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Abstract

We discuss the problem of learning to rank labels from a rahled feedback associated with
each label. We cast the feedback as a preferences graph thieene@des of the graph are the
labels and edges express preferences over labels. We taeklearning problem by defining a
loss function for comparing a predicted graph with a feelllgaaph. This loss is materialized by
decomposing the feedback graph into bipartite sub-gra@festhen adopt the maximum-margin
framework which leads to a quadratic optimization probleithlnear constraints. While the size
of the problem grows quadratically with the number of theewuh the feedback graph, we derive
a problem of a significantly smaller size and prove that iiatt the same minimum. We then
describe an efficient algorithm, called SOPOPO, for sol¥irggreduced problem by employing a
soft projection onto the polyhedron defined by a reduced fsebmstraints. We also describe and
analyze a wrapper procedure for batch learning when melgpphs are provided for training. We
conclude with a set of experiments which show significantrowpments in run time over a state
of the art interior-point algorithm.

1. Introduction

To motivate the problem discussed in this paper let us consider the followpigcation. Many
news feeds such as Reuters and Associated Press tag each newsheyidiandle with labels
drawn from a predefined set of possible topics. These tags arearsexlifing articles to different
targets and clients. Each tag may also be associated with a degree of ceestien expressed
as a numerical value, which reflects to what extent a topic is relevant tcethe article on hand.
Tagging each individual article is clearly a laborious and time consuming fasthis paper we
describe and analyze an efficient algorithmic framework for learningrdading preferences over
labels. Furthermore, in addition to the task described above, our learppagadus includes as
special cases problems ranging from binary classification to total orddicgion.
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We focus on batch learning in which the learning algorithm receives & s&iiming examples,
each example consists of an instance and a target vector. The goalle&thmg process is to
deduce an accurate mapping from the instance space to the target $hadarget spacg’ is a
predefinedset of labels. For concreteness, we assumeYhat{1,2,...,k}. The prediction task
is to assert preferences over the labels. This setting in particular gjeesrthe notion of a single
tag orlabely € Y = {1,2,..., k}, typically used in multiclass categorization tasks, to a full set of
preferences over the labels. Preferences are encoded by ayeet&”, wherevy, > 7, means
that labely is more relevant to the instance than laggel The preferences over the labels can also
be described as a weighted directed graph: the nodes of the grapk &bdls and weighted edges
encode pairwise preferences over pairs of labels. In Fig. 1 we givgrdph representation for the
target vectorf—1, 0, 2,0, —1) where each edge marked with its weight. For instance, the weight of
the edge3,1) isy3 — 1 = 3.

The class of mappings we employ in this paper is the set of linear functionge Wis func-
tion class may seem restrictive, the pioneering work of Vapnik (1998aklelagues demonstrates
that by using Mercer kernels one can employ highly non-linear predjatatked support vector
machines (SVM) and still entertain all the formal properties and simplicity of fipesdictors. We
propose a SVM-like learning paradigm for predicting the preferenues labels. We generalize
the definition of the hinge-loss used in SVM to the label ranking setting. Ougrgkred hinge
loss contrasts the predicted preferences graph and the targeepmfeigraph by decomposing the
target graph into bipartite sub-graphs. As we discuss in the next setttisrdecomposition into
sub-graphs is rather flexible and enables us to analyze severalysigvitefined loss functions in a
single unified setting. This definition of the generalized hinge loss lets usipe$sarning problem
as a quadratic optimization problem while the structured decomposition leadsefficzent and
effective optimization procedure.

The main building block of our optimization procedure is an algorithm whichoper$ fast and
frugal soft projectionsonto arpdyhedron and is therefore abbreviated SOPOPO. Generalizing the
iterative algorithm proposed by Hildreth (1957) (see also Censor anidZ€1997)) from half-space
constraints to polyhedra constraints, we also derive and analyze divéelgorithm which on each
iteration performs a soft projection onto a single polyhedron. The endt iss fast optimization
procedure for label ranking from general real-valued feedback.

The paper is organized as follows. In Sec. 2 we start with a formal defirfiour setting and
cast the learning task as a quadratic programming problem. We also malencefeto previous
work on related problems that are covered by our setting. Our efficmimhization procedure for
the resulting quadratic problem is described in two steps. First, we priesBat. 3 the SOPOPO
algorithm for projecting onto a single polyhedron. Then, in Sec. 4, wigaland analyze an iterative
algorithm which solves the original quadratic optimization problem by suieesstivations of
SOPOPO. Experiments are provided in Sec. 5 and concluding remarfis@ngn Sec. 6.

Before moving to the specifics, we would like to stress that while the learnikglissussed in
this paper is well rooted in the machine learning community, the focus of the e design
and analysis of an optimization apparatus. The readers interested in #uedralem of learning
preferences, including its learning theoretic facets such as generalipadiperties are referred for
instance to (Cohen et al., 1999, Herbrich et al., 2000, Rudin et al., 2@@%yal and Niyogi, 2005,
Clemenon et al., 2005) and the many references therein.
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Figure 1: The graph induced by the feedback (—1,0,2,0, —1).

2. Problem Setting

In this section we introduce the notation used throughout the paper andlfpidescribe our prob-
lem setting. We denote scalars with lower case letters (e gnd«), and vectors with bold face
letters (e.g.x and«). Sets are designated by upper case Latin letters (e.g. E) and set b sets
bold face (e.g.E). The set of non-negative real numbers is denote®hy For anyk > 1, the

set of integerg1, ..., k} is denoted byk]. We use the notatiofu), to denote the hinge function,
namely,(a) . = max{0,a}.

Let X be an instance domain and [Bt= [k] be a predefined set of labels. A target for an
instancex € X is a vectory € R* wherey, > ~,» means thay is more relevant tec thany’. We
also refer toy as a label ranking. We would like to emphasize that two different labels may atta
the same rank, that is, = ~,» whiley # 3. In this case, we say thatandy’ are of equal relevance
to x. We can also describe as a weighted directed graph. The nodes of the graph are labeled by
the elements dft] and there is a directed edge of weight— ~, from noder to nodes iff ~, > ~;.

In Fig. 1 we give the graph representation for the label-ranking vecter(—1,0, 2,0, —1).

The learning goal is to learn a ranking function of the fdfmx — R* which takesx as an
input instance and returns a ranking vedtot) € R*. We denote by, (x) therth element of (x).
Analogous to the target vectoy, we say that label is more relevant than labegl with respect
to the predicted ranking if,(x) > f,/(x). We assume that the label-ranking functions are linear,
namely,

(%) = wy o x

where eaclw,. is a vector inR™ andX C R™. As we discuss briefly at the end of Sec. 4, our al-
gorithm can be generalized straightforwardly to non-linear rankingtiome by employing Mercer
kernels (Vapnik, 1998).

We focus on a batch learning setting in which a training$et {(x’,~%)}, is provided.
Thus, each example consists of an instaxice X’ and a label-ranking’ € R*. The performance
of a label-ranking functiofi on an exampléx, ~) is evaluated via a loss functidn R* x R¥ — R.
Clearly, we want the loss of a predicted ranking to be small if it express@iaispreferences over
pairs as the given label-ranking. Moreover, we view the differeneey; for a pair of labels: ands
as an encoding of the importance of the ordering aliead ok. That is, the larger this difference is
the more we prefer overs. We view this requirement as a lower bound on the difference between
fr(x) and fs(x). Formally, for each pair of labels, s) € ) x Y such thaty, > ~,, we define the
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loss off with respect to the pair as,

s (£(x),7) = (v =) = (fr(%) = fs(x))) 4 1)

The above definition of loss extends the hinge-loss used in binary clasisifiproblems (Vapnik,
1998) to the problem of label-ranking. The lo&s reflects the amount by which the constraint
fr(x) — fs(x) > v — s is not satisfied. While the construction above is defined for pairs, our goa
though is to associate a loss with thietire predicted ranking and not a single pair. Thus, we need
to combine the individual losses over pairs into one meaningful loss. Indlpisrpve take a rather
flexible approach by specifying an apparatus for combining the individaaes over pairs into a
single loss. We combine the different pair-based losses into a single lageiyying the pairs of
labels into independent sets each of which is isomorphicdonaplete bipartitegraph. Formally,
given a target label-ranking vecter ¢ R¥, we defineE(v) = {E1, ..., E4} to be a collection of
subsets oy x ). For eachj € [d], defineV/; to be the set of labels which support the edgeEjn
that is,

Vi={yeY:3rst(ry) € E;V(yr) € E;} . 2

We further require thaE(~y) satisfies the following conditions,
1. For eacly € [d]| and for each{r, s) € E; we havey, > ..
2. Foreach # j € [d] we haveE; N E; = 0.

3. For eacly € [d], the sub-graph defined y;, E;) is a complete bipartite graph. That is,
there exists two setd andB, suchthatdN B =0, V; = AU B, andE; = A x B.

In Fig. 2 we illustrate a few possible decompositions into bipartite graphs fivea tabel-ranking.

The loss of each sub-gragli;, E;) is defined as the maximum over the losses of the pairs
belonging to the sub-graph. In order to add some flexibility we also allowrdiffesub-graphs to
have different contribution to the loss. We do so by associating a weighith each sub-graph.
The general form of our loss is therefore,

d
((£(x),7) = Y _o; max £ (f(x),7) (3)
= (r,s)EE;

where eaclr; € R, is a non-negative weight. The weightg can be used to associate importance
values with each sub-graghy;, E;) and to facilitate different notions of losses. For example, in
multilabel classification problems, each instance is associated with a set\afntelabels which
come from a predefined sgt The multilabel classification problem is a special case of the label
ranking problem discussed in this paper and can be realized by segttiagl if the r’th label is
relevant and otherwise defining = 0. Thus, the feedback graph itself is of a bipartite form. Its
edges are fromd x B where A consists of all the relevant labels afdof the irrelevant ones. If

we decide to seE(~y) to contain the single set x B and definer; = 1 then/(f(x),~) amounts

to themaximunvalue of/, ; over pairs of edges il x B. Thus, the loss of this decomposition
distills to the worst loss suffered over all pairs of comparable labels. Altaly, we can seE(~)

to consist of all the set§(r, s) } for each(r, s) € A x B and definer; = 1/|E(«)|. In this case the
total loss/(f(x), ) is theaveragevalue of/, ; over the edges il x B. Clearly, one can devise
decompositions aE(+) which are neither all pairs of edges nor a singleton including all edges. We
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Figure 2: Three possible decompositions into complete bipartite sub-grdghe graph from
Fig. 1. Top: all-pairs decomposition; Middle: all adjacent layers; Bottom: lager
versus the rest of the layers. The edges and vertices participatinghrsebgraph are
depicted in black while the rest are presented in gray. In each grapbdles nonstituting
the setA are designated by black circles while for the nodeBihy filled black circles.

can thus capture different notions of losses for label ranking furetiath multitude schemes for
casting the relative importance of each sul§$et £;).

Equipped with the loss function given in Eq. (3) we now formally define carlmg problem.
As in most learning settings, we assume that there exists an unknown distributiger X' x R*
and that each example in our training set is identically and independentlyndram D. The
ultimate goal is to learn a label ranking functiérwhich entertains a small generalization loss,
E(x,4)~p [£(f(x),7)]- Since the distribution is not known we use instead an empirical sample from
D and encompass a penalty for excessively complex label-ranking fusctiGeneralizing the
Support Vector Machine (SVM) paradigm, we define a constrained optiimizproblem, whose
optimal solution would constitute our label-ranking function. The objectivietion we need to
minimize is composed of two terms. The first is the empirical loss of the label-rgfilirction
on the training set and the second is a penalty for complexity, often rdferras a regularization
term. This term amounts to the sum of the squared norrgsvef . .., wy }. The trade-off between
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the regularization term and the empirical loss term is controlled by a parafiet€he resulting
optimization problem is,

k m
: 1 % i
Jmin ST w2 O ), @
j=1 i=1
wheref, (x') = w,-x'. Note that the loss function in Eq. (3) can also be represented as the solutio
of the following optimization problem,

d
(f(x),y) = min > ;¢
j=1

d
gerd

(5)
st.Vjeld], V(rs) e Ej, £(x)—fx) >y —v—-& ,

whered = |E(v)|. Thus, we can rewrite the optimization problem given in Eq. (4) as a qtiadra
optimization problem,

Lk m  |E(v")]
. 2 i
. . C ¢l
o3 Z_: Iwill* + ¢ ) z_: 0 &
7=1 =1 j=1 (6)
st.Vie[m],VE; € E(y'), Y(r,s) € Ej, Wp X —ws-x >l —l — §§~

Vi, j, §>0.

To conclude this section, we would like to review the rationale for choosingnarsided loss
for each pair by casting a single inequality for edcls). It is fairly easy to define a two-sided loss
for a pair by mimicking regression problems. Concretely, we could replacddfinition of/, ; as
given in Eqg. (1) with the los$f, (x) — fs(x) — (7 — 7s)|- This loss penalizes fany deviation
from the desired difference of. — 5. Instead, our loss is one sided as it penalizes only for not
achieving a lower-bound. This choice is more natural in ranking applicatimrinstance, suppose
we need to induce a ranking ovélabels where the target label ranking(is1, 2,0,0). Assume
that the predicted ranking is inste&d5, 3,0,0). In most ranking and search applications such a
predicted ranking would be perceived as being right on target singeelfierences it expresses over
pairs are on par with the target ranking. Furthermore, in most rankidgcappns, overly demotion
of the most irrelevant items and excessive promotion of the most relevastismerceived as
beneficial rather than a deficiency. Put another way, the set of taalyets encode minimal margin
requirements and over-achieving these margin requirements should penakzed.

Related Work Various known supervised learning problems can be viewed as spaséd of the
label ranking setting described in this paper. First, note that when theeombrtwo labels we obtain

the original constrained optimization of support vector machines for bidassification (Cortes
and Vapnik, 1995) with the bias term set to zero. In the binary case,|gaoritam reduces to the
SOR algorithm described in (Mangasarian and Musicant, 1999). The msdtiotablem, in which

the target is a single labgl € Y, can also be derived from our setting by definmg= 1 and

~. = 0 forall » #£ y. A few special-purpose algorithms have been suggested to solve the msiticlas
SVM problems. The multiclass version of Weston and Watkins (1999) is obtdgedefining
E(y) = {{(y.7)}},,, thatis, each subset consists of a single pair). The multiclass version
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of Crammer and Singer (2001) can be obtained by simply sel{pg to be a single set containing
all the pairs(y,r) for r # y, namelyE(vy) = {{(y,1),...,(y,y — 1), (y,y +1),...,(y, k) } }.
While the learning algorithms from (Weston and Watkins, 1999) and (CramnateSiger, 2001)
are seemingly different, they can be solved using the same algorithmic iottase presented in
this paper. Proceeding to more complex decision problems, the task of multlabsification or
ranking is concerned with predicting a set or relevant labels or rankentatiels in accordance to
their relevance to the input instance. This problem was studied by seuehairs (Elisseeff and
Weston, 2001, Crammer and Singer, 2002, Dekel et al., 2003). Amonsg #gtadies, the work
of Elisseeff and Weston (2001) is probably the closest to ours yet it isastiirived special case
of our setting . Elisseeff and Weston focus on a feedback vectwwhich constitutes a bipartite
graph by itself and define a constrained optimization problem wikarateslack variable for
each edge in the graph. Formally, each instanteassociated with a set of relevant labels denoted
Y. As discussed in the example above, the multilabel categorization setting cahethalized
by definingy, = 1 forallr € Y andy, = 0 for all s ¢ Y. The construction of Elisseeff and
Weston can be recovered by definiBgy) = {{(r,s)}|7» > ~vs}. Our approach is substantially
more general as it allows much richer and flexible ways to decompose the neliplablem as
well as more general label ranking problems.

3. Fast “Soft” Projections

In the previous section we introduced the learning apparatus. Our g@dbrio derive and analyze
an efficient algorithm for solving the label ranking problem. In addition faciehcy, we also
require that the algorithm would be general and flexible so it can be ugedrmydecomposition of
the feedback according #(~). While the algorithm presented in this and the coming sections is
indeed efficient and general, its derivation is rather complex. We threrefould like to present it

in a bottom-up manner starting with a sub-problem which constitutes the main buldicigof the
algorithm. In this sub-problem we assume that we have obtained a labéhgdnhkction realized

by the setuy,...,u; and the goal is to modify the ranking function so as to fit better a newly
obtained example. To further simplify the derivation, we focus on the chseel(~) contains a
single complete bipartite graph whose set of edges are simply denote€d Blye end result is the
following simplified constrained optimization problem,

k
1 2
i = - C
w5 vyl O
vt @)
St.V(r,s)eE, W, - X—Ws-X>7 —7s—&
E>0 .

Herex € X is a single instance anll is a set of edges which induces a complete bipartite graph.
The focus of this section is an efficient algorithm for solving Eq. (7). Dipimization problem
finds the set closest thuy, ..., u;} which approximately satisfies a system of linear constraints
with a single slack (relaxation) variabfe Put another way, we can view the problem as the task
of finding a relaxed projection of the séu, ..., u;} onto the polyhedron defined by the set of
linear constraints induced froid. We thus refer to this task as the soft projection. Our algorithmic

solution, while being efficient, is rather detailed and its derivation consistsuttiple complex
steps. We therefore start with a high level overview of its derivation. Y¥ederive a dual version
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of the problem defined by Eq. (7). Each variable in the dual problemesponds to an edge in
FE. Thus, the total number of dual variables can be as Iarg@ﬁs We then introduce a new
and more compact optimization problem which has dnlyariables. We prove that the reduced
problem nonetheless attains the same optimum as the original dual problemedugsion is one
of the two major steps in the derivation of an efficient soft projection mhoee We next show that
the reduced problem can be decoupled into two simpler constrained optimipettdems each of
which corresponds to one layer in the bipartite graph inducef byhe two problems are tied by
a single variable. We finally reach an efficient solution by showing that phienal value of the
coupling variable can be efficiently computed(rik log(k)) time. We recap our entire derivation
by providing the pseudo-code of the resulting algorithm at the end of ttiese

3.1 The Dual Problem

To start, we would like to note that the primal objective function is convex drtieprimal con-
straints are linear. A necessary and sufficient condition for stronlifglt@hold in this case is that
there exists a feasible solution to the primal problem (see for instance @aydandenberghe,
2004)). A feasible solution can indeed obtained by simply settfyg= 0 for all y and defining

§ = max(, 5 e (7 —7s). Therefore, strong duality holds and we can obtain a solution to the primal
problem by finding the solution of its dual problem. To do so we first write thgrangian of the
primal problem given in Eq. (7), which amounts to,

k
1 2
L= 2;||Wy_uy| + C¢ + (2]37'7“,3(%“_'Ys_g"‘WS‘X_WT'X)_Cg

k
1
= 9 E ||Wy_uy‘|2+§ C— § Trs —C | + E Trs (Yr — Wp =X — s + Ws - X)
y=1 (r,s)eE (r,s)eE

wherer, ; > 0 for all (r,s) € E and{ > 0. To derive the dual problem we now can use the strong
duality. We eliminate the primal variables by minimizing the Lagrangian with respést poimal
variables. First, note that the minimum of the tef(@’ —Z(m)eEn,s — () with respect tg is zero
wheneverC — 3_, o pTrs — ¢ = 0. If howeverC' — - cp7rs — ¢ # 0 then this term can

be made to approachoo. Since we need to maximize the dual we can rule out the latter case and
pose the following constraint on the dual variables,

C— > 7s—¢=0. (8)

(r,s)eEE

Next, recall our assumption th&t induces a complete bipartite graph, £') (see also Eq. (2)).
Therefore, there exists two setsandB suchthatdN B =0,V = AU B, andE = A x B. Using
the definition of the setd and B we can rewrite the last sum of the Lagrangian as,

Z Tr,s(’Y’r—Wr’X_’Ys"_Ws'X):

rcA,seB
YD) SRR D) S
recA sEB sEB reA
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Eliminating the remaining primal variables, ..., w; is done by differentiating the Lagrangian
with respect tow,. for all » € [k] and setting the result to zero. For gl A, the above gives the

set of constraints,
Vw,L = wy —u, — (Z Ty7s> x =0. 9

seB
Similarly, fory € B we get that,

Vw,L = wy —uy + (Z Tr7y> x =0 . (20)

reA

Finally, we would like to note that for any labgl¢ A U B we get thatw,, — u,, = 0. Thus, we can
omit all such labels from our derivation. Summing up, we get that,

uy+ (Leptys)x yE€A
Wy = u, — (ZTEA Tr’y) x yeB . (11)
uy otherwise

Plugging Eqg. (11) and Eg. (8) into the Lagrangian and rearranging tgirashe following dual
objective function,

D(r) = —;rxHQZ(ZTy,s) —ému?Z(Zw) (12)

yeEA \seB yEB \reA

+ Z('yy—uy-x)ZTy,s—Z(yy—uy-x)ZTr,y .

yeA seB yeB recA

In summary, the resulting dual problem is,

max D(7T) st Z Trs < C . (13)
TERLJ—E‘ (r,s)eE

3.2 Reparametrization of the Dual Problem

Each dual variable, ; corresponds to an edge . Thus, the number of dual variables may be
as large ag?/4. However, the dual objective function depends only on sums of vasable
Furthermore, each primal vecter, also depends on sums of dual variables (see Eq. (11)). We
exploit these useful properties to introduce an equivalent optimizatiosiwiadler size with onlye
variables. We do so by defining the following variables,

VyeA, ay=> 1. and WEB, B=) Ty . (14)
sEB reA
The primal variablesv, from Eq. (11) can be rewritten using, and3, as follows,
u, +oyx yecA

Wy = uy, — ﬁyx y€EB . (15)
uy otherwise
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Overloading our notation and usirdg(«, 3) to denote dual objective function in termsa@fandg,
we can rewrite the dual objective of Eq. (12) as follows,

D(e, B) :_%HXHQ Z%%"‘Zﬁg +Z<7y_uy'x>0‘y _Z(”Yy_uy'x)ﬁy - (16)

yeA yeB yeA yeB

Note that the definition ofv, and3, from Eq. (14) implies thatv, and 3, are non-negative. Fur-
thermore, by construction we also get that,

day=> 8= > n.<C. (17)

yeA yeB (r,s)eE

In summary, we have obtained the following constrained optimization problem,

D(a,8) st Y ay=> p,<C. (18)

\nllaX |B|
A B
acR, BERY yeA yeB

We refer to the above optimization problem as teducedproblem since it encompasses at
mostk = |V| variables. In appendix A we show that the reduced problem and the alridyiral
problem from Eq. (13) are equivalent. The end result is the followimgltzoy.

Corollary 1 Let (a*,3*) be the optimal solution of the reduced problem in Eqg. (18). Define
{w1,...,wi} as in Eq. (15). Then{wy,...,w;} is the optimal solution of the soft projection
problem defined by Eq. (7).

We now move our focus to the derivation of an efficient algorithm for sgluime reduced
problem. To make our notation easy to follow, we define |A| andg = |B| and construct two
vectorsu € R? andv € RY such that for each € A there is an elemergty, — u, - x)/||x||? in p
and for eachh € B there is an element (v, — uy - x)/||x||? in v. The reduced problem can now
be rewritten as,

. 1 |
min - Sfla—pl®+ 18- v|?
acR? BeR? 2 2

p q
S.t. Zai = Zﬂ] < C.
j=1

=1

(19)

3.3 Decoupling the reduced optimization problem

In the previous section we showed that the soft projection problem @iyefq. (7) is equivalent
to the reduced optimization problem of Eq. (19). Note that the variablasd3 are tied together
through a single equality constraifity|; = ||3]/1. We represent this coupling ef and 3 by
rewriting the optimization problem in Eqg. (19) as,

min zm) +g(zv)
nin, 9(zp) +9(zv)

where
p

1 2
g(z;p) = mén§‘|a_“” s.t. ;ai =z, a; >0, (20)

10
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and similarly
1 ) !
g(zv) = mﬁmgH,ﬁ—V” s.t. ;ﬁj =2z, f;>0. (21)

The functiong(z; -) takes the same functional form whether we wser v as the second argu-
ment. We therefore describe our derivation in termg(ef ). Clearly, the same derivation is also
applicable togy(z; v). The Lagrangian of(z; p) is,

1 ) -
L= llee—pl +0(Zai_z> ¢ a,

i=1

wheref € R is a Lagrange multiplier angl € R”. is a vector of non-negative Lagrange multipliers.
Differentiating with respect ta; and comparing to zero gives the following KKT condition,

ac
dai

=0 —pi+0—-¢G =0,

The complementary slackness KKT condition implies that whenayer 0 we must have that
¢; = 0. Thus, ifa; > 0 we get that,

ap = pi—0+¢G = i —0 . (22)

Since all the non-negative elements of the veetaare tied via a single variable we would have
ended with a much simpler problem had we known the indices of these elemenésfirét sight,
this task seems difficult as the number of potential subsets isf clearly exponential in the di-
mension ofa. Fortunately, the particular form of the problem renders an efficierrigihgn for
identifying the non-zero elements of The following lemma is a key tool in deriving our proce-
dure for identifying the non-zero elements.

Lemma 2 Let a be the optimal solution to the minimization problem in Eq. (20). dahd j be
two indices such thats > p;. If o, = 0 thena; must be zero as well.

Proof Assume by contradiction that, = 0 yeta; > 0. Leta € R* be a vector whose elements are
equal to the elements of except fora, anda; which are interchanged, that 8, = «;, &; = a,
and for every other ¢ {s,j} we havea, = «,. Itis immediate to verify that the constraints of
Eq. (20) still hold. In addition we have that,

loe = pl)? = ll& = pll* = 42+ (= 1y)* = (@ — ps)® = 5 = 205(ps — ;) > 0 .
Therefore, we obtain thafio — 1|* > ||& — p||?, which contradicts the fact that is the optimal
solution. |

Let I denote the sefti € [p] : a; > 0}. The above lemma gives a simple characterization of the set
I. Let us reorder thee such thatu; > pe > ... > p,. Simply put, Lemma 2 implies that after the
reordering, the settis of the form{1, ..., p} for somel < p < p. Had we knowrp we could have
simply use Eg. (22) and get that
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In summary, giverp we can summarize the optimal solution teras follows,

1 (2
i — — i—2] 1<

0 1> p
We are left with the problem of finding the optimal value @f We could simply enumerate all
possible values gf in [p], for each possible value compuieas given by Eq. (23), and then choose
the value for which the objective functiofid — p||?) is the smallest. While this procedure can
be implemented quite efficiently, the following lemma provides an even simpler solutios we
reorder the elements @f to be in a non-increasing order.

Lemma 3 Leta be the optimal solution to the minimization problem given in Eq. (20) and assume
that; > po > ... > p,. Then, the number of strictly positive elementairs,

plz,p) = max{je[p] : M—;(ZMT—Z> >O}
r=1

The proof of this technical lemma is deferred to the appendix.

Had we known the optimal value of i.e. the argument attaining the minimum gifz; ) +
g(z;v) we could have calculated the optimal dual varialkl¢sand3* by first findingp(z, i) and
p(z,v) and then findingx and3 using Eq. (23). This is a classical chicken-and-egg problem: we
can easily calculate the optimal solution given some side information, hovwabtaining the side
information seems as difficult as finding the optimal solution. One option is t@erd search
over ane-net of values for: in [0, C]. For each candidate value ferfrom thee-net we can findx
andg and then choose the value which attains the lowest objective v@lug) + g(z; v)). While
this approach may be viable in many cases, it is still quite time consuming. Toswereomes
the fact thaty(z; ) andg(z; v) entertain a very special structure. Rather than enumerating over
all possible values of we need to check at moat+ 1 possible values fot. To establish the last
part of our efficient algorithm which performs this search for the optinaflier of 2 we need the
following theorem. The theorem is stated wijitbut, clearly, it also holds fow .

Theorem 4 Letg(z; u) be as defined in Eq. (20). For eacke [p], define

KA
Z; = Z“” — il -
r=1

Then, for each € [z, z;1+1] the functiong(z; ) is equivalent to the following quadratic function,

. 2
1 (< P
oo = (S e) 4 3
r—=

r=i+1
Moreover,g is continuous, continuously differentiable, and conveljii’].

The proof of this theorem is also deferred to the appendix. The good thewthe theorem carries

is thatg(z; ) and g(z;v) are convex and therefore their sum is also convex. Furthermore, the
functiong(z; -) is piecewise quadratic and the points where it changes from one quéddration

to another are simple to compute. We refer to these points as knots. In theufeséction we
exploit the properties of the functignto devise an efficient procedure for finding the optimal value
of z and from there the road to the optimal dual variables is clear and simple.

12



SOPOPO - 8FTPROJECTIONS ONTOPOLYHEDRA

INPUT: instancex € X' ; targetrankingy ; setsA, B

current prototypes’, ..., u*

; regularization parameter
MARGINS:
p = sort{ (o —u®-x)/[[x||* | a € A}
v =sort{(u’-x—)/||x|? | b B}
KNOTS:
Vielpltz=Yi e —im Vi€ld: 5 =30 v —jy
Q={z:2<C}U{z:%, < C}tU{C}
INTERVALS:
V2€Q: R()=Wz:u<z ; S()=1{5:5 <z
Vze Q: N(z)=min{z' € Q:2 > 2} U{C}

LocAL MIN:

R(2) S(z)
O(z) = (5(2) > e+ R(z)> Vr) / (R(z) + S(2))
r=1 r=1

GLOBAL MIN:
If (3z€ Q s.t. O(z) € [2,N(z)]) Then
2*=0(2) ; *=R(z) ; j*=58(z)
Else If (u1 + 11 <0)
F=0; r=1; j*=1
Else
2*=C ; i*=R(C) ; j*=50)

DUAL’S AUXILIARIES:
1 i 1 J
R S R Do
r=1 r=1

YVacA: a, = <7“7“‘5'X —9a> and w, = u, +a,Xx
+

[B]

OUTPUT:

Vbe B : /Bb — (ub-xW;b —6/@)4_ and W, = Ub—ﬁbx

[ES

Figure 3: Pseudo-code of the soft-projection onto polyhedra (SOR@lgQrithm.

13
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0 2 4 6 8 10

Figure 4: An illustration of the functiog(z; u) + g(z;v). The vectorsu andv are constructed
from, v = (1,2,3,4,5,6),u-x = (2,3,5,1,6,4), A = {4,5,6}, andB = {1, 2, 3}.

3.4 Putting it all together

Due to the strict convexity of(z; ) + g(z; v) its minimum is unique and well defined. Therefore,
it suffices to search for a seemindtcal minimum over all the sub-intervals in which the objective
function is equivalent to a quadratic function. If such a local minimum poimugd it is guaranteed
to be the global minimum. Once we have the value efhich constitutes the global minimum we
can decouple the optimization problems &eand3 and quickly find the optimal solution. There
is though one last small obstacle: the objective function is the sum of twowiseeuadratic
functions. We therefore need to efficiently go overdiméonof the knots derived fronw andv. We
now summarize the full algorithm for finding the optimum of the dual variablesverap up with
its pseudo-code.

Givenp andv we find the sets of knots for each vector, take the union of the two setspand s
the setin an ascending order. Based on the theorems above, it follows imtehethat each interval
between two consecutive knots in the union is also quadratic. ineg) + g(z; v) is convex, the
objective function in each interval can be characterized as falling intmbheo cases. Namely,
the objective function is either monotone (increasing or decreasing) tinihsits unique global
minimum inside the interval. In the latter case the objective function clearly deesereaches the
optimum where its derivative is zero, and then increases. See also iga# fllustration. If the
objective function is monotone in all of the intervals then the minimum is obtainedeabbthe
boundary points = 0 or z = C. Otherwise, we simply need to identify the interval bracketing
the global minimum and then find the optimal valuezdfy finding the minimizer of the quadratic
function associated with the interval. For instance, in Fig. 4 the minimum is attaisedglow5
at the interval defined by the second and third knotg i, say,10 then the optimal value fot
coincides with the minimum below. If howeverC' lies to the left of the minimum, say &t then
the optimum of: is at3. We now formally recap the entire procedure.

14
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We utilize the following notation. For eache [p], define the knots derived fropa

[
z; = § M — Ut
r=1

and similarly, for each € [¢| define

J
Zj = E Vp — JVj .
r=1

From Lemma 4 we know that(z; w) is quadratic in each segment, z; 1) andg(z; v) is quadratic
in each segmerit;, Z;+1). Therefore, as already argued above, the fundjionu) + g(z;v) is
also piecewise quadratic [, C] and its knots are the points in the set,

Q={z:2<C}U{z:Z < C}U{C} .
For each knot € Q, we denote byV (z) its consecutive knot i@, that is,
N(z) =min ({'€ Q:2' >z}u{C}) .
We also need to know for each knot how many knots precede it. Giventa kme define
R(z)=H{zi:zi <z} and S(z) = {z : z; < z}| .

Using the newly introduced notation we can find for a given values bracketing intervalz €
[/, N(Z")]. From Thm. 4 we get that the value of the dual objective functionist

g(zp) +9(zv) =

p

L (R 2 oo (59 2 ,
R(z’) ZNT—'Z T Z MT—I_S(z’) ;VT_Z - Z Vi

r=1 r=R(z")+1 r=S5(z")+1

The unigue minimum of the quadratic function above is attained at the point

S(2")

R(2')
O(7') = (S(Z') > i+ RE)D Vi) / (R(Z') + S(2"))
=1

i=1

Therefore, ifO(2') € [/, N(2')], then the global minimum of the dual objective function is attained
atO(z'). Otherwise, if no such interval exists, the optimum is either at 0 or atz = C. The
minimum is achieved at = 0 iff the derivative of the objective function at= 0 is non-negative,
namely,—u1 — 1 > 0. In this case, the optimal solutionds = 0 and3 = 0 which implies that
w, = u, for all . If on the other hand-u; — 11 < 0 then the optimum is attained at= C. The
skeleton of the pseudo-code for the fast projection algorithm is giveigirBF The most expensive
operation performed by the algorithm is the sortingudindr. Since the sum of the dimensions of
these vectors i% the time complexity of the algorithm 8 (k log(k)).

15
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4. From a single projection to multiple projections

We now describe the algorithm for solving the original batch problem dgfayeEq. (6) using the
SOPOPO algorithm as its core. We would first like to note that the generdl peiblem can also
be viewed as a soft projection problem. We can cast the batch problendamsyfthe set of vectors
{w1,...,wx} which is closest td: zero vectorsO0,...,0} while approximately satisfying a set
of systems of linear constraints where each system is associated with pendeéat relaxation
variable. Put another way, we can view the full batch optimization probletineatask of finding a
relaxed projection of the s€D, ..., 0} onto multiple polyhedra each of which is defined via a set
of linear constraints induced by a single sub-grdphe E(~%). We thus refer to this task as the
soft-projection onto multiple polyhedra. We devise an iterative algorithm wéidves the batch
problem by successively calling to the SOPOPO algorithm from Fig. 3. Werithe and analyze
the algorithm for a slightly more general constrained optimization which resulissimplified
notation. We start with the presentation of our original formulation as an iost@fithe generalized
problem.

To convert the problem in Eq. (6) to a more general form, we assume withgsiof generality
that|E(~%)| = 1 for all i € [m]. We refer to the single set IB(~") asE*. This assumption does
not pose a limitation since in the case of multiple decompositiBits!) = {F1,. .., E;}, we can
replace theéth example withi pseudo-exampleq:(x‘, E), ..., (x*, E;)}. Using this assumption,
we can rewrite the optimization problem of Eq. (6) as follows,

7777

. . S (24)
st.Vie[m],V(rs)eE, w, x'—ws-x'>v, —7 —¢

Vi, €20,
whereC; = Co' is the weight of theith slack variable. To further simplify Eq. (24), we use

w € R™ to denote the concatenation of the vectpss, ..., w;). In addition, we associate an
index, denoted, with each(r, s) € E* and definea’’ € R"* to be the vector,

a’y=( 0 ,..,0, x* ,0,,..,0, —x* ,0,..., 0 ). (25
~—~ ~—~ ~— ~—~
1st block rth block sth block kth block

We also definé’/ = i — ~¢. Finally, we definek; = |E?|. Using the newly introduced notation
we can rewrite Eq. (24) as follows,

W7£
§>0.

N S
min §||W||2+ZCi§
=1
(26)

16
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Our goal is to derive an iterative algorithm for solving Eq. (26) based procedure for solving a
single soft-projection which takes the form,

1 .

min S| -l + G’

w2

StVje k], w-ad>pi_ ¢
£€>0.

(27)

By construction, an algorithm for solving the more general problem difm&qg. (26) would also
solve the more specific problem defined by Eq. (6).

The rest of the section is organized as follows. We first derive theafubk problem given in
Eqg. (26). We then describe an iterative algorithm which on each iteratidarpes a single soft-
projection and present a pseudo-code of the iterative algorithm tailoréaef specific label-ranking
problem of Eq. (6). Finally, we analyze the convergence of the stgg@srative algorithm.

4.1 The dual problem

First, note that the primal objective function of the general problem iseoawnd all the primal
constraints are linear. Therefore, using the same arguments as in Sids 3inple to show that
strong duality holds and a solution to the primal problem can be obtained fsothtion of its
dual problem. To derive the dual problem, we first write the Lagrangian,

m m  k; m
L LD TS 3) DY FICE B P B glcro
i=1 =1

i=1 j=1

where); ; and(¢; are non-negative Lagrange multipliers. Taking the derivativé wifith respect to
w and comparing it to zero gives,

W = Z /\Z}j ahl . (28)

As in the derivation of the dual objective function for a single soft priigec we get that the
following must hold at the optimum,

ki
Vie[m], Y Aij—Ci—¢=0. (29)

J=1

Since); ; and(; are non-negative Lagrange multipliers we get that the set of feasibleosswf
the dual problem is,

ki
S = <A |V, Z)\i,j < C; and Vi, j, A >0
j=1

Using Eq. (28) and Eq. (29) to further rewrite the Lagrangian givesltia objective function,

2
m k;
D) = — 5 IS S |+ S i

i=1 j=1 i=1 j=1

17
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INPUT:  training set{(x’,~*)}, ; decomposition functiole(y) ;
regularization parameteér
INITIALIZE :
Vi € [m], Aj x B; € E(v"), (a,b) € A; x Bj, setag’ =0, ;7 =0
Vr € [k], setw, =0
LooFr:
Choose a sub-graphe [m], A; x Bj € E(v%)
UPDATE:
VacAj:u, = w, —af{jxi Vbe Bj: u, = wb+ﬁz’jxi
SOLVE:
(o', B, {w,}) = SOPOP®{u,},x", v, 4;, B;,C 0})

OuTPUT: The final vectordw, }*_;

Figure 5: The procedure for solving the preference graphs prolikesoft-projections.

The dual of the problem defined in Eq. (26) is therefore,

max DA) . (30)

4.2 An iterative procedure

We are now ready to describe our iterative algorithm. We would like to stgess that the method-
ology and analysis presented here have been suggested by setleoed. aOur procedure is a slight
generalization of row action methods (Censor and Zenios, 1997) whidteis ieferred to as de-
composition methods (see also Lin (2002), Mangasarian and Musiced)(1®latt (1998)). The
iterative procedure works in rounds and operates on the dual fotimeadbjective function. We
show though that each round can be realized as a soft-projectiortiopetaet A denote the vector
of dual variables before thgh iteration of the iterative algorithm. Initially, we sat = 0, which
constitutes a trivial feasible solution to Eq. (30). On tteiteration of the algorithm, we choose a
single example whose index is denoteahd update its dual variables. We freeze the rest of the dual
variables at their current value. We cast ttieiteration as the following constrained optimization
problem,

A = argmax D(A) st Vi#r, Vi€ [k, \ij = Xf?j . (31)

xes

Note thatA’*! is essentially the same & except for the variables corresponding to thle ex-
ample, namely{\, ;| j € [k.]}. In order to explicitly write the objective function conveyed by

18
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Eq. (31) let us introduce the following notation,

k;
u = ZZ)\;jai’j . (32)

itr j=1

The vectoru is equal to the current estimate wfexcluding the contribution of theth set of dual
variables. Withu on hand, we can rewrite the objective function of Eq. (31) as follows,

2

k k k ki
]_ T . " . 1 2 = ; : )7
ab1 DIREN I DILLEN Rt LR BN AR D D) DR
j=1 j=1 j=1 i#r j=1

2
ky

k'r
= | A Do (7 wea) T @)
j=1

=1

wherel is a constant that does not depend on the variabl¢s,in|j € [k,]}. In addition the set
of variables which are not fixed must resideSntherefore,

k;
> A < CrandVj, Ay >0 . (34)
j=1

The fortunate circumstances are that the optimization problem defined KB¥osubject to the
constraints given in Eq. (34) can be rephrased as a soft-projectibiepn. Concretely, let us define
the following soft-projection problem,

1 2

. ._ O e

min o flw—ul® + Cr¢

S.t. VjE[k;TL w.aﬁjzbhj_fr
£&>0.

(35)

The value ofAfj.l is obtained from the optimal value of the dual problem of Eq. (35) as we now
show. The Lagrangian of Eq. (35) is

k
]. _ r o r.q r — r.J T
L= glw—ul®+ C& + 3 Ay (07— —wa) =&
j=1

Differentiating with respect tev and comparing to zero give,
kr
T u+z Arja’d
j=1
As in the previous derivations of the dual objective functions we alsthgét
kr
Crfg“*z)\r,j =0,
j=1
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and thus the Lagrange multipliers must satisfy,

kr
d Ay <G
j=1

Therefore, the dual problem of Eq. (35) becomes,
2

=1 =1 (36)

> Ay <Crand Vi, Ay >0,
7=1
which isidenticalto the problem defined by Eq. (33) subject to the constraints given b{BE)j.

In summary, our algorithm works by updating one set of dual variablesagh round while
fixing the rest of the variables to their current values. Finding the optimaéaf the unrestricted
variables is achieved by defining an instantaneous soft-projection problee instantaneous soft-
projection problem is readily solved using the machinery developed in thiopsesection. The
pseudo-code of this iterative procedure is given in Fig. 5. It is thesdift to reason about the
formal properties of the iterative procedure. From the definition of ttaatgpfrom Eq. (31) we
clearly get that on each round we are guaranteed to increase thebjlethe function unless we
are already at the optimum. In the next subsection we show that this iterati@digm converges
to the global optimum of the dual objective function.

To conclude this section, we would like to note that a prediction of our lalmdditg function is
solely based on inner products between vectors ffem, . .., w;} and an instance. In addition,
as we have shown in the previous section, the solution of each soft fiwojéakes the fornw, =
u, + a.x’ andw;, = u, — Bx’. Since we initially set all vectors to be the zero vector, we get that at
each step of the algorithm all the vectors can be expressed as linear atiotisrof the instances.
Thus, as in the case of support vector machines for classification prebhee can replace the inner
product operation with any Mercer kernel (Vapnik, 1998).

4.3 Analysis of Convergence

To analyze the convergence of the iterative procedure we need toung@dfew more definitions.
We denote byD! the value of the dual objective functidseforethe tth iteration and byA; =
D'l — Dt the increase in the dual on thth iteration. We also denote b¥‘(\) the potential
increase we have gained had we chosentih@xample for updating. We assume that on each
iteration of the algorithm, we choose an example, whose index ¥ghich attains the maximal
increase in the dual, therefofe (A) = max; A’(A"). Last, letD* and\* denote the optimal value
and argument of the dual objective function. Our algorithm maximizes thleofhjective on each
iteration subject to the constraint that for al« ~ andj € [k;], the variables\; ; are kept intact.
Therefore, the sequend?', D?, . .. is monotonically non-decreasing.

To prove convergence we need the following lemma which says that if thathlgads at sub-
optimal solution then it will keep increasing the dual objective on the sulesederation.

Lemma5 Let A be a suboptimal solution)(\) < D*. Then there exists an exampidor which
A"(X) > 0.
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Proof Assume by contradiction that for all A%(A) = 0 and yetD(A) < D*. In this case we
clearly have thak # A*. Letv = A* — X denote the difference between the optimal solution and
the current solution and denatéd) = D (X + 6v) the value of the dual obtained by moving along
the directionv from X. SinceD(\) is concave then so is. Therefore, the line tangent toat 0
resides abové at all points but) = 0. We thus get thaf;(0) + 2'(0)¢ > h(#) and in particular for
6 = 1 we obtain,

R'(0) > h(1) — h(0) = D(A*) — D(A) >0 .

Let VD denote the gradient of the dual objective\atSincel’(0) = VD - v we get that,
VD-v >0 . (37)

We now rewritev as the sum of vectors,

m .
i i Upj T =1
v:E z! where 2% . = ' )
— rJ 0 r#£i
1=

In words, we rewritev as the sum of vectors each of which corresponds to the dual variables

appearing in a single soft-projection problem induced byithexample. From the definition af
together with the form of the dual constraints we get that the vector! is also a feasible solution
for the dual problem. Using the assumption that foi al’(A) = 0, we get that for each € [0, 1],
D(X) > D(X + 6z%). Analogously toh we define the scalar function (6) = D(X + 6z°). Since
h; is derived from the dual problem by constraining the dual variablesstde®n the line\ + 6z,
then as the functioD, h; is also continuously differentiable. The fact thtat0) > h;(0) for all
6 € [0, 1] now implies that:}(0) < 0. FurthermoreVD - z* = h’(0) < 0 for all i which gives,

VD v = VD-izl‘ = iVD.zZ’ <0,
=1 =1

which contradicts Eq. (37). |

Equipped with the above lemma we are now ready to prove that the iterativélaigconverges to
an optimal solution.

Theorem 6 Let D! denote the value of the dual objective after thh iteration of the algorithm
defined in Eq. (31). Denote [y* the optimum of the problem given in Eq. (30). Then, the sequence
D', D? ..., D!, ...converges ta*.

Proof Recall that the primal problem has a trivial feasible solution which is attaigesktiing

w = 0 and¢’ = max; b, For this solution the value of the primal problem is finite. Since
the value of the dual problem cannot exceed the value of the primal pnoléeget thatD* < ~c.
Therefore, the sequence of dual objective values is a monotonigemneasing, and upper bounded
sequenceD! < D? < ... < D! < ... < D* < 0. Thus, this sequence converges to a limit which
we denote byD'. Itis left to show thatD’ = D*. Assume by contradiction th@* — D’ = ¢ > 0.
The set of feasible dual solutionsS, is a compact set. Lek’ : S — R be the average increase of
the dual over all possible choices for an example to use for updating

A'(X) = ;Z Al(A) .
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On each iteration we have by construction that> A’(\"). DefineA = {\ : D(X\) > D* —¢/2}.
From the concavity oD we get that the sef\ A is a compact set. Sina®’ is a continuous function
it attains a minimum value ovet\ A. Denote this minimum value byand leth be the point which
attains this minimum. From Lemma 5 we know that- 0 since otherwisé) () would have equal
to D* which in turn contradicts the fact that¢ A. Since for allt we know thatD! < D' = D* —¢

we conclude thah’ € S\ A. This fact implies that for alt
Ay >N >ANN) =k .

The above lower bound on the increase in the dual implies that the seqiené¥, D3, ... di-
verges to infinity and thu®’ = oo which is in contradiction to the fact th@?’ = D* — ¢ < co. B

5. Experiments

In this section we compare the SOPOPO algorithm from Fig. 3 and our iteqatbezdure for
soft-projection onto multiple polyhedra from Fig. 5 to a commercial interior pwmiathod called
LOQO (Vanderbei, 1999).

Our first set of experiments focuses on assessing the efficiency O8O for soft-projection
onto asinglepolyhedron. In this set of experiments, the data was generated as folkinss we
chose the number of classés= |Y| and definedE to be the setd x B with A = [k/2] and
B = [k] \ [k/2]. We set the value of; to be one forr € A and otherwise it was set to zero.
We then sampled an instangeand a set of vectorfuy, . .., u;} from a100-dimensional Normal
distribution of a zero mean and an identity matrix as a covariance matrix. Afterggng the
instance and the targets, we presented the optimization problem of Eq. (QPORO and to the
LOQO optimization package. We repeated the above experiment for diffesiues ofk ranging
from 10 through100. For each value ok we repeated the entire experiment ten times, where in
each trial we generated a new problem. We then averaged the resultisetan trials. The average
CPU time consumed by the two algorithms as a functiok of depicted on the left hand side of
Fig. 6. We would like to note that we have implemented SOPOPO both in Matlab ahd \@e
used the Matlab interface to LOQO, while LOQO itself was run in its native mode. raffort
results using our Matlab implementation of SOPOPO in order to eliminate possible inmpétine
advantages. Our Matlab implementation follows the pseudo-code of FigvertNeless, as clearly
indicated by the results, the time consumed by SOPOPO is negligible and exhipigsveny minor
increase withk. In contrast, the run time of LOQO increases significantly withThe apparent
advantage of our algorithm over LOQO can be attributed to a few factost, EOQO is a general
purposenumericaloptimization toolkit. Its generality is clearly a two edged sword as it employs
a numerical interior point method regardless of the problem on hand.dfortine, LOQO was set
to solve numerically the soft-projection problem of Eq. (7) while SOPOPQesabptimally the
equivalent reduced problem of Eg. (19). To eliminate the latter mitigatingrfadtech is in favor
of SOPOPO, we repeated the same experiment as before while presenti@®@® the reduced
optimization problem rather than the original soft-projection problem. Thdteeare depicted on
the right hand side of Fig. 6. Yet again, the run time of SOPOPO is still significlower than
LOQO for k > 300 and as before there is no significant increase in the run time of SOPORO as
increases.
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Figure 6: A comparison of the run-time of SOPOPO and LOQO on the origofabsojection
problem defined in Eqg. (7) (left) and on the reduced problem from E9). (fight).

The second experiment compares the performance of the iterative algdrém Fig. 5 and
LOQO in the batch setting described by Eq. (6). In this experiment we gextkesynthetic data
as follows. First, we chose the number of clasees |Y| and sampledn instances from a00-
dimensional Normal distribution of a zero mean and an identity covariance makeirext sampled

a set of vectorgwy, . .

., wy,} from the same Gaussian distribution. For each instaicee calcu-

lated the vectox’ € R*, whoser'th element isw,. - x*. We then set’ to be the indices of the top
k/2 elements of* while B¢ consisted of all the rest of the elemerits,\ A’. For example, assume

thatv’ = (0.4,4.1,3.5, —2) then A’

{2,3} and B

{1,4}. As feedback we set, = 1 for all

a € A® and forb € B’ we sety; = 0. In our running example, the resulting vectgramounts to
(0,1,1,0). Finally, we sefE(~?) = {E'}, whereE’ = A x B, and the value of was alwaysl.
We repeated the above process for different valudsrahging from 20 through 100. The number
of examples was fixed to bi&)k and thus ranged fror200 through1000. The value o’ was set to
bel/m. In each experiment we terminated the wrapper procedure described Biwhen the gap
between the primal and dual objective functions went belaw. We first tried to execute LOQO
with the original optimization problem described in Eq. (6). However, thaltieg optimization
problem was too large for LOQO to manage in a reasonable time, even fomtikest problem
(k = 20). Our iterative algorithm solves such small problems in less than a secorfdcilitate a
more meaningful comparison, we used the techniques described in Setr&uaced the original
optimization problem from Eqg. (6) with the following reduced problem,

k

D || 2 anx' -

r=1 ||ireAl

1

2

max
a?ﬁ

stVic[m]:Vaec A, o) >0andVbe B, 5.>0

2

> A

i:reBt

k
D DN I DI W A

r=1

ire At i:reBt

(38)

Vie[m}:Zafz: ZﬁégC.

acAl be B
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Figure 7: A comparison of the run-time in batch settings of SOPOPO and L@&@y(the reduced
problem in Eqg. (38)). The number of examples was set tthliemes the number of labels
(denotedk) in each problem.

By presenting the reduced problem given in Eq. (38) to LOQO, we injemtéd a bit of prior
knowledge that made the task manageable for LOQO. The derivation dfole seduced problem
is given in appendix C. The results are summarized in Fig. 7. As clearly eaeén from the
graph, our iterative algorithm outperforms LOQO, in particular as the $iteegoroblem increases.
Due to the nature of the decomposition procedure, our running time is norlorgpendent of the
value ofk as the number of graphs grows with Nonetheless, even fér = 100 the run time of
SOPOPOQO’s wrapper does not exceed 4 seconds. These promisitig eesphasize the viability of
our approach for large scale optimization problems.

The last experiment underscores an interesting property of our ietorithm. In this ex-
periment we have used the same data as in the previous experimeit wittd0 andm = 1000.
After each iteration of the algorithm, we examined both the increase in the djegtive after the
update and the difference between the primal and dual values. THes @gushown in Fig. 8. The
graphs exhibit a phenomena reminiscent of a phase transition. Aftet db@literations, which
is also the number of examples, the increase in the dual objective becomesufeinibhis phase
transition is also exhibited for other choicesrof £k andC'. Note in addition that as the number of
epochs increases, the increase of the dual objective becomes védirgesatiely to the duality gap.
It is common to use the increase of the dual objective as a stopping criteddhelast experiment
indicates that this criterion does not necessarily imply convergence. W fied@her investigation
of these phenomena to future research.

We would like to conclude this section with a short discussion which contrastapproach
with previous algorithms. Previous large margin approaches for labkinguassociate a unique
slack variable with each constraint which is induced by a pair of labelsfdexample (Elisseeff
and Weston, 2001) and the SVM-light implementation of label ranking (Jwect2002). Thus,
using the terminology of this paper, these methods employ the overly simple allegaimgosition
(see Fig. 2). Using the all-pair decomposition, the label ranking problemdisced to a binary
classification problem. Indeed, the soft projection problem can be sahagtically and our wrap-
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Figure 8: The increase in the dual objective (left) and the primal-dualmgist) as a function of
the number of iterations of the iterative algorithm in Fig. 5.

per algorithm from Fig. 5 is equivalent to the SOR algorithm for binary diaason described
in (Mangasarian and Musicant, 1999). The practical performance@®R algorithm for binary
classification was extensively studied by Mangasarian and others. fQhe main contributions
of this paper is a general and flexible algorithmic framework for labelirgnkhich can be car-
ried with more complex decompositions. Moreover, trying to import one of teeigusly studied
approach to our setting is difficult. A main obstacle is attributed to the fact thatethef feasible
solutions for the dual problem must satisfy the constraipte, = >, 6, < C. Thus, a sequential
minimization algorithm must update at ledstiual variables on each iteration in order to preserve
the feasibility of the dual solution. Therefore the SMO algorithm of Platt 81 @9not easily appli-
cable to our setting. The SOPOPO algorithm suggests an efficient alterbptiypdating atomically
all the dual variables of each sub-graph.

6. Discussion

We described an algorithmic framework for label ranking. Each iteratiauoglgorithm is based

on SOPOPO, a fast procedure for soft projection onto a single paighetdihere are several possi-
ble extensions of the work presented in this paper. One of them is fueheragjization of SOPOPO

to more complex polyhedral constraints. Recall that SOPOPO is desigrawjecting onto a poly-
hedron which is defined according to a complete bipartite graph. Theajiza¢ion of SOPOPO

to decompositions consisting &fpartite graphs is one particular interesting task. Another type of
polyhedra that naturally emerges is regression problems with multiple outputisis Isetting, we
would like the predicted difference’s(x) — fs(z) to be as close as possible to the target differences
v — 75, POSSIbly up to an insensitivity term This problem can be formalized by replacing the
constraintf,.(x) — fs(x) > v —vs — & with the constrainf( f,.(x) — fs(x)) — (7 —7s)| < e+&. Yet
another interesting direction is the applicability of SOPOPO to online learnirgngfCrammer
and Singer, 2005) where each online update is performed efficiently &&POPO. The phase
transition phenomenon underscored in our experiments surfaces thaantpssue of generaliza-
tion properties of our algorithm. In particular, the fact that increases iwahes of dual become
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Figure 9: An illustration of the construction of a flow graph fo= {1,2} andB = {3,4,5}.

miniscule suggests the usage of early stopping so long as the predictioa@cdaes not degrade.
Finally, we plan to work on real world applications of SOPOPO to tasks ssicfategory ranking
for text documents.

Appendix A. The equivalence between the dual problems in Eq. 8) and Eqg. (13)

In this appendix we prove that the solutions of the problem in Eq. (18) andr@inal dual problem
from Eq. (13) are equivalent. (For an alternative derivation seg(Blsag et al., 2006)). To do so, it
suffices to show that for each feasible solution of the reduced probkna é¢ixists an equivalent fea-
sible solution of the original problem and vice versa. Clearly, givavhich satisfies the constraints
imposed by Eq. (13), defining and3 as given by Eq. (14) would satisfy the constraints of Eq. (18)
and furthermoreD(a, 3) = D(7). Denoting the optimal solution of Eq. (13) by* and that of
Eq. (18) by(a*, 8*), we immediately get thab(a*, 3*) > D(7*). We are thus left to show that
for each feasible solutioay, 3 there exists a feasible solutiensuch thatD () = D(«, 3). This
reverse mapping is non-trivial and there does not exist a closed feserigtion of the mapping
from «, 3 to 7. The existence of such a mapping is provided in Lemma 7 below which uses the
duality of max-flow and min-cut. Lemma 7 immediately implies thet-*) > D(a*, 3*). In sum-
mary, we have shown that bofh(r*) < D(a*,3*) andD(7*) > D(a*, 3*) holds and therefore
D(t*) = D(a*, 3%).

Lemma 7 Let(«, 3) be a feasible solution of the reduced problem given in Eq. (18). Therg ther
exists a feasible solution of the original problem (Eq. (13)) such that(t) = D(a, B).

Proof The proof is based on the duality of max-flow and min-cut (see for examplméh et al.
(1990)). Given a feasible solutiofax, 3) defined over the setd and B we construct a directed
graph(V’, E'). The set of nodes of the graph consists of the original nodes defindtblsetsA
andB and two additional nodeswhich serves as a source anathich is a sinkV’ = AUBU{s, t}.
In addition to the original edges of the bipartite graph supported bpd B we add edges fromto
all the nodes i and from all the nodes iB to t and thusk’ = (A x B)U ({s} x A)U (B x {t}).
Each edge € E' is associated with a capacity value). For eacte € A x B we definec(e) = oc.
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For each edge of the for(s, a) wherea € A we definec(e) = «, and analogously fofb, t) where
b € B we setc(e) = . Anillustration of the construction is given in Fig. 9 whete= {1, 2} and
B ={3,4,5}. We are now going to define a flow problem ', E’). We show in the sequel that
maximalflow in the graph above defines a feasible solution for the original optimizatiollem.
Furthermore, by using the max-flow min-cut duality, we also show that thes\attained by the
induced solution coincides with the value of the reduced optimization problefaig3).

A flow for the graph above is an assignment of non-negative valuesgesefl : £/ — R,
which satisfies

(1) Y(r,v) € E', F((r,v)) <c(r,v)
@) WweV, > F(lrv)= Y  Fllr). (39)

r:(rw)ER’ r:(v,r)EE’

The value of a flow function is defined as the total flow outgoing the source,

Let 7* denote the flow attaining the maximal value among all possible flows, that(i8Val
val(F). We next prove that vaFF*) = > 4 a,. To do so we use the max-flow min-cut duality
theorem. This theorem states that the value of the maximal flow equals the F&heentinimal cut
of a graph. Formally, a cut of the graph is a sulfset V' such that &= S and t¢ S. The value of
a cut is defined as the tote@pacityof edges outgoing from¥' to V' \ S,

val(s) = > c(r,v) .

(rp)eSx(VI\S)NE’

A cut is said to be minimal if its value does not exceed the value of any othesfehe graph.
The value of the cut = {s} is equal to}_, . , a,,. We now show thats is a minimal cut. We
note in passing that while there might exist other cuts attaining the minimum vaiwejrfpurpose
it suffices to show thab = {s} is a minimal cut. LetS’ be a cut different fromS. Clearly, if
val(S’) = oo thenS’ cannot be minimal. We thus can safely assume thdt¥al< oo. If there
exists a node € A NS’ then all the nodes i must also reside i8’. Otherwise, there exists an
edge(a, b) of an infinite capacity which crosses the cut and 8l = co > val(S). Sincet cannot
be inS” we get that for each € B, the edggb, t) crosses the cut and therefore the value of the
cutis atleasd, 5 3 = > ,c4 - If ON the other handl N S” = ) then all the edges from s to
the nodes i cross the cut. Therefore, V&l) is again at leas} , _ 4 . We have thus shown that
S = {s} is a minimal cut of the flow graph.

From the duality theorem of max-flow and min-cut we get that there exists a nifionar™*
suchthat valF*) = 3 . 4 a,. Since each outgoing edge from s hits a different nodé, we must
have thatF*( (s,a) ) = «, in order to reach the optimal flow value. Similarly, for edch B we
get that7*( (b,t) ) = . We now setr, , = F*((a, b)) for each(a,b) € A x B. Since a proper
flow associates a non-negative value with each edge we obtain,that 0. From the conservation

of flow we get that,
Qo =F*((sa)) =) F((a,0)) =D Tap ,

beB beB

yeA
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and

By =F((b1) =D F((ab) =D Tap -

acA acA

Thus, this construction of from the optimal flow satisfies the equalities given in Eq. (14). By
construction, each nodec A has one incoming eddge, a) and outgoing edges to all nodes/h
Thus, the flow conservation requirement of Eq. (39) again implies that

C>ZP S(I Zpab ZTab'

a€eA a€AbeEB a€AbEB

Therefore,m adheres with the constraints of Eq. (13). In summary, we have constradeasible
solution for the original constrained optimization problem which is consistéhttive definitions
of a andg. Therefore,D(T) = D(«, 3) as required. [ |

Appendix B. Technical Proofs

Proof of Lemma 3
Throughout the proof we assume that the elements of the vactwe sorted in a non-ascending
order, namelyy; > po > ... > p,,. Recall that the definition gi(z, p) is,

plz,pu) = max{je[p —(Zur—z>>0} .

For brevity, we refer tg(z, u) simply asp. Denote bya* the optimal solution of the constrained
optimization problem of Eq. (20) and let

p*=max{j : af >0} .

From Eq. (23) we know that} = p,, — 6* > 0 for r < p* where

p*
§ Hj — = )
Jj=1

and thereforey > p*. We thus need to prove that= p*. Assume by contradiction that> p*. Let
us denote byr the vector induced by the choice gfthat is,«,, = 0 for » > p anda, = p, — 6 for
r < p, where,

p
> mj—z
j=1

From the definition ofp, we must have that, = p, — 6 > 0. Therefore, since the elements of
p are sorted in a non-ascending order, we getthat 1, — 6 > 0 for all » < p. In addition,
the choice of) implies that||a||; = z. We thus get thatx is a feasible solution as it satisfies the
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constraints of Eq. (20). Examining the objective function attained &e get that,

*

B

P p
loc = ml* = AR DN P
r=1 r=p*+1 r=p+1
p* p P
< P+ D+ >
r=1 r=p*+1 r=p+1
P p
= 292+ Z :U'72~7

*

1

ﬁ
I
—

T

g
+

where to derive the inequality above we used the factihat§ > 0 for all » < p. We now need to
analyze two cases depending on whetiteis greater tha or not. If 0* > 6 than we can further
bound||a — p||? from above as follows,

p* P
lo—pl®> < D 02+ Y pk <
r=1

r=p*+1 r=

*

P p
@+ Y uy = e —plf
1 r=p*+1

which contradicts the optimality at*. We are thus left to show that the cake 6* also leads to a
contradiction. We do so by constructing a veaiofrom a*. We show that this vector satisfies the
constraints of EQ. (20) hence it is a feasible solution. Finally, we showthieadbjective function
attained by@ is strictly smaller than that af*. We define the vectak € R” as follows,

i ape—€e r=p
Qar =1 € r=p~+1
ax otherwise

T

wheree = %(Mp*+1 — 0*). Since we assume that> 6* andp > p* we know thata,«; =
Hpr+1 — 0 > 0 which implies that

- 1 1 1
Qp*+1 = §(Mp*+1 —0%) > §(Mp*+1 —-0) = o Gpr 1 >0.

Furthermore, we also get that,

~ 1 1 1 1

Xpr = Hpr T GHp+1 T 59* > 5(,“0*—5-1 —-0) = S0P+l = 0.
In addition, by construction we get that the rest of componeni@ afe also non-negative. Our
construction also preserves the norm, thatag|; = ||a*|[1 = z. Thus, the vectofx is also a

feasible solution for the set of constraints defined by Eq. (20). Alasnaxng the difference in the
objective functions attained hy anda* we get,

lo* =l = &= ul2 = (02 + 2 = (67 + 0+ (i1 — ©)°)
= 2e(pprp1—0") =22 = 262 > 0.
2
=2e

We thus obtained the long desired contradiction which concludes the proof. |
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Proof of Thm. 4
Plugging the value of the optimal soluti@afrom Eq. (23) into the objectivéa — p||? and using
Lemma 3 give that,

1 pz;p)
gzm) = ——— | D m—z| + D o,
p(z’ l‘l/) r=1 r—= .
=p(z;p)+1

where, to remind the reader, the number of strictly positiieis,

P
p(z: ) ZmaX{p i — = (Zm —z) > 0}
p r=1

Throughout the proof is fixed and known. We therefore abuse our notation and use the sirtha
p(z) for p(z; n). Recall thatu is given in a non-ascending order;;1 < u; fori € [p — 1].
Therefore, we get that

i+1

i+l = ZMT - Z + 1 Mz-‘rl = ZMT + fit1 — Mit1 — @it
r=1
7
= Zur — il = Zur iy = Z .
r=1 r=1
Thus, the sequencs, z», .. ., 2, is monotonically non-decreasing and the intervalsz; ) are

well defined. The definition 0b(z) implies that for allz € [z;, zi+1) we havep(z) = p(z;) = .
Hence, the value of(z; i) for eachz € [z;, zi11) IS,

i 2 p
1 2
) = ; <§ IUJT_Z> + E Ky -
r=1 r=i+1

We have thus established the fact thét; i) is a quadratic function in each interv@l;, z; 1) and
in particular it is continuous in each such sub-interval. To show ghatcontinuous ino0, C] we
need to examine all of its knots. Computing the left limit and the right limit of at each knot we
get that,

2
P
lim g(z; = lim— —-z| + 2
pooton) = gt (2wm) < 3

= Z(;m Z,U/r""lﬂz) + Z I

r=i+1
.2 2
= 1y + Z Ky
r=i+1

30



SOPOPO - 8FTPROJECTIONS ONTOPOLYHEDRA

and

limg(z; ) = lim

p
2
212 21z 1 — 1 (ZMT_Z> +ZMT
r=i
1 i— i 2 p
_ Z._1<Zur—ZMr+im> Y
r=1 r=1 r=1
p p
= =V +> m =i+ Y
r=1t

r=i+1

Therefore,lim, |, g(z; u) = lim,,, g(2; u) andg is indeed continuous. The continuity of the
derivative ofg is shown by using the same technique of examining the right and left limits at each

knot z; for the function,
g (Z /"’ ; (Z - ZNT)

Finally, we use the fact that a continuously differentiable function is coiiffets derivative is
monotonically non-decreasing. Singes quadratic in each segmelnt, z;1], ¢’ is indeed mono-
tonically non-decreasing in each segment. Furthermore, from the contiriujtyx® get thaty’ is
monotonically non-decreasing on the entire intefoal’]. Thus,g is convex on0, C1. [

Appendix C. Derivation of Eq. (38)

In this section we derive conversion of the optimization problem from Eqto(&s reduced form
given in Eq. (38). In Sec. 4 (Eq. (30)) we derived the dual of EB). (Assuming that for each
example E(v') = {A’ x B}, and using the definitions af/, ™/, andw from Sec. 4, we can
rewrite the dual of Eq. (6) as

m‘gx —*ZHWer + Z Z Z )‘ab pYa

i=1 qcA? beB%

st.Viem]:V(ab) e A x B, N,>0 (40)
viem]: > MN,<C o,
(a,b)€Aix Bt
where A
= D> A= D> > N (41)
iir€ At beB iir€Bt a€ At
For eachu € A’ define, '
al = > Ny (42)
beBi
and similarly, for eaclh € B define,
By= > Ny (43)
acAl
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Using these definitions, we can rewrite Eq. (41) as,
w, = Z alxt — Z gixt
iire At ireB?
Therefore, the dual objective can be rewritten as,
1 E 2 k
D=3 Yaix = Xoax| 4 2| X et ¥ e
r=1 ||li:re A i:r€B r=1 \ireAl i:r€B

As in Sec. 3, we need to enforce the additional constraints and3,

Vie[m] :Yae A, o >0 andVbe B', (>0

ViE[m]:Zaiz Zﬁég@'.

acAl be Bt

Combining the dual definition with the above constraints gives the reducétepn from Eq. (38).
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