above by P⋆.

We now present an alternative view of the FoReL algorithm based on the
notion of duality. This dual view would pave the way for analyzing online learning
algorithms by setting vt in accordance to the instantaneous dual objective values.

We formally show in Appendix A that the dual of the problem minω P(ω) is

max
α∈[0,C]m

D(α) where D(α) = γ

m∑

i=1

αi − G

(
m∑

i=1

αi yi xi

)

. (5)

The function G is the Fenchel conjugate [21] of the function F and is defined as
follows,

G(θ) = sup
ω∈Ω

〈ω,θ〉 − F (ω) . (6)

The weak duality theorem states that the maximum value of the dual problem
is upper-bounded by the minimum value of the primal problem. Therefore, any
value of the dual objective is upper bounded by the optimal primal objective.
That is, for any α ∈ [0, C]m we have that D(α) ≤ P⋆. Building on the definition
of the instantaneous primal objective values, we denote by Dt the dual objective
value of Pt which amounts to,

Dt(α) = γ

t−1∑

i=1

αi − G

(
t−1∑

i=1

αi yi xi

)

. (7)

The instantaneous dual value Dt can also be cast as a mapping from [0, C]t−1

into the reals. However, in contrast to the definition of the primal values, the
instantaneous dual value Dt can be expressed as a specific assignment of the
dual variables for the full dual problem D. Specifically, we obtain that for
(α1, . . . , αt−1) ∈ [0, C]t−1 the following equality immediately holds,

Dt((α1, . . . , αt−1)) = D((α1, . . . , αt−1, 0, . . . , 0)) .

Thus, the FoReL algorithm can alternatively be viewed as the process of finding
a solution for the dual problem, maxα∈[0,C]m D(α), where at the end of trial t
the online algorithm seeks a maximizer for the dual function confined to the first
t variables,

max
α∈[0,C]m

D(α) s.t. ∀i>t, αi = 0 . (8)

Analogous to our construction of instantaneous primal solutions, we construct
a sequence of instantaneous assignments for the dual variables which we denote
by α1,α2, . . . ,αm+1 where αt+1 is the maximizer of Eq. (8). The property of
the dual objective that we utilize is that it can be optimized in a sequential
manner. Namely, if on trial t we ground αt

i to zero for i ≥ t then D(αt) does not
depend on examples which have not been observed yet. Throughout the paper
we assume that the supremum of G(θ) as defined in Eq. (6) is attainable. We
show in Appendix A, that the primal vector ωt can be derived from the dual
vector αt through the equality,

ωt = argmax
ω∈Ω

(〈ω,θt〉 − F (ω)) where θt =

m∑

i=1

αt
i yi xi . (9)

Furthermore, when F (ω) is convex, then strong duality holds and thus ωt as
given in Eq. (9) is indeed the optimum of Pt(ω) provided that αt is the optimum
of Eq. (8).

We have thus presented two views of the FoReL algorithm through the prism
of incremental optimization. In the first view the algorithm constructs a sequence
of primal solutions ω1, . . . ,ωm+1 while in the second the algorithm constructs a
sequence of dual solutions which we analogously denote by α1, . . . ,αm+1. The
weak duality immediately enables us to cast an upper bound on the sequence of
the corresponding dual values, ∀t,D(αt) ≤ P⋆, without resorting to or relying
on optimality of any of the instantaneous dual solutions. Thus, by setting vt =
D(αt) we immediately get that the third requirement from Lemma 1 holds.
Next we show that the first requirement from Lemma 1 holds as well. Recall
that F (ω) is our “complexity” measure for the vector ω. A natural assumption
on F is that minω∈Ω F (ω) = 0. The intuitive meaning of this assumption is that
the complexity of the “simplest” hypothesis in Ω is zero. Since α1 is the zero
vector we get that

v1 = D(α1) = 0 − G(0) = inf
ω∈Ω

F (ω) = 0 , (10)

which implies that the first requirement from Lemma 1 hold. The monotonic-
ity requirement from Lemma 1 follows directly from the fact that αt+1 is the
optimum of D(α) over [0, C]t × {0}m−t while αt ∈ [0, C]t × {0}m−t.

In general, any sequence of feasible dual solutions α1, . . . ,αm+1 can define
an online learning algorithm by setting ωt according to Eq. (9). Naturally, we
require that αt

i = 0 for all i ≥ t since otherwise ωt would depend on future
examples which have not been observed yet. A key advantage of the dual repre-
sentation is that we no longer need to find an optimal solution for each instan-
taneous dual problem Dt. To prove that an online algorithm which operates on
the dual variables entertains the mistake bound given in Eq. (3) it suffices to
require that D(αt+1) ≥ D(αt). We show in the coming sections that few well
studied algorithms can be analyzed using our primal-dual perspective. We do
so by showing that the algorithms guarantee a lower bound on the increase in
the dual objective function on trials with prediction mistakes. Thus, all of the
algorithms we analyze confine with the mistake bound given in Eq. (3) and dif-
fer in their choice of F and in their mechanism for increasing the dual objective
function.

To recap, we now describe a template algorithm for online classification which
incrementally increases the dual objective function. Our algorithm starts with
the trivial dual solution α1 = 0. On trial t, we use αt for defining the weight
vector ωt as given in Eq. (9). Next, we use ωt for predicting the label of xt,
ŷt = sign(〈ωt,xt〉). Finally, in case of a prediction mistake we find a new dual
solution αt+1. This new dual solution is obtained by keeping the suffix of m− t
elements of αt+1 at zero. The monotonicity requirement we imposed implies
that the new value of the dual objective, D(αt+1), can only increase and cannot
be smaller than D(αt). Moreover, the average increase in the dual objective
over erroneous trials should be strictly positive. In the next section we provide

Input: Complexity function F (ω) with domain Ω ;

Trade-off Parameter C ; hinge-loss parameter γ

Initialize: α1 = 0

For t = 1, 2, . . . , m

define ωt = argmax
ω∈Ω

〈ω, θt〉 − F (ω) where θt =
P

t−1

i=1
αt

i yi xi

receive an instance xt and predict its label: ŷt = sign(〈ωt,xt〉)

receive correct label yt

find αt+1 ∈ [0, C]t × {0}m−t such that D(αt+1) −D(αt) ≥ 0

Fig. 1. The template algorithm for online classification

sufficient conditions which guarantee a minimal increase of the dual objective
whenever the algorithm makes a prediction mistake. Our template algorithm is
summarized in Fig. 1. We conclude this section by providing a general mistake
bound for any algorithm which belongs to our framework.

Theorem 1. Let (x1, y1), . . . , (xm, ym) be a sequence of examples. Assume that
an online algorithm of the form given in Fig. 1 is run on this sequence with a
function F : Ω → R which satisfies minω∈Ω F (ω) = 0. Let E = {t ∈ [m] : ŷt 6=
yt} and denote by λ the average increase of the dual objective over the trials in
E,

λ =
1

|E|
∑

t∈E

(
D(αt+1) −D(αt)

)
.

Then,

λM ≤ inf
ω∈Ω

(

F (ω) + C

m∑

t=1

ℓγ(ω; (xt, yt))

)

.

Proof. For all t ∈ [m + 1] define vt = D(αt). We prove the claim by applying
Lemma 1 using the above assignments for the sequence v1, . . . , vm+1. To do
so, we need to show that the three requirements given in Lemma 1 hold. As
in Eq. (10), the first requirement follows from the fact that α1 = 0 and our
assumption that minω∈Ω F (ω) = 0. The second requirement follows directly
from the definition of the online algorithm in Fig. 1. Finally, the last requirement
is a direct consequence of the weak duality theorem. ⊓⊔

The bound in Thm. 1 becomes useless when λ is excessively small. In the next
section we analyze a few known online algorithms. We show that these algorithms
tacitly impose sufficient conditions on F and on the sequence of input examples.
These conditions guarantee a minimal increase of the dual objective which result
in meaningful mistake bounds for each of the algorithm we discuss.

4 Analysis of Quasi-additive Online algorithms

In the previous section we introduced a general framework for online learning
based on the notion of duality. In this section we analyze the family of quasi-
additive online algorithms described in [11,15,16] using the newly introduced
dual view. This family includes several known algorithms such as the Perceptron
algorithm [22], Balanced-Winnow [11], and the family of p-norm algorithms [10].

Building on the exposition provided in the previous section we cast the on-
line learning problem as the task of incrementally increasing the dual objective
function given by Eq. (5). We show in this section that all quasi-additive online
learning algorithms can be viewed as employing the same procedure for incre-
menting Eq. (5). The core difference between the algorithms we analyze distills
to the complexity function F which leads to different forms of the function G. We
exploit this common ground by providing a unified analysis and mistake bounds
to all the above algorithms. The bounds we obtain are as tight as the bounds
that were derived for each algorithm individually yet our proofs are simpler than
prior proofs.

To guarantee an increase in the dual as given by Eq. (5) on erroneous trials
we devise the following procedure. First, if on trial t the algorithm did not make
a prediction mistake we do not change α and thus set αt+1 = αt. If on trial t
there was a prediction mistake, we change only the t’th component of α and set
it to C. Formally, for t ∈ E the new vector αt+1 is defined as,

αt+1
i =

{
αt

i if i 6= t
C if i = t

(11)

This form of update implies that the components of α are either zero or C.

In order to continue with the derivation and analysis of online algorithms, we
now provide sufficient conditions for the update given by Eq. (11). The conditions
guarantee an increase of the dual objective for all t ∈ E which is substantial
enough to yield a mistake bound. Let t ∈ E be a trial on which α was updated.
From the definition of D(α) we get that the change in the dual objective due to
the update is,

D(αt+1) −D(αt) = γ C − G(θt + C ytxt) + G(θt) , (12)

where, to remind the reader, θt =
∑t−1

i=1 αt
i yi xi. Throughout this section we

assume that G is twice differentiable. (This assumption indeed holds for the
algorithms we analyze.) We denote by g(θ) the gradient of G at θ and by H(θ)
the Hessian of G, that is, the matrix of second order derivatives of G with
respect to θ. We would like to note in passing that the vector function g(·) is
often referred to as the link function (see for instance [1,10,15,16]).

Using Taylor expansion of G around θt, we get that there exists θ for which,

G(θt + C ytxt) = G(θt) + C yt 〈xt, g(θt)〉 +
1

2
C2 〈xt,H(θ)xt〉 . (13)

Plugging the above equation into Eq. (12) gives that,

D(αt+1) −D(αt) = C (γ − yt〈xt, g(θt)〉) −
1

2
C2 〈xt,H(θ)xt〉 . (14)

We next show that ωt = g(θt) and therefore the second term in the right-hand of
Eq. (13) is negative. Put another way, moving θt infinitesimally in the direction
of ytxt decreases G. We then cap the amount by which the second order term can
influence the dual value. To show that ωt = g(θt) note that from the definition
of G and ωt, we get that for all θ the following holds,

G(θt)+〈ωt,θ−θt〉 = 〈ωt,θt〉−F (ωt)+〈ωt,θ−θt〉 = 〈ωt,θ〉−F (ωt) . (15)

In addition, G(θ) = maxω∈Ω〈ω,θ〉 − F (ω) ≥ 〈ωt,θ〉 − F (ωt). Combining
Eq. (15) with the last inequality gives the following,

G(θ) ≥ G(θt) + 〈ωt,θ − θt〉 . (16)

Since Eq. (16) holds for all θ it implies that ωt is a sub-gradient of G at θt.
In addition, since G is differentiable its only possible sub-gradient at θt is its
gradient, g(θt), and thus ωt = g(θt). The simple form of the update and the
link between ωt and θt through g can be summarized as the following simple
yet general quasi-additive update:

If ŷt = yt Set θt+1 = θt and ωt+1 = ωt

If ŷt 6= yt Set θt+1 = θt + Cytxt and ωt+1 = g(θt+1) .

Getting back to Eq. (14) we get that,

D(αt+1) −D(αt) = C (γ − yt〈ωt,xt〉) −
1

2
C2 〈xt,H(θ)xt〉 . (17)

Recall that we assume that t ∈ E and thus yt〈xt,ωt〉 ≤ 0. In addition, we later
on show that ∀x ∈ Ω : 〈x,H(θ)x〉 ≤ 1 for all the particular choices of G we
analyze under certain assumptions on the norm of x. We therefore can state the
following corollary.

Corollary 1. Let G be a twice differentiable function whose domain is R
n. De-

note by H the Hessian of G and assume that for all θ ∈ R
n and for all xt (t ∈ E)

we have that 〈xt,H(θ)xt〉 ≤ 1. Then, under the conditions of Thm. 1 the update
given by Eq. (11) ensures that,

λ ≥ γ C − 1

2
C2 .

We now provide concrete analyses for specific complexity functions F . For
each choice of F we derive the specific form the update given by Eq. (11) takes
and briefly discuss the implications of the resulting mistake bounds.

Example 1 (Perceptron). The Perceptron algorithm [22] can be derived from
Eq. (11) by setting F (ω) = 1

2‖ω‖2, Ω = R
n, and γ = 1. Note that the conjugate

function of F for this choice is, G(θ) = 1
2‖θ‖2. Therefore, the gradient of G

at θt is g(θt) = θt, which implies that ωt = θt. The update ωt+1 = g(θt+1)
thus amounts to, ωt+1 = ωt + C yt xt, which is a scaled version of the well
known Perceptron update. We now case the common assumption that the norm
of all the instances is bounded and in particular we assume that ‖xt‖2 ≤ 1 for all
t ∈ [m]. Since the Hessian of G is the identity matrix we get that, 〈xt,H(θ)xt〉 =
〈xt,xt〉 ≤ 1. Therefore, we obtain the following mistake bound,

(C − 1

2
C2)M ≤ min

ω∈Rn

1

2
‖ω‖2 + C

m∑

i=1

ℓ(ω; (xi, yi)) . (18)

On a first sight the above bound does not seem to take the form of one of the
known mistake bounds for the Perceptron algorithm. We next show that since
we are free to choose the constant C, which acts here as a simple scaling, we do
obtain the tightest mistake bound that is known for the Perceptron. Note that
on trial t, the hypothesis of the Perceptron can be rewritten as,

ωt = C
∑

i∈E:i<t

yi xi .

The above form implies that the predictions of the Perceptron algorithm do not
depend on the actual value of C so long as C > 0. Therefore, we can choose C
to be the minimizer of the bound given in Eq. (18) and rewrite the bound as,

∀ω ∈ R
n, M ≤ min

C∈(0,2)

(
1

C(1 − 1
2C)

)(

1

2
‖ω‖2 + C

m∑

i=1

ℓ(ω; (xi, yi))

)

,

(19)
where the domain (0, 2) for C ensures that the bound does not become vacuous.
Finding the optimal value of C for the right-hand side of the above and plugging
this value back into the equation yields the following theorem.

Theorem 2. Let (x1, y1), . . . , (xm, ym) be a sequence of example such that
‖xi‖ ≤ 1 for all i ∈ [m] and assume that this sequence is presented to the
Perceptron algorithm. Let ω be an arbitrary vector in R

n and define L =
∑m

i=1 ℓ(ω; (xi, yi)). Then, the number of prediction mistakes of the Perceptron
is upper bounded by,

M ≤ L +
1

2
‖ω‖2

(

1 +
√

1 + 4L/‖ω‖2
)

.

The proof of the theorem is given in appendix B. We would like to note that
this bound is identical to the best known mistake bound for the Perceptron
algorithm (see for example [10]). However, our proof technique is vastly different.
Furthermore, the new technique also enables us to derive mistake and loss bounds
for new algorithms such as the ones discussed in Sec. 5.

Example 2 (Balanced Winnow). We now analyze a version of the Winnow
algorithm called Balanced-Winnow [11] which is also closely related to the
Exponentiated-Gradient algorithm [15]. For brevity we refer to the algorithm
we analyze simply as Winnow. To derive the Winnow algorithm we choose,

F (ω) =

n∑

i=1

ωi log

(
ωi

1/n

)

, (20)

and Ω = ∆n =
{
ω ∈ R

n
+ :
∑n

i=1 ωi = 1
}
. The function F is the relative entropy

between the probability vector ω and the uniform vector (1
n , . . . , 1

n). The relative
entropy is non-negative and measures the entropic divergence between two distri-
butions. It attains a value of zero whenever the two vectors are equal. Therefore,
the minimum value of F (ω) is zero and is attained for ω = (1

n , . . . , 1
n). The con-

jugate of F is the logarithm of the sum of exponentials (see for example [2][page
93]),

G(θ) = log

(

1

n

n∑

i=1

exp(θi)

)

. (21)

The k’th element of the gradient of G is,

gk(θ) =
exp(θk)

∑n
i=1 exp(θi)

.

Note that g(θ) is a vector in the n-dimensional probability simplex and therefore
ωt = g(θt) ∈ Ω. The k’th element of ωt+1 can be rewritten using a multiplicative
update rule,

ωt+1,k =
1

Zt
exp(θt,k + Cytxt,k) =

ωt,k

Zt
exp(Cytxt,k) , (22)

where Zt is a normalization constant which ensures that ωt+1 is in the probability
simplex.

To analyze the algorithm we need to show that 〈xt,H(θ)xt〉 ≤ 1. The next
lemma provides us with a general tool for bounding 〈xt,H(θ)xt〉. The lemma
gives conditions on G which imply that its Hessian is diagonal dominant. A
similar analysis of the Hessian was given in [11].

Lemma 2. Assume that G(θ) can be written as,

G(θ) = Ψ

(
n∑

r=1

φ(θr)

)

,

where φ and Ψ are twice differentiable scalar functions. Denote by φ′, φ′′, Ψ ′, Ψ ′′

the first and second order derivatives of Ψ and φ. If Ψ ′′(
∑

r φ(θr)) ≤ 0 for all θ

then,

〈x , H(θ)x〉 ≤ Ψ ′

(
n∑

r=1

φ(θr)

)
n∑

i=1

φ′′(θi)x2
i .

The proof of this lemma is given in Appendix B.
We now rewrite G (θ) from Eq. (21) as G(θ) = Ψ (

∑n
r=1 φ(θr)) where

Ψ(s) = log(s/n) and φ(θ) = exp(θ). Note that Ψ ′(s) = 1/s, Ψ ′′(s) = −1/s2, and
φ′′(θ) = exp(θ). We thus get that,

Ψ ′′

(
∑

r

φ(θr)

)

= −
(
∑

r

exp(θr)

)−2

≤ 0 .

Therefore, the conditions of Lemma 2 hold and we get that,

〈x , H(θ)x〉 ≤
n∑

i=1

exp(θi)
∑n

r=1 exp(θr)
x2

i ≤ max
i∈[n]

x2
i .

Thus, if ‖xt‖∞ ≤ 1 for all t ∈ E then we can apply corollary 1 and get the
following mistake bound,

(

γ C − 1

2
C2

)

M ≤ min
ω∈Ω

(
n∑

i=1

ωi log(ωi) + log(n) + C
m∑

i=1

ℓγ(ω; (xi, yi))

)

.

Since
∑n

i=1 ωi log(ωi) ≤ 0, if we set C = γ, the above bound reduces to,

M ≤ 2

(

log(n)

γ2
+ min

ω∈Ω

1

γ

m∑

i=1

ℓγ(ω; (xi, yi))

)

.

The bound above is typical of online algorithms which update their prediction
mechanism in a multiplicative form as given by Eq. (22). The excessive loss
suffered by the online algorithm above over the loss of any competitor scales
logarithmically with the number of features.

Example 3 (p-norm algorithms). We conclude this section with the analysis of
the family of p-norm algorithms [10,11]. This family can be viewed as a bridge
between the Perceptron algorithm and the Winnow algorithm. As we show in
the sequel, the Perceptron algorithm is a special case of a p-norm algorithm,
obtained by setting p = 2, while the Winnow algorithm can be approximated by
setting p to a very large number. Formally, let p, q ≥ 1 be two scalars such that
1
p + 1

q = 1. Define,

F (ω) =
1

2
‖ω‖2

q =
1

2

(
n∑

i=1

|ωi|q
)2/q

,

and let Ω = R
n. The conjugate function of F in this case is, G(θ) = 1

2‖θ‖2
p

(for a proof see [2], page 93) and the i’th element of the gradient of G is,

gi(θ) =
sign(θi) |θi|p−1

‖θ‖p−2
p

. (23)

To analyze the p-norm algorithm we again use Lemma 2 and rewrite G(θ) as

G(θ) = Ψ

(
n∑

r=1

φ(θr)

)

,

where Ψ(a) = 1
2a2/p and φ(a) = |a|p. Note that the first and second order deriva-

tives are,

Ψ ′(a) =
1

p
a2/p−1 , Ψ ′′(a) =

1

p

(
2

p
− 1

)

a2/p−2 , φ′′(a) = p(p− 1)sign(a)|a|p−2 .

Therefore, if p ≥ 2 then the conditions of Lemma 2 hold and we get that,

〈x , H(θ)x〉 ≤ 1

p

(
‖θ‖p

p

) 2
p
−1

p (p − 1)

n∑

i=1

sign(θi)|θi|p−2x2
i . (24)

Using Holder inequality with the dual norms p
p−2 and p

2 we get that,

n∑

i=1

sign(θi)|θi|p−2x2
i ≤

(
n∑

i=1

|θi|(p−2) p

p−2

) p−2

p
(

n∑

i=1

x
2 p

2

i

) 2
p

= ‖θ‖p−2
p ‖x‖2

p .

Combining the above with Eq. (24) gives,

〈x , H(θ)x〉 ≤ (p − 1)‖x‖2
p .

If we impose the condition that ‖x‖p ≤
√

1/(p − 1) then 〈x , H(θ)x〉 ≤ 1. Recall
that θt for the update we employ can be written as,

θt = C
∑

i∈E:i<t

yi xi .

Denote by v =
∑

i∈E:i<t yi xi. Clearly, this vector does not depend on C. Since
hypothesis ωt is defined from θt as given by Eq. (23) we can rewrite the j’th
component of ωt as,

C
sign(vj) |vj |p−1

‖v‖p−2
p

.

Thus, similar to Example 1, the predictions of a p-norm algorithm which uses
this update do not depend on the specific value of C as long as C > 0. We now
combine this fact with the assumption that ‖x‖p ≤

√

1/(p − 1), and apply again
corollary 1, to obtain that

∀ω ∈ Ω, M ≤ min
C∈(0,2)

1

C − 1
2C2

(

1

2
‖ω‖2

q + C

m∑

i=1

ℓ(ω; (xi, yi))

)

.

As in the proof of Thm. 2, we can substitute C with the minimizer of the above
bound and obtain a general bound for the p-norm algorithm,

M ≤ L +
1

2
‖ω‖2

q

(

1 +
√

1 + 4L/‖ω‖2
q

)

,

where as before L =
∑m

i=1 ℓ(ω; (xi, yi)).

5 Deriving and analyzing new online learning algorithms

In the previous section we described the family of quasi-additive online learning
algorithms. The algorithms are based on the simple update procedure defined
in Eq. (11) which leads to a conservative increase of the dual objective since
we modify a single variable of α by setting it to a constant value. Furthermore,
such an update takes place solely on trials for which there was a prediction
mistake (t ∈ E). The purpose of this section is two fold. First, we describe a
broader and, in practice, more powerful update procedures which, based on the
actual predictions, may modify multiple elements of α. Second, we provide an
alternative analysis in the form of regret bounds, rather than mistake bounds.
The motivation for the new algorithms is as follows. Intuitively, update schemes
which yield larger increases of the dual objective value on each online trial are
likely to “consume” more of the upper bound on the total possible increase in
the dual as set by P⋆. Thus, they are in practice likely to suffer smaller number
of mistakes. Moreover, setting the dual variables in accordance to the loss that
is suffered on each trial allows us to derive bounds on the cumulative loss of
the online algorithms rather than merely bounding the number of mistakes the
algorithms make. We start this section with a very brief overview of the regret
model in which the loss of the online algorithm is compared to the loss of any
fixed competitor. We then describe a few new online update procedures and
analyze them in the regret model.

The mistake bounds presented thus far are inherently deficient as they pro-
vide a bound on the number of mistakes through the hinge-loss of the competitor.
In contrast, regret bounds measure the performance of the online algorithm and
the competitor using the same loss function. The regret of an online algorithm
compared to a fix predictor, denoted ω, is defined to be the following difference,

1

m

m∑

i=1

ℓγ(ωi; (xi, yi)) −
1

m

m∑

i=1

ℓγ(ω; (xi, yi)) .

The right-hand summand in the above expression reflects the loss that is suffered
by using a fix predictor ω for all i ∈ [m]. In particular, the vector ω can be set in
hindsight to be the vector which minimizes the cumulative loss on the observed
sequence of m instances. Naturally, the problem of finding the vector ω which
minimizes the right-hand summand above depends on the entire sequence of
examples. The regret thus reflects the amount of excess loss suffered by the
online algorithm due lack of knowledge of the entire sequence. In this paper we
derive regret bounds which are tailored to the hinge-loss function. The bounds
follow again our primal-dual perspective which incorporates a complexity term
for ω through a function F : Ω → R. The regret bound we present in this section
takes the form,

∀ω ∈ Ω,
1

m

m∑

i=1

ℓγ(ωi; (xi, yi)) −
1

m

m∑

i=1

ℓγ(ω; (xi, yi)) ≤
√

2F (ω)

m
. (25)

Thus, this bound implies that the regret of the online algorithm with respect to
any vector whose complexity grows slower than m approaches zero as m goes to
infinity.

5.1 Aggressive quasi-additive online algorithms

The update scheme we described in Sec. 4 for increasing the dual modifies α

only on trials on which there was a prediction mistake (t ∈ E). The update
is performed by setting the t’th element of α to C and keeping the rest of the
variables intact. This simple update can be enhanced in several ways. First, note
that while setting αt+1

t to C guarantees a sufficient increase in the dual, there
might be other values αt+1

t which would lead to even larger increases of the
dual. Furthermore, we can also update α on trials on which the prediction was
correct so long as the loss is non-zero. Last, we need not restrict our update to
the t’th element of α. We can instead update several dual variables as long as
their indices are in [t].

We now describe and briefly analyze a few new updates which increase the
dual more aggressively. The goal here is to illustrate the power of the approach
and the list of new updates we outline is by no means exhaustive. We start by
describing an update which sets αt+1

t adaptively, depending on the loss suffered
on trial t. This improved update constructs αt+1 as follows,

αt+1
i =

{
αt

i if i 6= t
min {ℓγ(ωt; (xt, yt)) , C} if i = t

. (26)

In contrast to the previous update which modified α only when there was a
prediction mistake, the new update modifies α whenever ℓγ(ωt; (xt, yt)) > 0. As
before, the above update can be used with various complexity functions for F ,
yielding different aggressive quasi-additive algorithms. This more aggressive ap-
proach leads to a more general loss bound while still attaining the same mistake
bound of the previous section. The mistake bound still holds since whenever the
algorithm makes a prediction mistake its loss is at least γ.

We now provide a unified analysis for all algorithms which are based on the
update given by Eq. (26). To do so we define the following function,

µ(x) =
1

C

(

min{x,C}
(

x − 1

2
min{x,C}

))

.

The function µ(·) is invertible on R+ and we denote its inverse function by
µ−1(·). A straightforward calculation gives that

µ−1(x) =

{

x + 1
2C if x ≥ 1

2C√
2C x otherwise

.

The functions µ(·) and µ−1(·) are illustrated in Fig. 2. Applying µ to losses
smaller than C lessens the extent of the loss. Therefore, we also refer to µ as

0 1 2 3 4
0

1

2

3

4

C=0.1
C=1
C=2

0 1 2 3 4
0

1

2

3

4

C=0.1
C=1
C=2

Fig. 2. The mitigating function µ(x) (left) and its inverse (right) for different values
of C.

a mitigating function. Note, though, that µ(·) and µ−1(·) become very similar
to the identity function for small values of C. The following theorem provides a
bound on the cumulative sum of ℓγ(ωt, (xt, yt)).

Theorem 3. Let (x1, y1), . . . , (xm, ym) be a sequence of examples and let F :
Ω → R be a complexity function which satisfies minω∈Ω F (ω) = 0. Assume we
run an online algorithm whose update is based on Eq. (26) while using G as the
conjugate function of F . If G is twice differentiable and its Hessian satisfies,
〈xt,H(θ)xt〉 ≤ 1 for all θ ∈ R

n and t ∈ [m], then the following bound holds,

∀ω ∈ Ω,
1

m

m∑

t=1

ℓγ(ωt; (xt, yt)) ≤ µ−1

(

1

m

m∑

t=1

ℓγ(ω; (xt, yt)) +
F (ω)

C m

)

.

Proof. We first show that

m∑

t=1

µ (ℓγ(ωt; (xt, yt))) ≤
m∑

t=1

ℓγ(ω; (xt, yt)) +
F (ω)

C
, (27)

by bounding D(αm+1) from above and below. The upper bound D(αm+1) ≤ P⋆

follows again from weak duality theorem. To derive a lower bound, note that the
conditions stated in the theorem imply that D(α1) = 0 and thus D(αm+1) =
∑m

t=1

(
D(αt+1) −D(αt)

)
. Define τt = min{ℓγ(ωt; (xt, yt)), C} and note that

the sole difference between the updates given by Eq. (26) and Eq. (11) is that
τt replaces C. Thus, the derivation of Eq. (17) in Sec. 4 can be repeated almost
verbatim with τt replacing C to obtain that,

D(αt+1) −D(αt) ≥ τt (γ − yt〈ωt,xt〉) −
1

2
τ2
t . (28)

Summing over t ∈ [m], rewriting τt as the minimum between C and the loss at
time t, and rearranging terms while using the definition of µ(·), we get that,

D(αm+1) =

m∑

t=1

(
D(αt+1) −D(αt)

)
≥ C

m∑

t=1

µ (ℓγ(ωt; (xt, yt))) .

Comparing the lower and upper bounds on D(αm+1) and rearranging terms
yield the inequality provided in Eq. (27). We now divide Eq. (27) by m and use
the fact that µ is convex to get that

µ

(

1

m

m∑

t=1

ℓγ(ωt; (xt, yt))

)

≤ 1

m

m∑

t=1

µ (ℓγ(ωt; (xt, yt)))

≤ 1

m

m∑

t=1

ℓγ(ω; (xt, yt)) +
F (ω)

mC
.

(29)

Finally, since both sides of the above inequality are non-negative and since µ−1

is a monotonically increasing function we can apply µ−1 to both sides of Eq. (29)
to get the bound stated in the theorem. ⊓⊔

While the bound stated in the above theorem is no longer in the form of a
mistake bound, it nonetheless does not provide a regret bound of the form given
by Eq. (25). We now show that the bound of Thm. 3 can indeed be distilled and
cast in the form of a loss bound, similar to Eq. (25), by choosing appropriately
the parameter C. To do so, we note that µ−1(x) ≤ x + 1

2C. Therefore, the
right-hand side of the bound in Thm. 3 is bounded above by

1

m

m∑

t=1

ℓγ(ω; (xt, yt)) +
F (ω)

C m
+

1

2
C . (30)

Note that C both divides the complexity function F (ω) as well as appears as

an independent term. Choosing C such that the terms F (ω)
C m and 1

2C yields the
tightest loss bound for this update, we obtain the following corollary.

Corollary 2. Assume we run an online algorithm whose update is based on
Eq. (26) under the same conditions stated in Thm. 3 while choosing

C =

√

2F (ω)

m
,

then,

1

m

m∑

t=1

ℓγ(ωt; (xt, yt)) −
1

m

m∑

t=1

ℓγ(ω; (xt, yt)) ≤
√

2F (ω)

m
.

We can also derive a mistake bound from Eq. (29). To do so, we note that
ℓγ(ωt; (xt, yt)) ≥ γ whenever the algorithm makes a prediction mistake. Since µ

is a monotonically increasing function and since ℓγ(·) is a non-negative function,
we get that

∑

t∈E
µ(γ) ≤

m∑

t=1

µ (ℓγ(ωt; (xt, yt))) ≤ F (ω)

C
+

m∑

t=1

ℓγ(ω; (xt, yt)) .

Thus, we obtain the mistake bound,

M ≤ P⋆

λ
where λ ≥ C µ(γ) =

{
γ C − 1

2 C2 if C ≤ γ
1
2 γ2 if C > γ

. (31)

Our focus thus far was on an update which modifies a single dual variable,
albeit aggressively. We now examine another implication of our analysis which
suggests the modification of multiple dual variables on each trial. A simple argu-
ment presented below implies that this broader family of updates also achieves
the mistake and regret bounds above.

5.2 Updating multiple dual variables

The new update given in Eq. (26) is advantageous over the previous conservative
update given in Eq. (11) since in addition to the same increase in the dual on
trials with a prediction mistake it is also guaranteed to increase the dual by
µ(ℓ(·)) on the rest of the trials. Yet, both updates are confined to the modification
of a single dual variable on each trial. We nonetheless can increase the dual more
dramatically by modifying multiple dual variables on each trial. We now outline
two form of updates which modify multiple dual variables on each trial.

In the first update scheme we optimize the dual over a set of dual variables
It ⊆ [t] which includes t. Given It, we set αt+1 to be,

αt+1 = argmax
α∈[0,C]m

D(α) s.t. ∀i /∈ It, αi = αt
i . (32)

This more general update also achieves the bound of Thm. 3 and the minimal
increase in the dual as given by Eq. (31). To see this, note that the requirement
that t ∈ It implies,

D(αt+1) ≥ max
{
D(α) : α ∈ [0, C]m and ∀i 6= t, αi = αt

i

}
. (33)

Thus the increase in the dual D(αt+1) − D(αt) is guaranteed to be at least as
large as the increase due to the previous updates. The rest of the proof of the
bound is literally the same.

Let us examine a few choices for It. Setting It = [t] for all t gives the FoReL
algorithm we mentioned in Sec. 3. This algorithm makes use of all the examples
that have been observed and thus is likely to make the largest increase in the
dual objective on each trial. It does require however a full-blown optimization
procedure. In contrast, Eq. (32) can be solved analytically when we employ the
smallest possible set, It = {t}, with F (ω) = 1

2‖ω‖2. In this case αt+1
t turns

out to be the minimum between C and ℓ(ωt; (xt, yt))/‖xt‖2. This algorithm was
described in [7] and belongs to a family of Passive Aggressive algorithms. The
mistake bound that we obtain as a by product in this paper is however superior
to the one in [7]. Naturally, we can interpolate between the minimal and maximal
choices for It by setting the size of It to a predefined value k and choosing, say,
the last k observed examples as the elements of It. For k = 1 and k = 2 we can
solve Eq. (32) analytically while gaining modest increases in the dual. The full
power of the update is unleashed for large values of k. However, Eq. (32) cannot
be solved analytically and requires the usage of numerical QP solvers based on,
for instance, interior point methods.

The second update scheme modifies multiple dual variables on each trial
as well, alas it does not require solving an optimization problem with multiple
variables. Instead, we perform kt mini-updates each of which focuses on a single
variable from the set [t]. Formally, let i1, . . . , ikt

be a sequence of indices such
that i1 = t and ij ∈ [t] for all j ∈ [kt]. We define a sequence of dual solutions in
a recursive manner as follows. We start by setting α̂

0 = αt and then perform a
sequence of single variable updates of the form,

α̂
j = argmax

α∈[0,C]m
D(α) s.t. ∀p 6= ij , α̂j

p = α̂j−1
p .

Finally, we update αt+1 = α̂
kt . In words, we first decide on an ordering of the

dual variables that defined ωt and incrementally increase the dual by fixing all
the dual variables but the current one that is considered. For this variable we
find the optimal solution of the constrained dual. The first dual variable we
update is αt thus ensuring that the first step in the row of updates is identical
to the Passive Aggressive update which was mentioned above. Indeed, note that
for kt = 1 this update is identical to the update given in Eq. (32) with It = {t}.
Since at each operation we can only increase the dual we immediately conclude
that Thm. 3 holds for this composite update scheme as well. The main advantage
of this update is its simplicity since each operation involves optimization over a
single variable which can be solved analytically. The increase in the dual due to
this update is closely related to the so called row action methods in optimization
(see for example [4]).

6 On the connection to previous analyses

The main contribution of this paper is the introduction of a framework for the
design and analysis of online prediction algorithms. There exist though volu-
minous amounts of work that employ different approaches for the analysis of
online algorithms. In this section, we draw a few connections to earlier analysis
techniques by modifying the primal problem defined on the right hand side of
Eq. (2). Our modifications naturally lead to modified dual problems. We then
analyze the increase in the modified duals to draw connections to prior work and
analyses.

To remind the reader, in order to obtain a mistake bound of the from given
in Eq. (3) we associated a quality value, vt, with each weight vector ωt. We
then analyzed the progress of the online algorithm by monitoring the difference

∆t
def

= vt+1 − vt. Our quality values are based on the dual objective values of
the primal problem,

min
ω

P(ω) where P(ω) = F (ω) + C

m∑

i=1

(γ − yi〈ω,xi〉)+ .

Concretely, we set vt = D(αt) and use the increase in the dual as our notion
of progress. Furthermore, the mistake and regret bounds above were derived by
reasoning about the increase in the dual due to prediction mistakes.

Most if not all previous work analyzed online algorithms by measuring the
quality of ωt based on the correlation or distance between ωt and a fixed (yet
unknown to the online algorithm) competitor, denoted here by u. For example,
Novikoff’s analysis of the Perceptron [20] is based on the inner product between
u and the current prediction ωt, vt = 〈ωt,u〉. Another quality measure, which
has been vastly used in previous analyses of online algorithms, is based on the
squared Euclidean distance, vt = ‖ωt−u‖2 (see for example [1,10,15,16] and the
references therein). We show in the sequel that we can represent these previous
definitions of vt as an instantaneous value of a dual objective by modifying the
primal problem.

The first simple modification of the primal problem that we present replaces
the single margin parameter γ with trial dependent parameters γ1, . . . , γm. Each
trial dependent margin parameter, γi, is set in accordance to example i and the
fixed competitor u. Formally, let u be a fixed competitor and set γi = yi〈u,xi〉.
We now define the loss on trial t to be the hinge-loss for a target margin value
of γt. With this modification on hand we obtain the following primal problem,

P(ω) = F (ω) + C
m∑

i=1

(γi − yi〈ω,xi〉)+

= F (ω) + C

m∑

i=1

(yi〈u,xi〉 − yi〈ω,xi〉)+ .

By construction, the loss suffered by u on each trial i is zero since the margin u

attains is exactly γi. Thus, the primal objective attained by u consists solely of
the complexity term of u, F (u). Since P(u) upper bounds the optimal value of
the primal we get that,

min
ω

P(ω) ≤ P(u) = F (u) .

Moving to the dual of this newly introduced primal problem, we get that the
dual of the aforementioned primal problem is

D(α) =

m∑

i=1

γiαi − G(θ) where θ =

m∑

i=1

αiyixi .

Note that the mere difference between the above dual form and the dual of the
original problem as described by Eq. (5) distills to replacing the fixed margin
value γ with a trial dependent one γi. Since γi = yi〈u,xi〉, we can further rewrite
the dual as follows,

D(α) = 〈u,

m∑

i=1

αiyixi〉 − G(θ) = 〈u,θ〉 − G(θ) . (34)

We now embark on a specific connection to prior work by examining the case
where F (ω) = 1

2‖ω‖2. For this choice of F , the Fenchel conjugate G amounts to
G(θ) = 1

2‖θ‖2 and we get that the dual further simplifies to the following form,

D(α) = 〈u,θ〉 − 1

2
‖θ‖2 = − 1

2
‖θ − u‖2 +

1

2
‖u‖2 .

The change in the value of the dual objective due to a change in the dual variables
from αt to αt+1 amounts to,

∆t = D(αt+1) −D(αt) =
1

2

(
‖θt − u‖2 − ‖θt+1 − u‖2

)
.

Furthermore, the specific choice of F implies that ωt = θt (see also the analysis
of the Perceptron algorithm in Sec. 4). Thus, the change in the dual can be
written solely in terms of the primal vectors ωt, ωt+1 and the competitor u,

∆t =
1

2

(
‖ωt − u‖2 − ‖ωt+1 − u‖2

)
.

We thus ended up with the notion of progress which corresponds to the quality
measure vt = ‖ωt − u‖2.

Before proceeding to deriving the next quality measure from our framework,
we would like to underscore the fact that our primal-dual perspective readily
leads to a mistake bound for this choice of primal problem. Concretely, since
minω∈Ω

1
2‖ω‖2 = 0, the initial vector ω1, which is obtained by setting all the

dual variables α1
i to zero, corresponds to a dual objective function whose value

is zero. Combining the form of the increase in the dual with the fact that the
minimum of the primal is bounded above by F (u) = 1

2‖u‖2 we get that,

m∑

t=1

(
‖ωt − u‖2 − ‖ωt+1 − u‖2

)
≤ ‖u‖2 . (35)

If we now use the Perceptron’s update, ωt+1 = ωt + C yt xt we get that the left
hand side of Eq. (35) further upper bounds the following expression,

∑

t∈E
(2C yt〈u,xt〉 − C2 ‖xt‖2) . (36)

As in the original mistake bound proof of the Perceptron, let us assume that
the the norm of the competitor u is 1 and that it classifies the entire sequence

correctly with a margin of at least γ. Thus yt〈u,xt〉 ≥ γ for all t. Assume in
addition that all the instances reside in a ball of radius R we get that Eq. (36)
is bounded below by

M
(
2C γ − C2R2

)
= M C

(
2γ − C R2

)
.

Choosing C = γ/R2 and recalling Eq. (35) we obtain the well known mistake
bound of the Perceptron,

M
γ

R2

(

2 γ − γ

R2
R2
)

≤ ‖u‖2 = 1 ⇒ M ≤
(

R

γ

)2

.

To recap, we have shown that a simple modification of the primal problem leads
to a notion of progress that amounts to the change in the distance between the
competitor and the primal vector that is used for prediction. We also illustrated
that our framework can be used again to derive a mistake bound by casting a
simple bound on the primal objective function, and bounding from below the
increase in the dual.

Next, we show that Novikoff’s measure of quality, vt = 〈ωt,u〉, employed in
the analysis of the Perceptron [20] can be obtained from our framework by a
different choice of F . Our starting point is again the choice of trial-dependent
hinge-loss which resulted the following bound,

m∑

t=1

∆t ≤ F (u) . (37)

Next, note that for the purpose of our analysis we are free to choose the com-
plexity function F in hindsight. In particular, we use the predictors constructed
by the online algorithm in the definition of F . Let us defer the specific form of
F and initially define it in the following, rather abstract, form, F (ω) = U ‖ω‖.
In addition, we keep using the trial-dependent margin losses. The dual objective
thus again takes the form given by Eq. (34), namely, D(α) = 〈u,θ〉−G(θ). The
Fenchel conjugate of the 2-norm is a barrier function (see again [2]). Concretely,
for our choice of F we get that its Fenchel conjugate is,

G(θ) =

{
0 ‖θ‖ ≤ U
∞ otherwise

.

Therefore, we get that D(α) = 〈θ,u〉 so long as θ is inside the ball of radius U
and otherwise D(α) = −∞. In addition, let us choose ωt = θt for all t ∈ [T]
(Note that here we do not use the definition of ωt as in Eq. (9). Nevertheless,
our general primal-dual framework does not rely on this particular choice.) To
ensure that G(θt) is finite we now define U to be maxt∈[T] ‖ωt‖ and thus D(αt) =
〈ωt,u〉 for all t ∈ [T]. These specific choices of F and U imply that the increase
in the dual objective takes the following simple form,

∆t = D(αt+1) −D(αt) = 〈ωt+1,u〉 − 〈ωt,u〉 .

The reader familiar with the original mistake bound proof of the Perceptron
would immediately recognize the above term as the measure of progress used by
the proof. Indeed, plugging the Perceptron update in the above equation we get
that on trials with a prediction mistake ∆t is,

∆t = 〈ωt + ytxt,u〉 − 〈ωt,u〉 = yt〈xt,u〉 .

On the rest of the trials there is no change in the dual objective and thus ∆t =
0. We now assume, as in the original mistake bound proof of the Perceptron
algorithm, that the the norm of the competitor u is 1 and that it classifies the
entire sequence correctly with a margin of at least γ. The second assumption
translates to the classical lower bound,

m∑

t=1

∆t =
∑

t∈E
yt〈u,xt〉 ≥ Mγ .

From the mistake bound proof of the Perceptron we know that the norm of ωt

(which equals θt) is at most
√

MR where R is the radius of the ball encapsulating
all of the examples. We therefore get the following upper bound on the primal
objective,

P(u) = F (u) =
(

max
t

‖ωt‖
)

‖u‖ ≤
√

MR .

We now tie the lower bound on
∑

t ∆t with its upper bound using Eq. (37) to
get that,

Mγ ≤
m∑

t=1

∆t ≤ F (u) ≤
√

MR ⇒
√

M ≤ R

γ
,

which after squaring yields the celebrated Perceptron’s mistake bound.
We have thus shown that two well studied quality measures and their cor-

responding notions of progress can be derived and analyzed using the primal-
dual paradigm suggested in this paper. The core difference in the two analyses
amounts to two different choices of the complexity function F . We conclude
this section by drawing a connection between online methods that construct
their prediction as a sequence of instantaneous optimization problems and our
framework. We start by reviewing the notion of Bregman divergences.

A Bregman divergence [3] is defined via a strictly convex function F : Ω → R

defined on a closed, convex set Ω ⊆ R
n. A Bregman function F needs to satisfy

a set of constraints. We omit the description of the specific constraints and refer
the reader to [4]. The Bregman divergence is derived through the function F as
follows,

BF (ω||u) = F (ω) − (F (u) + 〈∇F (u), (ω − u)〉) .

That is, BF measures the difference between F at ω and its first-order Taylor
expansion about u, evaluated again at ω. Bregman divergences generalize some
commonly studied distance and divergence measures.

Kivinen and Warmuth [15] provided a general scheme for online learning. In
their scheme the predictor ωt+1 constructed at the end of trial t from the current

prediction ωt is defined as the solution to the following problem,

ωt+1 = argmin
ω∈Ω

BF (ω||ωt) + C ℓ
(
ω; (xt, yt)

)
. (38)

That is, the new predictor should maintain a small Bregman divergence to the
current predictor while attaining a small loss. The constant C mitigates between
these two, typically conflicting, requirements. We now show that when the loss
function is the hinge-loss, the problem defined by Eq. (38) can be viewed as
a special case of our framework. For the hinge-loss we can rewrite Eq. (38) as
follows,

min
ω∈Ω,ξt∈R+

BF (ω||ωt) + Cξt s.t. yt〈ω,xt〉 ≥ γ − ξt .

In Appendix A we show that the dual of the above problem is the following
problem,

max
ηt∈[0,C]

γηt − G (θt + ηtytxt) .

Furthermore, θt satisfies the following recursive form,

θt = θt−1 + ηtytxt .

An examination of the above dual problem immediately reveals that this dual
problem can be obtained from the dual problem defined in Eq. (34) by setting
αi = ηi for i ≤ t and αi = 0 for i > t. Therefore, the problem defined by Kivinen
and Warmuth can be viewed as a special case of one of the schemes discussed in
Sec. 5.2. Concretely, we update only the variable αt

t by setting it to ηt and leave
the rest of the dual variables intact, in particular αt

i = αt+1
i = 0 for all i > t.

7 Discussion

We presented a new framework for the design and analysis of online learning
algorithms. Our framework yields the tightest known bounds for quasi-additive
online classification algorithms. The new framework also paves the way to new
algorithms. There are various possible extensions of the work that we plan to
pursue. Our framework can be naturally extended to other prediction problems
such as regression, multiclass categorization, and ranking problems. Our frame-
work is also applicable to settings where the target hypothesis is not fixed but
rather drifting with the sequence of examples. In addition, the hinge-loss was
used in our derivation in order to make a clear connection to the quasi-additive
algorithms. The choice of the hinge-loss is rather arbitrary and it can be replaced
with other losses such as the logistic loss. We also plan to explore possible al-
gorithmic extensions and new update schemes which manipulate multiple dual
variables on each online update. Finally, our framework can be used with non-
differentiable conjugate functions which might become useful in settings where
there are combinatorial constraints on the number of non-zero dual variables
(see [8]).

Acknowledgments

Thanks to the anonymous reviewers for helpful comments. This work was sup-
ported by the Israeli Science Foundation, grant no. 039-7444.

References

1. K. Azoury and M. Warmuth. Relative loss bounds for on-line density estimation
with the exponential family of distributions. Machine Learning, 43(3):211–246,
2001.

2. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

3. L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR

Computational Mathematics and Mathematical Physics, 7:200–217, 1967.

4. Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms, and Ap-

plications. Oxford University Press, New York, NY, USA, 1997.
5. N. Cesa-Bianchi, A. Conconi, , and C. Gentile. A second-order perceptron algo-

rithm. SIAM Journal on Computing, 34(3):640–668, 2005.

6. N. Cesa-Bianchi, A. Conconi, and C.Gentile. On the generalization ability of on-
line learning algorithms. In Advances in Neural Information Processing Systems

14, pages 359–366, 2002.

7. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Technical report, The Hebrew University, 2005.

8. O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based per-
ceptron on a fixed budget. In Advances in Neural Information Processing Systems

18, 2005.

9. C. Gentile. A new approximate maximal margin classification algorithm. Journal

of Machine Learning Research, 2:213–242, 2001.

10. C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3),
2002.

11. A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for
linear discriminant updates. Machine Learning, 43(3):173–210, 2001.

12. J. Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W.
Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume III,
pages 97–139. Princeton University Press, 1957.

13. D.P Helmbold, J. Kivinen, and M. Warmuth. Relative loss bounds for single
neurons. IEEE Transactions on Neural Networks, 10(6):1291–1304, 1999.

14. J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE

Transactions on Signal Processing, 52(8):2165–2176, 2002.

15. J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, January 1997.

16. J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression
problems. Journal of Machine Learning, 45(3):301–329, July 2001.

17. Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine

Learning, 46(1–3):361–387, 2002.
18. N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold

algorithm. Machine Learning, 2:285–318, 1988.

19. N. Littlestone. Mistake bounds and logarithmic linear-threshold learning algo-

rithms. PhD thesis, U. C. Santa Cruz, March 1989.
20. A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the

Symposium on the Mathematical Theory of Automata, volume XII, pages 615–622,
1962.

21. R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
22. F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386–407, 1958. (Reprinted in
Neurocomputing (MIT Press, 1988).).

23. V. Vovk. Competitive on-line statistics. International Statistical Review, 69:213–
248, 2001.

A Derivations of the dual problems

In this section we derive the dual problems of the main primal problems in-
troduced in this paper. We start with the dual of the minimization problem
minω∈Ω P(ω) where

P(ω) = F (ω) + C
m∑

i=1

ℓγ(ω; (xi, yi)) . (39)

Using the definition of ℓγ we can rewrite the optimization problem as,

inf
ω∈Ω,ξ∈R

m
+

F (ω) + C

m∑

i=1

ξi

s.t. ∀i ∈ [m], yi〈ω,xi〉 ≥ γ − ξi .

(40)

We further rewrite this optimization problem using the Lagrange dual function,

inf
ω∈Ω,ξ∈R

m
+

sup
α∈R

m
+

F (ω) + C

m∑

i=1

ξi +

m∑

i=1

αi (γ − yi〈ω,xi〉 − ξi)

︸ ︷︷ ︸

def
= L(ω,ξ,α)

. (41)

Eq. (41) is equivalent to Eq. (40) due to the following fact. If the constraint
yi〈ω,xi〉 ≥ γ− ξi holds then the optimal value of αi in Eq. (41) is zero. If on the
other hand the constraint does not hold then αi equals ∞, which implies that
ω cannot constitute the optimal primal solution. The dual objective function is
defined to be,

D(α) = inf
ω∈Ω,ξ∈R

m
+

L(ω, ξ,α) . (42)

Using the definition of L, we can rewrite the dual objective as a sum of three
terms,

D(α) = γ

m∑

i=1

αi − sup
ω∈Ω

(

〈ω,

m∑

i=1

αiyixi〉 − F (ω)

)

+ inf
ξ∈R

m
+

m∑

i=1

ξi (C − αi) .

The last term equals to zero for αi ∈ [0, C] and to −∞ for αi > C. Since our
goal is to maximize D(α) we can confine ourselves to the case α ∈ [0, C]m and
simply write,

D(α) = γ
m∑

i=1

αi − sup
ω∈Ω

(

〈ω,
m∑

i=1

αiyixi〉 − F (ω)

)

.

The second term in the above presentation of D(α) can be rewritten as
G(
∑m

i=1 αiyixi) where G is the Fenchel conjugate3 of F (ω), as given in Eq. (6).
Thus, for α ∈ [0, C]m the dual objective function can be written as,

D(α) = γ

m∑

i=1

αi − G

(
m∑

i=1

αiyixi

)

. (43)

Next, we derive the dual of the problem introduced at the end of Sec. 6. To
remind the reader, the primal problem is,

min
ω∈Ω,ξt∈R+

BF (ω||ωt) + Cξt

s.t. yt〈ω,xt〉 ≥ γ − ξt .
(44)

Following the same line of derivation used for obtaining the dual of the previ-
ous problem, we form the Lagrangian and separate it into terms, each of which
depends only on a subset of the problem variables. Denoting the Lagrange mul-
tiplier for the single constraint in Eq. (44) by ηt, we obtain the following,

D(ηt) = γηt − sup
ω∈Ω

(〈ω, ηtytxt〉 − BF (ω||ωt)) ,

where ηt should reside in [0, C]. We now write explicitly the Bregman divergence
term and omit constants to obtain the more direct form,

D(ηt) = γηt − sup
ω∈Ω

(〈ω, ηtytxt〉 − F (ω) + 〈∇F (ωt),ω〉) .

The gradient of F , ∇F , is typically denoted by f . The mapping defined by f
is the inverse of the link function g introduced in Sec. 4 (see also the list of
references pointed to at that section). We thus denote by θt the image of ωt

under f , θt = ∇F (ωt) = f(ωt). Equipped with this notation we can rewrite
D(ηt) as follows,

D(ηt) = γηt − sup
ω∈Ω

(〈ω,θt + ηtytxt〉 − F (ω)) .

Using G again to denote the Fenchel conjugate of F we get that the dual of the
problem defined in Eq. (44) is,

D(ηt) = γηt − G (θt + ηtytxt) . (45)

3 In cases where F is differentiable with an invertible gradient, G is also called the
Legendre transform of F . See for example [2].

Let us denote by ωt+1 the optimum of the primal problem. Since F is twice
differentiable, it is immediate to verify that the vector ωt+1 must satisfy the
following condition,

f(ωt+1) = f(ωt) + ηtytxt ⇒ θt+1 = θt + ηtytxt . (46)

B Technical proofs

Proof of Thm. 2: First note that if L = 0 then the setting C = 1 in Eq. (19)
yields the bound M ≤ ‖ω‖2 which is identical to the bound stated by the
theorem for the case L = 0. We thus focus on the case L > 0 and we prove
the theorem by finding the value of C which minimizes the right-hand side of
Eq. (19) for C. To simplify our notation we define B = L/‖ω‖2 and denote,

ρ(C) =
1

(1 − 1
2C)

(
1

2C
‖ω‖2 + L

)

=
‖ω‖2

(1 − 1
2C)

(
1

2C
+ B

)

. (47)

The function ρ(C) is convex in C and to find its minimum we can simply take its
derivative with respect to C and find the zero of the derivative. The derivative
of ρ with respect to C is,

ρ′(C) =
‖ω‖2

2(1 − 1
2C)2

(

B − 1 − C

C2

)

.

Comparing ρ′(C) to zero while omitting multiplicative constants gives the fol-
lowing quadratic equation,

B C2 + C − 1 = 0 .

The larger root of the above equation is,

C =

√
1 + 4B − 1

2B
=

(√
1 + 4B − 1

2B

) (√
1 + 4B + 1√
1 + 4B + 1

)

=
4B

2B (
√

1 + 4B + 1)
=

2√
1 + 4B + 1

. (48)

It is easy to verify that the above value of C is always in (0, 2) and therefore it is
the minimizer of ρ(C) over (0, 2). Plugging Eq. (48) into Eq. (47) and rearranging
terms gives,

ρ(C) = ‖ω‖2

(

1

1 − 1√
1+4 B+1

) (√
1 + 4B + 1

4
+ B

)

=
‖ω‖2

4

(√
1 + 4B + 1√

1 + 4B

) (√
1 + 4B + (1 + 4B)

)

=
‖ω‖2

4

(√
1 + 4B + 1

)2

=
‖ω‖2

4

(

2 + 4B + 2
√

1 + 4B
)

.

Finally, the definition of B implies that,

ρ(C) = L +
1

2
‖ω‖2 +

1

2

√

‖ω‖4 + 4L ‖ω‖2 .

This concludes our proof. ⊓⊔
Proof of Lemma 2: Using the chain rule we get that,

gi(θ) = Ψ ′

(
n∑

r=1

φ(θr)

)

φ′(θi) .

Therefore, the value of the element (i, j) of the Hessian for i 6= j is,

Hi,j(θ) = Ψ ′′

(
n∑

r=1

φ(θr)

)

φ′(θi)φ
′(θj) ,

and the i’th diagonal element of the Hessian is,

Hi,i(θ) = Ψ ′′

(
n∑

r=1

φ(θr)

)

(φ′(θi))
2

+ Ψ ′

(
n∑

r=1

φ(θr)

)

φ′′(θi) .

We therefore get that,

〈x,H(θ)x〉 = Ψ ′′

(
n∑

r=1

φ(θr)

)(
∑

i

φ′(θi)xi

)2

+ Ψ ′

(
n∑

r=1

φ(θr)

)
∑

i

φ′′(θi)x
2
i

≤ Ψ ′

(
n∑

r=1

φ(θr)

)
∑

i

φ′′(θi)x2
i ,

where the last inequality follows from the assumption that Ψ ′′(
∑

r φ(θr)) ≤ 0.
This concludes our proof. ⊓⊔

	A Primal-Dual Perspective of Online Learning Algorithms
	Shai Shalev-Shwartz cl@@auth and Yoram Singer

