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Abstract
We discuss the problem of learning to rank labels from a real valued feedback associated with

each label. We cast the feedback as a preferences graph wherethe nodes of the graph are the
labels and edges express preferences over labels. We tacklethe learning problem by defining a
loss function for comparing a predicted graph with a feedback graph. This loss is materialized by
decomposing the feedback graph into bipartite sub-graphs.We then adopt the maximum-margin
framework which leads to a quadratic optimization problem with linear constraints. While the size
of the problem grows quadratically with the number of the nodes in the feedback graph, we derive
a problem of a significantly smaller size and prove that it attains the same minimum. We then
describe an efficient algorithm, called SOPOPO, for solvingthe reduced problem by employing a
soft projection onto the polyhedron defined by a reduced set of constraints. We also describe and
analyze a wrapper procedure for batch learning when multiple graphs are provided for training. We
conclude with a set of experiments which show significant improvements in run time over a state
of the art interior-point algorithm.

1. Introduction

To motivate the problem discussed in this paper let us consider the following application. Many
news feeds such as Reuters and Associated Press tag each news articlethey handle with labels
drawn from a predefined set of possible topics. These tags are used for routing articles to different
targets and clients. Each tag may also be associated with a degree of relevance, often expressed
as a numerical value, which reflects to what extent a topic is relevant to the news article on hand.
Tagging each individual article is clearly a laborious and time consuming task.In this paper we
describe and analyze an efficient algorithmic framework for learning andinferring preferences over
labels. Furthermore, in addition to the task described above, our learning apparatus includes as
special cases problems ranging from binary classification to total order prediction.
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SHALEV-SHWARTZ AND SINGER

We focus on batch learning in which the learning algorithm receives a set of training examples,
each example consists of an instance and a target vector. The goal of thelearning process is to
deduce an accurate mapping from the instance space to the target space.The target spaceY is a
predefinedset of labels. For concreteness, we assume thatY = {1, 2, . . . , k}. The prediction task
is to assert preferences over the labels. This setting in particular generalizes the notion of a single
tag or labely ∈ Y = {1, 2, . . . , k}, typically used in multiclass categorization tasks, to a full set of
preferences over the labels. Preferences are encoded by a vectorγ ∈ R

k, whereγy > γy′ means
that labely is more relevant to the instance than labely′. The preferences over the labels can also
be described as a weighted directed graph: the nodes of the graph are the labels and weighted edges
encode pairwise preferences over pairs of labels. In Fig. 1 we give the graph representation for the
target vector(−1, 0, 2, 0,−1) where each edge marked with its weight. For instance, the weight of
the edge(3, 1) is γ3 − γ1 = 3.

The class of mappings we employ in this paper is the set of linear functions. While this func-
tion class may seem restrictive, the pioneering work of Vapnik (1998) andcolleagues demonstrates
that by using Mercer kernels one can employ highly non-linear predictors, called support vector
machines (SVM) and still entertain all the formal properties and simplicity of linear predictors. We
propose a SVM-like learning paradigm for predicting the preferences over labels. We generalize
the definition of the hinge-loss used in SVM to the label ranking setting. Our generalized hinge
loss contrasts the predicted preferences graph and the target preferences graph by decomposing the
target graph into bipartite sub-graphs. As we discuss in the next section,this decomposition into
sub-graphs is rather flexible and enables us to analyze several previously defined loss functions in a
single unified setting. This definition of the generalized hinge loss lets us posethe learning problem
as a quadratic optimization problem while the structured decomposition leads to anefficient and
effective optimization procedure.

The main building block of our optimization procedure is an algorithm which performs fast and
frugal SOft ProjectionsOnto aPOlyhedron and is therefore abbreviated SOPOPO. Generalizing the
iterative algorithm proposed by Hildreth (1957) (see also Censor and Zenios (1997)) from half-space
constraints to polyhedra constraints, we also derive and analyze an iterative algorithm which on each
iteration performs a soft projection onto a single polyhedron. The end result is a fast optimization
procedure for label ranking from general real-valued feedback.

The paper is organized as follows. In Sec. 2 we start with a formal definition of our setting and
cast the learning task as a quadratic programming problem. We also make references to previous
work on related problems that are covered by our setting. Our efficient optimization procedure for
the resulting quadratic problem is described in two steps. First, we presentin Sec. 3 the SOPOPO
algorithm for projecting onto a single polyhedron. Then, in Sec. 4, we derive and analyze an iterative
algorithm which solves the original quadratic optimization problem by successive activations of
SOPOPO. Experiments are provided in Sec. 5 and concluding remarks aregiven in Sec. 6.

Before moving to the specifics, we would like to stress that while the learning task discussed in
this paper is well rooted in the machine learning community, the focus of the paper is the design
and analysis of an optimization apparatus. The readers interested in the broad problem of learning
preferences, including its learning theoretic facets such as generalization properties are referred for
instance to (Cohen et al., 1999, Herbrich et al., 2000, Rudin et al., 2005,Agarwal and Niyogi, 2005,
Clemenon et al., 2005) and the many references therein.
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Figure 1: The graph induced by the feedbackγ = (−1, 0, 2, 0,−1).

2. Problem Setting

In this section we introduce the notation used throughout the paper and formally describe our prob-
lem setting. We denote scalars with lower case letters (e.g.x andα), and vectors with bold face
letters (e.g.x andα). Sets are designated by upper case Latin letters (e.g. E) and set of setsby
bold face (e.g.E). The set of non-negative real numbers is denoted byR+. For anyk ≥ 1, the
set of integers{1, . . . , k} is denoted by[k]. We use the notation(a)+ to denote the hinge function,
namely,(a)+ = max{0, a}.

Let X be an instance domain and letY = [k] be a predefined set of labels. A target for an
instancex ∈ X is a vectorγ ∈ R

k whereγy > γy′ means thaty is more relevant tox thany′. We
also refer toγ as a label ranking. We would like to emphasize that two different labels may attain
the same rank, that is,γy = γy′ while y 6= y′. In this case, we say thaty andy′ are of equal relevance
to x. We can also describeγ as a weighted directed graph. The nodes of the graph are labeled by
the elements of[k] and there is a directed edge of weightγr − γs from noder to nodes iff γr > γs.
In Fig. 1 we give the graph representation for the label-ranking vectorγ = (−1, 0, 2, 0,−1).

The learning goal is to learn a ranking function of the formf : X → R
k which takesx as an

input instance and returns a ranking vectorf(x) ∈ R
k. We denote byfr(x) therth element off(x).

Analogous to the target vector,γ, we say that labely is more relevant than labely′ with respect
to the predicted ranking iffy(x) > fy′(x). We assume that the label-ranking functions are linear,
namely,

fr(x) = wr · x ,

where eachwr is a vector inR
n andX ⊆ R

n. As we discuss briefly at the end of Sec. 4, our al-
gorithm can be generalized straightforwardly to non-linear ranking functions by employing Mercer
kernels (Vapnik, 1998).

We focus on a batch learning setting in which a training setS = {(xi, γi)}m
i=1 is provided.

Thus, each example consists of an instancex
i ∈ X and a label-rankingγi ∈ R

k. The performance
of a label-ranking functionf on an example(x, γ) is evaluated via a loss functionℓ : R

k×R
k → R.

Clearly, we want the loss of a predicted ranking to be small if it expresses similar preferences over
pairs as the given label-ranking. Moreover, we view the differenceγr−γs for a pair of labelsr ands
as an encoding of the importance of the ordering ofr ahead ofs. That is, the larger this difference is
the more we preferr overs. We view this requirement as a lower bound on the difference between
fr(x) andfs(x). Formally, for each pair of labels(r, s) ∈ Y × Y such thatγr > γs, we define the
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loss off with respect to the pair as,

ℓr,s(f(x), γ) = ((γr − γs) − (fr(x) − fs(x)))+ . (1)

The above definition of loss extends the hinge-loss used in binary classification problems (Vapnik,
1998) to the problem of label-ranking. The lossℓr,s reflects the amount by which the constraint
fr(x)− fs(x) ≥ γr − γs is not satisfied. While the construction above is defined for pairs, our goal
though is to associate a loss with theentirepredicted ranking and not a single pair. Thus, we need
to combine the individual losses over pairs into one meaningful loss. In this paper we take a rather
flexible approach by specifying an apparatus for combining the individual losses over pairs into a
single loss. We combine the different pair-based losses into a single loss bygrouping the pairs of
labels into independent sets each of which is isomorphic to acomplete bipartitegraph. Formally,
given a target label-ranking vectorγ ∈ R

k, we defineE(γ) = {E1, . . . , Ed} to be a collection of
subsets ofY × Y. For eachj ∈ [d], defineVj to be the set of labels which support the edges inEj ,
that is,

Vj = {y ∈ Y : ∃ r s.t.(r, y) ∈ Ej ∨ (y, r) ∈ Ej} . (2)

We further require thatE(γ) satisfies the following conditions,

1. For eachj ∈ [d] and for each(r, s) ∈ Ej we haveγr > γs.

2. For eachi 6= j ∈ [d] we haveEi ∩ Ej = ∅.

3. For eachj ∈ [d], the sub-graph defined by(Vj , Ej) is a complete bipartite graph. That is,
there exists two setsA andB, such thatA ∩ B = ∅, Vj = A ∪ B, andEj = A × B.

In Fig. 2 we illustrate a few possible decompositions into bipartite graphs for a given label-ranking.
The loss of each sub-graph(Vj , Ej) is defined as the maximum over the losses of the pairs

belonging to the sub-graph. In order to add some flexibility we also allow different sub-graphs to
have different contribution to the loss. We do so by associating a weightσj with each sub-graph.
The general form of our loss is therefore,

ℓ(f(x), γ) =

d∑

j=1

σj max
(r,s)∈Ej

ℓr,s(f(x), γ) , (3)

where eachσj ∈ R+ is a non-negative weight. The weightsσj can be used to associate importance
values with each sub-graph(Vj , Ej) and to facilitate different notions of losses. For example, in
multilabel classification problems, each instance is associated with a set of relevant labels which
come from a predefined setY. The multilabel classification problem is a special case of the label
ranking problem discussed in this paper and can be realized by settingγr = 1 if the r’th label is
relevant and otherwise definingγr = 0. Thus, the feedback graph itself is of a bipartite form. Its
edges are fromA × B whereA consists of all the relevant labels andB of the irrelevant ones. If
we decide to setE(γ) to contain the single setA × B and defineσ1 = 1 thenℓ(f(x), γ) amounts
to themaximumvalue ofℓr,s over pairs of edges inA × B. Thus, the loss of this decomposition
distills to the worst loss suffered over all pairs of comparable labels. Alternatively, we can setE(γ)
to consist of all the sets{(r, s)} for each(r, s) ∈ A×B and defineσj = 1/|E(γ)|. In this case the
total lossℓ(f(x), γ) is theaveragevalue ofℓr,s over the edges inA × B. Clearly, one can devise
decompositions ofE(γ) which are neither all pairs of edges nor a singleton including all edges. We
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Figure 2: Three possible decompositions into complete bipartite sub-graphs of the graph from
Fig. 1. Top: all-pairs decomposition; Middle: all adjacent layers; Bottom: toplayer
versus the rest of the layers. The edges and vertices participating in each sub-graph are
depicted in black while the rest are presented in gray. In each graph the nodes constituting
the setA are designated by black circles while for the nodes inB by filled black circles.

can thus capture different notions of losses for label ranking functions with multitude schemes for
casting the relative importance of each subset(Vj , Ej).

Equipped with the loss function given in Eq. (3) we now formally define our learning problem.
As in most learning settings, we assume that there exists an unknown distribution D overX × R

k

and that each example in our training set is identically and independently drawn from D. The
ultimate goal is to learn a label ranking functionf which entertains a small generalization loss,
E(x,γ)∼D [ℓ(f(x), γ)]. Since the distribution is not known we use instead an empirical sample from
D and encompass a penalty for excessively complex label-ranking functions. Generalizing the
Support Vector Machine (SVM) paradigm, we define a constrained optimization problem, whose
optimal solution would constitute our label-ranking function. The objective function we need to
minimize is composed of two terms. The first is the empirical loss of the label-ranking function
on the training set and the second is a penalty for complexity, often referred to as a regularization
term. This term amounts to the sum of the squared norms of{w1, . . . ,wk}. The trade-off between
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the regularization term and the empirical loss term is controlled by a parameterC. The resulting
optimization problem is,

min
w1,...,wk

1

2

k∑

j=1

‖wj‖
2 + C

m∑

i=1

ℓ(f(xi), γi) , (4)

wherefy(x
i) = wy ·x

i. Note that the loss function in Eq. (3) can also be represented as the solution
of the following optimization problem,

ℓ(f(x), γ) = min
ξ∈R

d
+

d∑

j=1

σj ξj

s.t. ∀j ∈ [d], ∀(r, s) ∈ Ej , fr(x) − fs(x) ≥ γr − γs − ξj ,

(5)

whered = |E(γ)|. Thus, we can rewrite the optimization problem given in Eq. (4) as a quadratic
optimization problem,

min
w1,...,wk,ξ

1

2

k∑

j=1

‖wj‖
2 + C

m∑

i=1

|E(γi)|
∑

j=1

σj ξi
j

s.t. ∀ i ∈ [m], ∀Ej ∈ E(γi), ∀ (r, s) ∈ Ej , wr · x
i − ws · x

i ≥ γi
r − γi

s − ξi
j

∀ i, j, ξi
j ≥ 0 .

(6)

To conclude this section, we would like to review the rationale for choosing anone-sided loss
for each pair by casting a single inequality for each(r, s). It is fairly easy to define a two-sided loss
for a pair by mimicking regression problems. Concretely, we could replace the definition ofℓr,s as
given in Eq. (1) with the loss|fr(x) − fs(x) − (γr − γs)|. This loss penalizes forany deviation
from the desired difference ofγr − γs. Instead, our loss is one sided as it penalizes only for not
achieving a lower-bound. This choice is more natural in ranking applications. For instance, suppose
we need to induce a ranking over4 labels where the target label ranking is(−1, 2, 0, 0). Assume
that the predicted ranking is instead(−5, 3, 0, 0). In most ranking and search applications such a
predicted ranking would be perceived as being right on target since thepreferences it expresses over
pairs are on par with the target ranking. Furthermore, in most ranking applications, overly demotion
of the most irrelevant items and excessive promotion of the most relevant ones is perceived as
beneficial rather than a deficiency. Put another way, the set of targetvalues encode minimal margin
requirements and over-achieving these margin requirements should not bepenalized.

Related Work Various known supervised learning problems can be viewed as special cases of the
label ranking setting described in this paper. First, note that when there are only two labels we obtain
the original constrained optimization of support vector machines for binaryclassification (Cortes
and Vapnik, 1995) with the bias term set to zero. In the binary case, our algorithm reduces to the
SOR algorithm described in (Mangasarian and Musicant, 1999). The multiclass problem, in which
the target is a single labely ∈ Y, can also be derived from our setting by definingγy = 1 and
γr = 0 for all r 6= y. A few special-purpose algorithms have been suggested to solve the multiclass
SVM problems. The multiclass version of Weston and Watkins (1999) is obtained by defining
E(γ) = {{(y, r)}}r 6=y, that is, each subset consists of a single pair(y, r). The multiclass version
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of Crammer and Singer (2001) can be obtained by simply settingE(γ) to be a single set containing
all the pairs(y, r) for r 6= y, namelyE(γ) = {{(y, 1), . . . , (y, y − 1), (y, y + 1), . . . , (y, k)}}.
While the learning algorithms from (Weston and Watkins, 1999) and (Crammer and Singer, 2001)
are seemingly different, they can be solved using the same algorithmic infrastructure presented in
this paper. Proceeding to more complex decision problems, the task of multilabelclassification or
ranking is concerned with predicting a set or relevant labels or ranking the labels in accordance to
their relevance to the input instance. This problem was studied by severalauthors (Elisseeff and
Weston, 2001, Crammer and Singer, 2002, Dekel et al., 2003). Among these studies, the work
of Elisseeff and Weston (2001) is probably the closest to ours yet it is stilla derived special case
of our setting . Elisseeff and Weston focus on a feedback vectorγ which constitutes a bipartite
graph by itself and define a constrained optimization problem with aseparateslack variable for
each edge in the graph. Formally, each instancex is associated with a set of relevant labels denoted
Y . As discussed in the example above, the multilabel categorization setting can thus be realized
by definingγr = 1 for all r ∈ Y andγs = 0 for all s 6∈ Y . The construction of Elisseeff and
Weston can be recovered by definingE(γ) = {{(r, s)}|γr > γs}. Our approach is substantially
more general as it allows much richer and flexible ways to decompose the multilabel problem as
well as more general label ranking problems.

3. Fast “Soft” Projections

In the previous section we introduced the learning apparatus. Our goal now is to derive and analyze
an efficient algorithm for solving the label ranking problem. In addition to efficiency, we also
require that the algorithm would be general and flexible so it can be used with anydecomposition of
the feedback according toE(γ). While the algorithm presented in this and the coming sections is
indeed efficient and general, its derivation is rather complex. We therefore would like to present it
in a bottom-up manner starting with a sub-problem which constitutes the main buildingblock of the
algorithm. In this sub-problem we assume that we have obtained a label-ranking function realized
by the setu1, . . . ,uk and the goal is to modify the ranking function so as to fit better a newly
obtained example. To further simplify the derivation, we focus on the case whereE(γ) contains a
single complete bipartite graph whose set of edges are simply denoted byE. The end result is the
following simplified constrained optimization problem,

min
w1,...,wk,ξ

1

2

k∑

y=1

‖wy − uy‖
2 + Cξ

s.t. ∀(r, s) ∈ E, wr · x − ws · x ≥ γr − γs − ξ

ξ ≥ 0 .

(7)

Herex ∈ X is a single instance andE is a set of edges which induces a complete bipartite graph.
The focus of this section is an efficient algorithm for solving Eq. (7). Thisoptimization problem

finds the set closest to{u1, . . . ,uk} which approximately satisfies a system of linear constraints
with a single slack (relaxation) variableξ. Put another way, we can view the problem as the task
of finding a relaxed projection of the set{u1, . . . ,uk} onto the polyhedron defined by the set of
linear constraints induced fromE. We thus refer to this task as the soft projection. Our algorithmic
solution, while being efficient, is rather detailed and its derivation consists ofmultiple complex
steps. We therefore start with a high level overview of its derivation. We first derive a dual version
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of the problem defined by Eq. (7). Each variable in the dual problem corresponds to an edge in
E. Thus, the total number of dual variables can be as large ask2/4. We then introduce a new
and more compact optimization problem which has onlyk variables. We prove that the reduced
problem nonetheless attains the same optimum as the original dual problem. Thisreduction is one
of the two major steps in the derivation of an efficient soft projection procedure. We next show that
the reduced problem can be decoupled into two simpler constrained optimizationproblems each of
which corresponds to one layer in the bipartite graph induced byE. The two problems are tied by
a single variable. We finally reach an efficient solution by showing that the optimal value of the
coupling variable can be efficiently computed inO(k log(k)) time. We recap our entire derivation
by providing the pseudo-code of the resulting algorithm at the end of the section.

3.1 The Dual Problem

To start, we would like to note that the primal objective function is convex and all the primal con-
straints are linear. A necessary and sufficient condition for strong duality to hold in this case is that
there exists a feasible solution to the primal problem (see for instance (Boydand Vandenberghe,
2004)). A feasible solution can indeed obtained by simply settingwy = 0 for all y and defining
ξ = max(r,s)∈E(γr−γs). Therefore, strong duality holds and we can obtain a solution to the primal
problem by finding the solution of its dual problem. To do so we first write the Lagrangian of the
primal problem given in Eq. (7), which amounts to,

L =
1

2

k∑

y=1

‖wy − uy‖
2 + Cξ +

∑

(r,s)∈E

τr,s (γr − γs − ξ + ws · x − wr · x) − ζξ

=
1

2

k∑

y=1

‖wy − uy‖
2 + ξ



C −
∑

(r,s)∈E

τr,s − ζ



+
∑

(r,s)∈E

τr,s (γr − wr · x − γs + ws · x) ,

whereτr,s ≥ 0 for all (r, s) ∈ E andζ ≥ 0. To derive the dual problem we now can use the strong
duality. We eliminate the primal variables by minimizing the Lagrangian with respect toits primal
variables. First, note that the minimum of the termξ(C −

∑

(r,s)∈Eτr,s − ζ) with respect toξ is zero
wheneverC −

∑

(r,s)∈E τr,s − ζ = 0. If howeverC −
∑

(r,s)∈E τr,s − ζ 6= 0 then this term can
be made to approach−∞. Since we need to maximize the dual we can rule out the latter case and
pose the following constraint on the dual variables,

C −
∑

(r,s)∈E

τr,s − ζ = 0 . (8)

Next, recall our assumption thatE induces a complete bipartite graph(V, E) (see also Eq. (2)).
Therefore, there exists two setsA andB such thatA∩B = ∅, V = A∪B, andE = A×B. Using
the definition of the setsA andB we can rewrite the last sum of the Lagrangian as,

∑

r∈A,s∈B

τr,s (γr − wr · x − γs + ws · x) =

∑

r∈A

(γr − wr · x)
∑

s∈B

τr,s −
∑

s∈B

(γs − ws · x)
∑

r∈A

τr,s .
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Eliminating the remaining primal variablesw1, . . . ,wk is done by differentiating the Lagrangian
with respect towr for all r ∈ [k] and setting the result to zero. For ally ∈ A, the above gives the
set of constraints,

∇wyL = wy − uy −

(
∑

s∈B

τy,s

)

x = 0 . (9)

Similarly, for y ∈ B we get that,

∇wyL = wy − uy +

(
∑

r∈A

τr,y

)

x = 0 . (10)

Finally, we would like to note that for any labely /∈ A∪B we get thatwy − uy = 0. Thus, we can
omit all such labels from our derivation. Summing up, we get that,

wy =







uy +
(∑

s∈B τy,s

)
x y ∈ A

uy −
(∑

r∈A τr,y

)
x y ∈ B

uy otherwise
. (11)

Plugging Eq. (11) and Eq. (8) into the Lagrangian and rearranging termsgive the following dual
objective function,

D(τ ) = −
1

2
‖x‖2

∑

y∈A

(
∑

s∈B

τy,s

)2

−
1

2
‖x‖2

∑

y∈B

(
∑

r∈A

τr,y

)2

(12)

+
∑

y∈A

(γy − uy · x)
∑

s∈B

τy,s −
∑

y∈B

(γy − uy · x)
∑

r∈A

τr,y .

In summary, the resulting dual problem is,

max
τ∈R

|E|
+

D(τ ) s.t.
∑

(r,s)∈E

τr,s ≤ C . (13)

3.2 Reparametrization of the Dual Problem

Each dual variableτr,s corresponds to an edge inE. Thus, the number of dual variables may be
as large ask2/4. However, the dual objective function depends only on sums of variables τr,s.
Furthermore, each primal vectorwy also depends on sums of dual variables (see Eq. (11)). We
exploit these useful properties to introduce an equivalent optimization of asmaller size with onlyk
variables. We do so by defining the following variables,

∀y ∈ A, αy =
∑

s∈B

τy,s and ∀y ∈ B, βy =
∑

r∈A

τr,y . (14)

The primal variableswy from Eq. (11) can be rewritten usingαy andβy as follows,

wy =







uy + αyx y ∈ A

uy − βyx y ∈ B
uy otherwise

. (15)
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Overloading our notation and usingD(α, β) to denote dual objective function in terms ofα andβ,
we can rewrite the dual objective of Eq. (12) as follows,

D(α, β) = −
1

2
‖x‖2




∑

y∈A

α2
y +

∑

y∈B

β2
y



 +
∑

y∈A

(γy −uy ·x)αy −
∑

y∈B

(γy −uy ·x)βy . (16)

Note that the definition ofαy andβy from Eq. (14) implies thatαy andβy are non-negative. Fur-
thermore, by construction we also get that,

∑

y∈A

αy =
∑

y∈B

βy =
∑

(r,s)∈E

τr,s ≤ C . (17)

In summary, we have obtained the following constrained optimization problem,

max
α∈R

|A|
+

, β∈R
|B|
+

D(α, β) s.t.
∑

y∈A

αy =
∑

y∈B

βy ≤ C . (18)

We refer to the above optimization problem as thereducedproblem since it encompasses at
mostk = |V | variables. In appendix A we show that the reduced problem and the original dual
problem from Eq. (13) are equivalent. The end result is the following corollary.

Corollary 1 Let (α⋆, β⋆) be the optimal solution of the reduced problem in Eq. (18). Define
{w1, . . . ,wk} as in Eq. (15). Then,{w1, . . . ,wk} is the optimal solution of the soft projection
problem defined by Eq. (7).

We now move our focus to the derivation of an efficient algorithm for solving the reduced
problem. To make our notation easy to follow, we definep = |A| andq = |B| and construct two
vectorsµ ∈ R

p andν ∈ R
q such that for eacha ∈ A there is an element(γa − ua · x)/‖x‖2 in µ

and for eachb ∈ B there is an element−(γb − ub · x)/‖x‖2 in ν. The reduced problem can now
be rewritten as,

min
α∈R

p
+

,β∈R
q
+

1

2
‖α − µ‖2 +

1

2
‖β − ν‖2

s.t.
p
∑

i=1

αi =

q
∑

j=1

βj ≤ C .

(19)

3.3 Decoupling the reduced optimization problem

In the previous section we showed that the soft projection problem givenby Eq. (7) is equivalent
to the reduced optimization problem of Eq. (19). Note that the variablesα andβ are tied together
through a single equality constraint‖α‖1 = ‖β‖1. We represent this coupling ofα andβ by
rewriting the optimization problem in Eq. (19) as,

min
z∈[0,C]

g(z; µ) + g(z; ν) ,

where

g(z; µ) = min
α

1

2
‖α − µ‖2 s.t.

p
∑

i=1

αi = z , αi ≥ 0 , (20)

10
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and similarly

g(z; ν) = min
β

1

2
‖β − ν‖2 s.t.

q
∑

j=1

βj = z , βj ≥ 0 . (21)

The functiong(z; ·) takes the same functional form whether we useµ or ν as the second argu-
ment. We therefore describe our derivation in terms ofg(z; µ). Clearly, the same derivation is also
applicable tog(z; ν). The Lagrangian ofg(z; µ) is,

L =
1

2
‖α − µ‖2 + θ

(
p
∑

i=1

αi − z

)

− ζ · α ,

whereθ ∈ R is a Lagrange multiplier andζ ∈ R
p
+ is a vector of non-negative Lagrange multipliers.

Differentiating with respect toαi and comparing to zero gives the following KKT condition,

dL

dαi
= αi − µi + θ − ζi = 0 .

The complementary slackness KKT condition implies that wheneverαi > 0 we must have that
ζi = 0. Thus, ifαi > 0 we get that,

αi = µi − θ + ζi = µi − θ . (22)

Since all the non-negative elements of the vectorα are tied via a single variable we would have
ended with a much simpler problem had we known the indices of these elements. On a first sight,
this task seems difficult as the number of potential subsets ofα is clearly exponential in the di-
mension ofα. Fortunately, the particular form of the problem renders an efficient algorithm for
identifying the non-zero elements ofα. The following lemma is a key tool in deriving our proce-
dure for identifying the non-zero elements.

Lemma 2 Let α be the optimal solution to the minimization problem in Eq. (20). Lets and j be
two indices such thatµs > µj . If αs = 0 thenαj must be zero as well.

Proof Assume by contradiction thatαs = 0 yetαj > 0. Let α̃ ∈ R
k be a vector whose elements are

equal to the elements ofα except forα̃s andα̃j which are interchanged, that is,α̃s = αj , α̃j = αs,
and for every otherr /∈ {s, j} we haveα̃r = αr. It is immediate to verify that the constraints of
Eq. (20) still hold. In addition we have that,

‖α − µ‖2 − ‖α̃ − µ‖2 = µ2
s + (αj − µj)

2 − (αj − µs)
2 − µ2

j = 2αj(µs − µj) > 0 .

Therefore, we obtain that‖α − µ‖2 > ‖α̃ − µ‖2, which contradicts the fact thatα is the optimal
solution.

Let I denote the set{i ∈ [p] : αi > 0}. The above lemma gives a simple characterization of the set
I. Let us reorder theµ such thatµ1 ≥ µ2 ≥ . . . ≥ µp. Simply put, Lemma 2 implies that after the
reordering, the setI is of the form{1, . . . , ρ} for some1 ≤ ρ ≤ p. Had we knownρ we could have
simply use Eq. (22) and get that

p
∑

i=1

αi =

ρ
∑

i=1

αi =

ρ
∑

i=1

(µi − θ) = z ⇒ θ =
1

ρ

(
ρ
∑

i=1

µi − z

)

.

11
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In summary, givenρ we can summarize the optimal solution forα as follows,

αi =







µi −
1

ρ

(
ρ
∑

i=1

µi − z

)

i ≤ ρ

0 i > ρ

. (23)

We are left with the problem of finding the optimal value ofρ. We could simply enumerate all
possible values ofρ in [p], for each possible value computeα as given by Eq. (23), and then choose
the value for which the objective function (‖α − µ‖2) is the smallest. While this procedure can
be implemented quite efficiently, the following lemma provides an even simpler solutiononce we
reorder the elements ofµ to be in a non-increasing order.

Lemma 3 Letα be the optimal solution to the minimization problem given in Eq. (20) and assume
thatµ1 ≥ µ2 ≥ . . . ≥ µp. Then, the number of strictly positive elements inα is,

ρ(z, µ) = max

{

j ∈ [p] : µj −
1

j

(
j
∑

r=1

µr − z

)

> 0

}

.

The proof of this technical lemma is deferred to the appendix.
Had we known the optimal value ofz, i.e. the argument attaining the minimum ofg(z; µ) +

g(z; ν) we could have calculated the optimal dual variablesα⋆ andβ⋆ by first findingρ(z, µ) and
ρ(z, ν) and then findingα andβ using Eq. (23). This is a classical chicken-and-egg problem: we
can easily calculate the optimal solution given some side information, however,obtaining the side
information seems as difficult as finding the optimal solution. One option is to perform a search
over anǫ-net of values forz in [0, C]. For each candidate value forz from theǫ-net we can findα
andβ and then choose the value which attains the lowest objective value (g(z; µ)+g(z; ν)). While
this approach may be viable in many cases, it is still quite time consuming. To our rescue comes
the fact thatg(z; µ) andg(z; ν) entertain a very special structure. Rather than enumerating over
all possible values ofz we need to check at mostk + 1 possible values forz. To establish the last
part of our efficient algorithm which performs this search for the optimal value ofz we need the
following theorem. The theorem is stated withµ but, clearly, it also holds forν .

Theorem 4 Letg(z; µ) be as defined in Eq. (20). For eachi ∈ [p], define

zi =
i∑

r=1

µr − iµi .

Then, for eachz ∈ [zi, zi+1] the functiong(z; µ) is equivalent to the following quadratic function,

g(z; µ) =
1

i

(
i∑

r=1

µr − z

)2

+

p
∑

r=i+1

µ2
r .

Moreover,g is continuous, continuously differentiable, and convex in[0, C].

The proof of this theorem is also deferred to the appendix. The good news that the theorem carries
is thatg(z; µ) andg(z; ν) are convex and therefore their sum is also convex. Furthermore, the
functiong(z; ·) is piecewise quadratic and the points where it changes from one quadraticfunction
to another are simple to compute. We refer to these points as knots. In the nextsub-section we
exploit the properties of the functiong to devise an efficient procedure for finding the optimal value
of z and from there the road to the optimal dual variables is clear and simple.

12
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INPUT: instancex ∈ X ; target rankingγ ; setsA, B

current prototypesu1, . . . ,uk ; regularization parameterC

MARGINS:

µ = sort
{
(γa − u

a · x)/‖x‖2 | a ∈ A
}

ν = sort
{
(ub · x − γb) /‖x‖2 | b ∈ B

}

KNOTS:

∀i ∈ [p] : zi =
∑i

r=1 µr − iµi ∀j ∈ [q] : z̃j =
∑j

s=1 νs − jνj

Q = {zi : zi < C} ∪ {z̃j : z̃j < C} ∪ {C}

INTERVALS:

∀z ∈ Q : R(z) = |{zi : zi ≤ z}| ; S(z) = |{z̃j : z̃j ≤ z}|

∀z ∈ Q : N(z) = min{z′ ∈ Q : z′ > z} ∪ {C}

LOCAL M IN :

O(z) =



S(z)

R(z)
∑

r=1

µr + R(z)

S(z)
∑

r=1

νr



 / (R(z) + S(z))

GLOBAL M IN :

If (∃z ∈ Q s.t. O(z) ∈ [z, N(z)]) Then

z⋆ = O(z) ; i⋆ = R(z) ; j⋆ = S(z)

Else If (µ1 + ν1 ≤ 0)

z⋆ = 0 ; i⋆ = 1 ; j⋆ = 1

Else

z⋆ = C ; i⋆ = R(C) ; j⋆ = S(C)

DUAL’ S AUXILIARIES :

θα =
1

i⋆

(
i⋆∑

r=1

µr − z⋆

)

; θβ =
1

j⋆





j⋆
∑

r=1

νr − z⋆





OUTPUT:

∀a ∈ A : αa =
(

γa−ua·x
‖x‖2 − θα

)

+
and wa = ua + αa x

∀b ∈ B : βb =
(

ub·x−γb

‖x‖2 − θβ

)

+
and wb = ub − βb x

Figure 3: Pseudo-code of the soft-projection onto polyhedra (SOPOPO) algorithm.
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Figure 4: An illustration of the functiong(z; µ) + g(z; ν). The vectorsµ andν are constructed
from, γ = (1, 2, 3, 4, 5, 6), u · x = (2, 3, 5, 1, 6, 4), A = {4, 5, 6}, andB = {1, 2, 3}.

3.4 Putting it all together

Due to the strict convexity ofg(z; µ) + g(z; ν) its minimum is unique and well defined. Therefore,
it suffices to search for a seeminglylocal minimum over all the sub-intervals in which the objective
function is equivalent to a quadratic function. If such a local minimum point is found it is guaranteed
to be the global minimum. Once we have the value ofz which constitutes the global minimum we
can decouple the optimization problems forα andβ and quickly find the optimal solution. There
is though one last small obstacle: the objective function is the sum of two piecewise quadratic
functions. We therefore need to efficiently go over theunionof the knots derived fromµ andν. We
now summarize the full algorithm for finding the optimum of the dual variables and wrap up with
its pseudo-code.

Givenµ andν we find the sets of knots for each vector, take the union of the two sets, and sort
the set in an ascending order. Based on the theorems above, it follows immediately that each interval
between two consecutive knots in the union is also quadratic. Sinceg(z; µ)+ g(z; ν) is convex, the
objective function in each interval can be characterized as falling into oneof two cases. Namely,
the objective function is either monotone (increasing or decreasing) or it attains its unique global
minimum inside the interval. In the latter case the objective function clearly decreases, reaches the
optimum where its derivative is zero, and then increases. See also Fig. 4 for an illustration. If the
objective function is monotone in all of the intervals then the minimum is obtained at one of the
boundary pointsz = 0 or z = C. Otherwise, we simply need to identify the interval bracketing
the global minimum and then find the optimal value ofz by finding the minimizer of the quadratic
function associated with the interval. For instance, in Fig. 4 the minimum is attained just below5
at the interval defined by the second and third knots. IfC is, say,10 then the optimal value forz
coincides with the minimum below5. If howeverC lies to the left of the minimum, say at3, then
the optimum ofz is at3. We now formally recap the entire procedure.
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We utilize the following notation. For eachi ∈ [p], define the knots derived fromµ

zi =

i∑

r=1

µr − iµi ,

and similarly, for eachj ∈ [q] define

z̃j =

j
∑

r=1

νr − jνj .

From Lemma 4 we know thatg(z; µ) is quadratic in each segment[zi, zi+1) andg(z; ν) is quadratic
in each segment[z̃j , z̃j+1). Therefore, as already argued above, the functiong(z; µ) + g(z; ν) is
also piecewise quadratic in[0, C] and its knots are the points in the set,

Q = {zi : zi < C} ∪ {z̃j : z̃j < C} ∪ {C} .

For each knotz ∈ Q, we denote byN(z) its consecutive knot inQ, that is,

N(z) = min
(
{z′ ∈ Q : z′ > z} ∪ {C}

)
.

We also need to know for each knot how many knots precede it. Given a knot z we define

R(z) = |{zi : zi ≤ z}| and S(z) = |{z̃i : z̃i ≤ z}| .

Using the newly introduced notation we can find for a given valuez its bracketing interval,z ∈
[z′, N(z′)]. From Thm. 4 we get that the value of the dual objective function atz is,

g(z; µ) + g(z; ν) =

1

R(z′)





R(z′)
∑

r=1

µr − z





2

+

p
∑

r=R(z′)+1

µ2
r +

1

S(z′)





S(z′)
∑

r=1

νr − z





2

+

p
∑

r=S(z′)+1

ν2
r .

The unique minimum of the quadratic function above is attained at the point

O(z′) =



S(z′)

R(z′)
∑

i=1

µi + R(z′)

S(z′)
∑

i=1

νi



 /
(
R(z′) + S(z′)

)
.

Therefore, ifO(z′) ∈ [z′, N(z′)], then the global minimum of the dual objective function is attained
at O(z′). Otherwise, if no such interval exists, the optimum is either atz = 0 or at z = C. The
minimum is achieved atz = 0 iff the derivative of the objective function atz = 0 is non-negative,
namely,−µ1 − ν1 ≥ 0. In this case, the optimal solution isα = 0 andβ = 0 which implies that
wr = ur for all r. If on the other hand−µ1 − ν1 < 0 then the optimum is attained atz = C. The
skeleton of the pseudo-code for the fast projection algorithm is given in Fig. 3. The most expensive
operation performed by the algorithm is the sorting ofµ andν. Since the sum of the dimensions of
these vectors isk the time complexity of the algorithm isΘ(k log(k)).
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4. From a single projection to multiple projections

We now describe the algorithm for solving the original batch problem defined by Eq. (6) using the
SOPOPO algorithm as its core. We would first like to note that the general batch problem can also
be viewed as a soft projection problem. We can cast the batch problem as finding the set of vectors
{w1, . . . ,wk} which is closest tok zero vectors{0, . . . ,0} while approximately satisfying a set
of systems of linear constraints where each system is associated with an independent relaxation
variable. Put another way, we can view the full batch optimization problem asthe task of finding a
relaxed projection of the set{0, . . . ,0} onto multiple polyhedra each of which is defined via a set
of linear constraints induced by a single sub-graphEj ∈ E(γi). We thus refer to this task as the
soft-projection onto multiple polyhedra. We devise an iterative algorithm whichsolves the batch
problem by successively calling to the SOPOPO algorithm from Fig. 3. We describe and analyze
the algorithm for a slightly more general constrained optimization which results ina simplified
notation. We start with the presentation of our original formulation as an instance of the generalized
problem.

To convert the problem in Eq. (6) to a more general form, we assume without loss of generality
that |E(γi)| = 1 for all i ∈ [m]. We refer to the single set inE(γi) asEi. This assumption does
not pose a limitation since in the case of multiple decompositions,E(γi) = {E1, . . . , Ed}, we can
replace theith example withd pseudo-examples:{(xi, E1), . . . , (x

i, Ed)}. Using this assumption,
we can rewrite the optimization problem of Eq. (6) as follows,

min
w1,...,wk,ξ

1

2

k∑

r=1

‖wr‖
2 +

m∑

i=1

Ci ξ
i

s.t. ∀ i ∈ [m], ∀ (r, s) ∈ Ei, wr · x
i − ws · x

i ≥ γi
r − γi

s − ξi

∀ i, ξi ≥ 0 ,

(24)

whereCi = Cσi is the weight of theith slack variable. To further simplify Eq. (24), we use
w̄ ∈ R

nk to denote the concatenation of the vectors(w1, . . . ,wk). In addition, we associate an
index, denotedj, with each(r, s) ∈ Ei and defineai,j ∈ R

nk to be the vector,

a
i,j = ( 0

︸︷︷︸

1st block

, . . . , 0 , x
i

︸︷︷︸

rth block

, 0 , , . . . , 0 , −x
i

︸︷︷︸

sth block

, 0 , . . . , 0
︸︷︷︸

kth block

) . (25)

We also definebi,j = γi
r − γi

s. Finally, we defineki = |Ei|. Using the newly introduced notation
we can rewrite Eq. (24) as follows,

min
w̄,ξ

1

2
‖w̄‖2 +

m∑

i=1

Ci ξ
i

s.t. ∀i ∈ [m], ∀j ∈ [ki], w̄ · ai,j ≥ bi,j − ξi

ξi ≥ 0 .

(26)
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Our goal is to derive an iterative algorithm for solving Eq. (26) based ona procedure for solving a
single soft-projection which takes the form,

min
w̄,ξi

1

2
‖w̄ − u‖2 + Ci ξ

i

s.t. ∀j ∈ [ki], w̄ · ai,j ≥ bi,j − ξi

ξi ≥ 0 .

(27)

By construction, an algorithm for solving the more general problem defined in Eq. (26) would also
solve the more specific problem defined by Eq. (6).

The rest of the section is organized as follows. We first derive the dualof the problem given in
Eq. (26). We then describe an iterative algorithm which on each iteration performs a single soft-
projection and present a pseudo-code of the iterative algorithm tailored for the specific label-ranking
problem of Eq. (6). Finally, we analyze the convergence of the suggested iterative algorithm.

4.1 The dual problem

First, note that the primal objective function of the general problem is convex and all the primal
constraints are linear. Therefore, using the same arguments as in Sec. 3.1it is simple to show that
strong duality holds and a solution to the primal problem can be obtained from the solution of its
dual problem. To derive the dual problem, we first write the Lagrangian,

L =
1

2
‖w̄‖2 +

m∑

i=1

Ci ξ
i +

m∑

i=1

ki∑

j=1

λi,j

(
bi,j − ξi − w̄ · ai,j

)
−

m∑

i=1

ζiξ
i ,

whereλi,j andζi are non-negative Lagrange multipliers. Taking the derivative ofL with respect to
w̄ and comparing it to zero gives,

w̄ =
m∑

i=1

ki∑

j=1

λi,j a
i,j . (28)

As in the derivation of the dual objective function for a single soft projection, we get that the
following must hold at the optimum,

∀i ∈ [m],

ki∑

j=1

λi,j − Ci − ζi = 0 . (29)

Sinceλi,j andζi are non-negative Lagrange multipliers we get that the set of feasible solutions of
the dual problem is,

S =






λ

∣
∣
∣
∣
∣
∣

∀i,

ki∑

j=1

λi,j ≤ Ci and ∀i, j, λi,j ≥ 0






.

Using Eq. (28) and Eq. (29) to further rewrite the Lagrangian gives thedual objective function,

D(λ) = −
1

2

∥
∥
∥
∥
∥
∥

m∑

i=1

ki∑

j=1

λi,j a
i,j

∥
∥
∥
∥
∥
∥

2

+
m∑

i=1

ki∑

j=1

λi,j bi,j .
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INPUT: training set{(xi, γi)}m
i=1 ; decomposition functionE(γ) ;

regularization parameterC

INITIALIZE :

∀i ∈ [m], Aj × Bj ∈ E(γi), (a, b) ∈ Aj × Bj , setαi,j
a = 0, βi,j

b = 0

∀r ∈ [k], setwr = 0

LOOP:

Choose a sub-graphi ∈ [m], Aj × Bj ∈ E(γi)

UPDATE:

∀a ∈ Aj : ua = wa − αi,j
a xi ∀b ∈ Bj : ub = wb + βi,j

b xi

SOLVE:

(αi,j , βi,j , {wr}) = SOPOPO({ur},x
i, γi, Aj , Bj , C σi

j)

OUTPUT: The final vectors{wr}
k
r=1

Figure 5: The procedure for solving the preference graphs problemvia soft-projections.

The dual of the problem defined in Eq. (26) is therefore,

max
λ∈S

D(λ) . (30)

4.2 An iterative procedure

We are now ready to describe our iterative algorithm. We would like to stress again that the method-
ology and analysis presented here have been suggested by several authors. Our procedure is a slight
generalization of row action methods (Censor and Zenios, 1997) which is often referred to as de-
composition methods (see also Lin (2002), Mangasarian and Musicant (1999), Platt (1998)). The
iterative procedure works in rounds and operates on the dual form ofthe objective function. We
show though that each round can be realized as a soft-projection operation. Letλt denote the vector
of dual variables before thetth iteration of the iterative algorithm. Initially, we setλ1 = 0, which
constitutes a trivial feasible solution to Eq. (30). On thetth iteration of the algorithm, we choose a
single example whose index is denotedr and update its dual variables. We freeze the rest of the dual
variables at their current value. We cast thetth iteration as the following constrained optimization
problem,

λt+1 = argmax
λ∈S

D(λ) s.t. ∀i 6= r, ∀j ∈ [ki], λi,j = λt
i,j . (31)

Note thatλt+1 is essentially the same asλt except for the variables corresponding to therth ex-
ample, namely,{λr,j | j ∈ [kr]}. In order to explicitly write the objective function conveyed by
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Eq. (31) let us introduce the following notation,

u =
∑

i6=r

ki∑

j=1

λt
i,ja

i,j . (32)

The vectoru is equal to the current estimate ofw̄ excluding the contribution of therth set of dual
variables. Withu on hand, we can rewrite the objective function of Eq. (31) as follows,

−
1

2

∥
∥
∥
∥
∥
∥

kr∑

j=1

λr,ja
r,j

∥
∥
∥
∥
∥
∥

2

−





kr∑

j=1

λr,ja
r,j



 · u −
1

2
‖u‖2 +

kr∑

j=1

λr,jb
r,j +

∑

i6=r

ki∑

j=1

λt
i,jb

i,j

= −
1

2

∥
∥
∥
∥
∥
∥

kr∑

j=1

λr,ja
r,j

∥
∥
∥
∥
∥
∥

2

+

kr∑

j=1

λr,j

(
br,j − u · ar,j

)
+ Γ , (33)

whereΓ is a constant that does not depend on the variables in{λr,j | j ∈ [kr]}. In addition the set
of variables which are not fixed must reside inS, therefore,

ki∑

j=1

λr,j ≤ Cr and ∀j, λr,j ≥ 0 . (34)

The fortunate circumstances are that the optimization problem defined by Eq.(33) subject to the
constraints given in Eq. (34) can be rephrased as a soft-projection problem. Concretely, let us define
the following soft-projection problem,

min
w̄,ξr

1

2
‖w̄ − u‖2 + Cr ξr

s.t. ∀j ∈ [kr], w̄ · ar,j ≥ br,j − ξr

ξr ≥ 0 .

(35)

The value ofλt+1
r,j is obtained from the optimal value of the dual problem of Eq. (35) as we now

show. The Lagrangian of Eq. (35) is

L =
1

2
‖w̄ − u‖2 + Cr ξr +

kr∑

j=1

λr,j

(
br,j − ξr − w̄ · ar,j

)
− ζrξ

r .

Differentiating with respect tōw and comparing to zero give,

w̄ = u +

kr∑

j=1

λr,j a
r,j .

As in the previous derivations of the dual objective functions we also getthat,

Cr − ζr −
kr∑

j=1

λr,j = 0 ,
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and thus the Lagrange multipliers must satisfy,

kr∑

j=1

λr,j ≤ Cr .

Therefore, the dual problem of Eq. (35) becomes,

max
λr,·

−
1

2

∥
∥
∥
∥
∥
∥

kr∑

j=1

λr,j a
r,j

∥
∥
∥
∥
∥
∥

2

+

kr∑

j=1

λr,j (br,j − u · ar,j) s.t.

kr∑

j=1

λr,j ≤ Cr and ∀j, λr,j ≥ 0 ,

(36)

which is identicalto the problem defined by Eq. (33) subject to the constraints given by Eq.(34).
In summary, our algorithm works by updating one set of dual variables oneach round while

fixing the rest of the variables to their current values. Finding the optimal value of the unrestricted
variables is achieved by defining an instantaneous soft-projection problem. The instantaneous soft-
projection problem is readily solved using the machinery developed in the previous section. The
pseudo-code of this iterative procedure is given in Fig. 5. It is therefore left to reason about the
formal properties of the iterative procedure. From the definition of the update from Eq. (31) we
clearly get that on each round we are guaranteed to increase the dual objective function unless we
are already at the optimum. In the next subsection we show that this iterative paradigm converges
to the global optimum of the dual objective function.

To conclude this section, we would like to note that a prediction of our label-ranking function is
solely based on inner products between vectors from{w1, . . . ,wk} and an instancex. In addition,
as we have shown in the previous section, the solution of each soft projection takes the formwa =
ua +αax

i andwb = ub−βbx
i. Since we initially set all vectors to be the zero vector, we get that at

each step of the algorithm all the vectors can be expressed as linear combinations of the instances.
Thus, as in the case of support vector machines for classification problems, we can replace the inner
product operation with any Mercer kernel (Vapnik, 1998).

4.3 Analysis of Convergence

To analyze the convergence of the iterative procedure we need to introduce a few more definitions.
We denote byDt the value of the dual objective functionbefore the tth iteration and by∆t =
Dt+1 − Dt the increase in the dual on thetth iteration. We also denote by∆i(λ) the potential
increase we have gained had we chosen theith example for updatingλ. We assume that on each
iteration of the algorithm, we choose an example, whose index isr, which attains the maximal
increase in the dual, therefore∆r(λ) = maxi ∆

i(λt). Last, letD⋆ andλ⋆ denote the optimal value
and argument of the dual objective function. Our algorithm maximizes the dual objective on each
iteration subject to the constraint that for alli 6= r andj ∈ [ki], the variablesλi,j are kept intact.
Therefore, the sequenceD1, D2, . . . is monotonically non-decreasing.

To prove convergence we need the following lemma which says that if the algorithm is at sub-
optimal solution then it will keep increasing the dual objective on the subsequent iteration.

Lemma 5 Let λ be a suboptimal solution,D(λ) < D⋆. Then there exists an exampler for which
∆r(λ) > 0.
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Proof Assume by contradiction that for alli, ∆i(λ) = 0 and yetD(λ) < D⋆. In this case we
clearly have thatλ 6= λ⋆. Let v = λ⋆ − λ denote the difference between the optimal solution and
the current solution and denoteh(θ) = D(λ + θv) the value of the dual obtained by moving along
the directionv from λ. SinceD(λ) is concave then so ish. Therefore, the line tangent toh at 0
resides aboveh at all points butθ = 0. We thus get that,h(0) + h′(0)θ ≥ h(θ) and in particular for
θ = 1 we obtain,

h′(0) ≥ h(1) − h(0) = D(λ⋆) − D(λ) > 0 .

Let∇D denote the gradient of the dual objective atλ. Sinceh′(0) = ∇D · v we get that,

∇D · v > 0 . (37)

We now rewritev as the sum of vectors,

v =
m∑

i=1

z
i where zi

r,j =

{
vr,j r = i
0 r 6= i

.

In words, we rewritev as the sum of vectors each of which corresponds to the dual variables
appearing in a single soft-projection problem induced by theith example. From the definition ofzi

together with the form of the dual constraints we get that the vectorλ+z
i is also a feasible solution

for the dual problem. Using the assumption that for alli, ∆i(λ) = 0, we get that for eachθ ∈ [0, 1],
D(λ) ≥ D(λ + θzi). Analogously toh we define the scalar functionhi(θ) = D(λ + θzi). Since
hi is derived from the dual problem by constraining the dual variables to reside on the lineλ + θzi,
then as the functionD, hi is also continuously differentiable. The fact thathi(0) ≥ hi(θ) for all
θ ∈ [0, 1] now implies thath′

i(0) ≤ 0. Furthermore,∇D · zi = h′
i(0) ≤ 0 for all i which gives,

∇D · v = ∇D ·
m∑

i=1

z
i =

m∑

i=1

∇D · zi ≤ 0 ,

which contradicts Eq. (37).

Equipped with the above lemma we are now ready to prove that the iterative algorithm converges to
an optimal solution.

Theorem 6 Let Dt denote the value of the dual objective after thet’th iteration of the algorithm
defined in Eq. (31). Denote byD⋆ the optimum of the problem given in Eq. (30). Then, the sequence
D1, D2, . . . , Dt, . . . converges toD⋆.

Proof Recall that the primal problem has a trivial feasible solution which is attained by setting
w̄ = 0 and ξi = maxj bi,j . For this solution the value of the primal problem is finite. Since
the value of the dual problem cannot exceed the value of the primal problem we get thatD⋆ < ∞.
Therefore, the sequence of dual objective values is a monotonic, non-decreasing, and upper bounded
sequence,D1 ≤ D2 ≤ . . . ≤ Dt ≤ . . . ≤ D⋆ < ∞. Thus, this sequence converges to a limit which
we denote byD′. It is left to show thatD′ = D⋆. Assume by contradiction thatD⋆ − D′ = ǫ > 0.
The set of feasible dual solutions,S, is a compact set. Let∆′ : S → R be the average increase of
the dual over all possible choices for an example to use for updatingλ,

∆′(λ) =
1

m

∑

i

∆i(λ) .
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On each iteration we have by construction that∆t ≥ ∆′(λt). DefineA = {λ : D(λ) > D⋆−ǫ/2}.
From the concavity ofD we get that the setS\A is a compact set. Since∆′ is a continuous function
it attains a minimum value overS\A. Denote this minimum value byκ and letλ̃ be the point which
attains this minimum. From Lemma 5 we know thatκ > 0 since otherwiseD(λ̃) would have equal
to D⋆ which in turn contradicts the fact thatλ̃ /∈ A. Since for allt we know thatDt ≤ D′ = D⋆− ǫ
we conclude thatλt ∈ S \ A. This fact implies that for allt ,

∆t ≥ ∆′(λt) ≥ ∆′(λ̃) = κ .

The above lower bound on the increase in the dual implies that the sequenceD1, D2, D3, . . . di-
verges to infinity and thusD′ = ∞ which is in contradiction to the fact thatD′ = D⋆ − ǫ < ∞.

5. Experiments

In this section we compare the SOPOPO algorithm from Fig. 3 and our iterativeprocedure for
soft-projection onto multiple polyhedra from Fig. 5 to a commercial interior pointmethod called
LOQO (Vanderbei, 1999).

Our first set of experiments focuses on assessing the efficiency of SOPOPO for soft-projection
onto asinglepolyhedron. In this set of experiments, the data was generated as follows. First, we
chose the number of classesk = |Y| and definedE to be the setA × B with A = [k/2] and
B = [k] \ [k/2]. We set the value ofγr to be one forr ∈ A and otherwise it was set to zero.
We then sampled an instancex and a set of vectors{u1, . . . ,uk} from a100-dimensional Normal
distribution of a zero mean and an identity matrix as a covariance matrix. After generating the
instance and the targets, we presented the optimization problem of Eq. (7) to SOPOPO and to the
LOQO optimization package. We repeated the above experiment for different values ofk ranging
from 10 through100. For each value ofk we repeated the entire experiment ten times, where in
each trial we generated a new problem. We then averaged the results overthe ten trials. The average
CPU time consumed by the two algorithms as a function ofk is depicted on the left hand side of
Fig. 6. We would like to note that we have implemented SOPOPO both in Matlab and C++. We
used the Matlab interface to LOQO, while LOQO itself was run in its native mode. We report
results using our Matlab implementation of SOPOPO in order to eliminate possible implementation
advantages. Our Matlab implementation follows the pseudo-code of Fig. 3. Nevertheless, as clearly
indicated by the results, the time consumed by SOPOPO is negligible and exhibits only a very minor
increase withk. In contrast, the run time of LOQO increases significantly withk. The apparent
advantage of our algorithm over LOQO can be attributed to a few factors. First, LOQO is a general
purposenumericaloptimization toolkit. Its generality is clearly a two edged sword as it employs
a numerical interior point method regardless of the problem on hand. Furthermore, LOQO was set
to solve numerically the soft-projection problem of Eq. (7) while SOPOPO solves optimally the
equivalent reduced problem of Eq. (19). To eliminate the latter mitigating factor which is in favor
of SOPOPO, we repeated the same experiment as before while presenting toLOQO the reduced
optimization problem rather than the original soft-projection problem. The results are depicted on
the right hand side of Fig. 6. Yet again, the run time of SOPOPO is still significantly lower than
LOQO for k > 300 and as before there is no significant increase in the run time of SOPOPO ask
increases.
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Figure 6: A comparison of the run-time of SOPOPO and LOQO on the original soft-projection
problem defined in Eq. (7) (left) and on the reduced problem from Eq. (19) (right).

The second experiment compares the performance of the iterative algorithm from Fig. 5 and
LOQO in the batch setting described by Eq. (6). In this experiment we generated synthetic data
as follows. First, we chose the number of classesk = |Y| and sampledm instances from a100-
dimensional Normal distribution of a zero mean and an identity covariance matrix. We next sampled
a set of vectors{w1, . . . ,wk} from the same Gaussian distribution. For each instancex

i, we calcu-
lated the vectorvi ∈ R

k, whoser’th element iswr · x
i. We then setAi to be the indices of the top

k/2 elements ofvi while Bi consisted of all the rest of the elements,[k] \Ai. For example, assume
thatvi = (0.4, 4.1, 3.5,−2) thenAi = {2, 3} andBi = {1, 4}. As feedback we setγi

a = 1 for all
a ∈ Ai and forb ∈ Bi we setγi

b = 0. In our running example, the resulting vectorγi amounts to
(0, 1, 1, 0). Finally, we setE(γi) = {Ei}, whereEi = A × B, and the value ofσ was always1.
We repeated the above process for different values ofk ranging from 20 through 100. The number
of examples was fixed to be10k and thus ranged from200 through1000. The value ofC was set to
be1/m. In each experiment we terminated the wrapper procedure described in Fig. 5 when the gap
between the primal and dual objective functions went below0.01. We first tried to execute LOQO
with the original optimization problem described in Eq. (6). However, the resulting optimization
problem was too large for LOQO to manage in a reasonable time, even for the smallest problem
(k = 20). Our iterative algorithm solves such small problems in less than a second. To facilitate a
more meaningful comparison, we used the techniques described in Sec. 3 and replaced the original
optimization problem from Eq. (6) with the following reduced problem,

max
α,β

−
1

2

k∑

r=1

∥
∥
∥
∥
∥
∥

∑

i:r∈Ai

αi
r x

i −
∑

i:r∈Bi

βi
r x

i

∥
∥
∥
∥
∥
∥

2

+
k∑

r=1




∑

i:r∈Ai

αi
r γi

r −
∑

i:r∈Bi

βi
r γi

r





s.t. ∀ i ∈ [m] : ∀ a ∈ Ai, αi
a ≥ 0 and ∀ b ∈ Bi, βi

b ≥ 0

∀ i ∈ [m] :
∑

a∈Ai

αi
a =

∑

b∈Bi

βi
b ≤ C .

(38)
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Figure 7: A comparison of the run-time in batch settings of SOPOPO and LOQO (using the reduced
problem in Eq. (38)). The number of examples was set to be10 times the number of labels
(denotedk) in each problem.

By presenting the reduced problem given in Eq. (38) to LOQO, we injectedquite a bit of prior
knowledge that made the task manageable for LOQO. The derivation of the above reduced problem
is given in appendix C. The results are summarized in Fig. 7. As clearly can be seen from the
graph, our iterative algorithm outperforms LOQO, in particular as the size of the problem increases.
Due to the nature of the decomposition procedure, our running time is no longer independent of the
value ofk as the number of graphs grows withk. Nonetheless, even fork = 100 the run time of
SOPOPO’s wrapper does not exceed 4 seconds. These promising results emphasize the viability of
our approach for large scale optimization problems.

The last experiment underscores an interesting property of our iterative algorithm. In this ex-
periment we have used the same data as in the previous experiment withk = 100 andm = 1000.
After each iteration of the algorithm, we examined both the increase in the dual objective after the
update and the difference between the primal and dual values. The results are shown in Fig. 8. The
graphs exhibit a phenomena reminiscent of a phase transition. After about 1000 iterations, which
is also the number of examples, the increase in the dual objective becomes miniscule. This phase
transition is also exhibited for other choices ofm, k andC. Note in addition that as the number of
epochs increases, the increase of the dual objective becomes very small relatively to the duality gap.
It is common to use the increase of the dual objective as a stopping criterion and the last experiment
indicates that this criterion does not necessarily imply convergence. We leave further investigation
of these phenomena to future research.

We would like to conclude this section with a short discussion which contrasts our approach
with previous algorithms. Previous large margin approaches for label ranking associate a unique
slack variable with each constraint which is induced by a pair of labels. Seefor example (Elisseeff
and Weston, 2001) and the SVM-light implementation of label ranking (Joachims, 2002). Thus,
using the terminology of this paper, these methods employ the overly simple all-pair decomposition
(see Fig. 2). Using the all-pair decomposition, the label ranking problem is reduced to a binary
classification problem. Indeed, the soft projection problem can be solvedanalytically and our wrap-
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Figure 8: The increase in the dual objective (left) and the primal-dual gap(right) as a function of
the number of iterations of the iterative algorithm in Fig. 5.

per algorithm from Fig. 5 is equivalent to the SOR algorithm for binary classification described
in (Mangasarian and Musicant, 1999). The practical performance of the SOR algorithm for binary
classification was extensively studied by Mangasarian and others. One of the main contributions
of this paper is a general and flexible algorithmic framework for label ranking which can be car-
ried with more complex decompositions. Moreover, trying to import one of the previously studied
approach to our setting is difficult. A main obstacle is attributed to the fact that theset of feasible
solutions for the dual problem must satisfy the constraint

∑

a αa =
∑

b βb ≤ C. Thus, a sequential
minimization algorithm must update at least4 dual variables on each iteration in order to preserve
the feasibility of the dual solution. Therefore the SMO algorithm of Platt (1998) is not easily appli-
cable to our setting. The SOPOPO algorithm suggests an efficient alternative by updating atomically
all the dual variables of each sub-graph.

6. Discussion

We described an algorithmic framework for label ranking. Each iteration ofour algorithm is based
on SOPOPO, a fast procedure for soft projection onto a single polyhedron. There are several possi-
ble extensions of the work presented in this paper. One of them is further generalization of SOPOPO
to more complex polyhedral constraints. Recall that SOPOPO is designed for projecting onto a poly-
hedron which is defined according to a complete bipartite graph. The generalization of SOPOPO
to decompositions consisting ofk-partite graphs is one particular interesting task. Another type of
polyhedra that naturally emerges is regression problems with multiple outputs. In this setting, we
would like the predicted differencesfr(x)−fs(x) to be as close as possible to the target differences
γr − γs, possibly up to an insensitivity termǫ. This problem can be formalized by replacing the
constraintfr(x)−fs(x) ≥ γr−γs−ξ with the constraint|(fr(x)−fs(x))−(γr−γs)| ≤ ǫ+ξ. Yet
another interesting direction is the applicability of SOPOPO to online learning ranking (Crammer
and Singer, 2005) where each online update is performed efficiently using SOPOPO. The phase
transition phenomenon underscored in our experiments surfaces the important issue of generaliza-
tion properties of our algorithm. In particular, the fact that increases in thevalue of dual become
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Figure 9: An illustration of the construction of a flow graph forA = {1, 2} andB = {3, 4, 5}.

miniscule suggests the usage of early stopping so long as the prediction accuracy does not degrade.
Finally, we plan to work on real world applications of SOPOPO to tasks such as category ranking
for text documents.

Appendix A. The equivalence between the dual problems in Eq. (18) and Eq. (13)

In this appendix we prove that the solutions of the problem in Eq. (18) and our original dual problem
from Eq. (13) are equivalent. (For an alternative derivation see also(Fung et al., 2006)). To do so, it
suffices to show that for each feasible solution of the reduced problem there exists an equivalent fea-
sible solution of the original problem and vice versa. Clearly, givenτ which satisfies the constraints
imposed by Eq. (13), definingα andβ as given by Eq. (14) would satisfy the constraints of Eq. (18)
and furthermoreD(α, β) = D(τ ). Denoting the optimal solution of Eq. (13) byτ⋆ and that of
Eq. (18) by(α⋆, β⋆), we immediately get thatD(α⋆, β⋆) ≥ D(τ⋆). We are thus left to show that
for each feasible solutionα, β there exists a feasible solutionτ such thatD(τ ) = D(α, β). This
reverse mapping is non-trivial and there does not exist a closed form description of the mapping
from α, β to τ . The existence of such a mapping is provided in Lemma 7 below which uses the
duality of max-flow and min-cut. Lemma 7 immediately implies thatD(τ ⋆) ≥ D(α⋆, β⋆). In sum-
mary, we have shown that bothD(τ ⋆) ≤ D(α⋆, β⋆) andD(τ ⋆) ≥ D(α⋆, β⋆) holds and therefore
D(τ ⋆) = D(α⋆, β⋆).

Lemma 7 Let (α, β) be a feasible solution of the reduced problem given in Eq. (18). Then, there
exists a feasible solutionτ of the original problem (Eq. (13)) such thatD(τ ) = D(α, β).

Proof The proof is based on the duality of max-flow and min-cut (see for example Cormen et al.
(1990)). Given a feasible solution(α, β) defined over the setsA andB we construct a directed
graph(V ′, E′). The set of nodes of the graph consists of the original nodes defined by the setsA
andB and two additional nodess which serves as a source andt which is a sink,V ′ = A∪B∪{s, t}.
In addition to the original edges of the bipartite graph supported byA andB we add edges froms to
all the nodes inA and from all the nodes inB to t and thusE′ = (A×B)∪ ({s}×A)∪ (B ×{t}).
Each edgee ∈ E′ is associated with a capacity valuec(e). For eache ∈ A×B we definec(e) = ∞.
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For each edge of the form(s, a) wherea ∈ A we definec(e) = αa and analogously for(b, t) where
b ∈ B we setc(e) = βb. An illustration of the construction is given in Fig. 9 whereA = {1, 2} and
B = {3, 4, 5}. We are now going to define a flow problem for(V ′, E′). We show in the sequel that
maximalflow in the graph above defines a feasible solution for the original optimizationproblem.
Furthermore, by using the max-flow min-cut duality, we also show that the value attained by the
induced solution coincides with the value of the reduced optimization problem for (α, β).

A flow for the graph above is an assignment of non-negative values to edges,F : E′ → R+,
which satisfies

(i) ∀(r, v) ∈ E′, F( (r, v) ) ≤ c(r, v)

(ii) ∀v ∈ V ′,
∑

r:(r,v)∈E′

F( (r, v) ) =
∑

r:(v,r)∈E′

F( (v, r) ) . (39)

The value of a flow function is defined as the total flow outgoing the source,

val(F) =
∑

r:(s,r)∈E′

F( (s, r) ) .

LetF⋆ denote the flow attaining the maximal value among all possible flows, that is val(F⋆) ≥
val(F). We next prove that val(F⋆) =

∑

a∈A αa. To do so we use the max-flow min-cut duality
theorem. This theorem states that the value of the maximal flow equals the value of the minimal cut
of a graph. Formally, a cut of the graph is a subsetS ⊂ V ′ such that s∈ S and t /∈ S. The value of
a cut is defined as the totalcapacityof edges outgoing fromS to V ′ \ S,

val(S) =
∑

(r,v)∈S×(V ′\S)∩E′

c(r, v) .

A cut is said to be minimal if its value does not exceed the value of any other cutof the graph.
The value of the cutS = {s} is equal to

∑

y∈A αy. We now show thatS is a minimal cut. We
note in passing that while there might exist other cuts attaining the minimum value, for our purpose
it suffices to show thatS = {s} is a minimal cut. LetS′ be a cut different fromS. Clearly, if
val(S′) = ∞ thenS′ cannot be minimal. We thus can safely assume that val(S′) < ∞. If there
exists a nodea ∈ A ∩ S′ then all the nodes inB must also reside inS′. Otherwise, there exists an
edge(a, b) of an infinite capacity which crosses the cut and val(S′) = ∞ > val(S). Sincet cannot
be inS′ we get that for eachb ∈ B, the edge(b, t) crosses the cut and therefore the value of the
cut is at least

∑

b∈B βb =
∑

a∈A αa. If on the other handA ∩ S′ = ∅ then all the edges from s to
the nodes inA cross the cut. Therefore, val(S) is again at least

∑

y∈A αy. We have thus shown that
S = {s} is a minimal cut of the flow graph.

From the duality theorem of max-flow and min-cut we get that there exists a minimal flow F⋆

such that val(F⋆) =
∑

a∈A αa. Since each outgoing edge from s hits a different node inA, we must
have thatF⋆( (s, a) ) = αa in order to reach the optimal flow value. Similarly, for eachb ∈ B we
get thatF⋆( (b, t) ) = βb. We now setτa,b = F⋆( (a, b) ) for each(a, b) ∈ A × B. Since a proper
flow associates a non-negative value with each edge we obtain thatτa,b ≥ 0. From the conservation
of flow we get that,

αa = F⋆( (s, a) ) =
∑

b∈B

F⋆( (a, b) ) =
∑

b∈B

τa,b ,
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and
βb = F⋆( (b, t) ) =

∑

a∈A

F⋆( (a, b) ) =
∑

a∈A

τa,b .

Thus, this construction ofτ from the optimal flow satisfies the equalities given in Eq. (14). By
construction, each nodea ∈ A has one incoming edge(s, a) and outgoing edges to all nodes inB.
Thus, the flow conservation requirement of Eq. (39) again implies that

C ≥
∑

a∈A

F⋆( (s, a) ) =
∑

a∈A,b∈B

F⋆( (a, b) ) =
∑

a∈A,b∈B

τa,b .

Therefore,τ adheres with the constraints of Eq. (13). In summary, we have constructed a feasible
solution for the original constrained optimization problem which is consistent with the definitions
of α andβ. Therefore,D(τ ) = D(α, β) as required.

Appendix B. Technical Proofs

Proof of Lemma 3
Throughout the proof we assume that the elements of the vectorµ are sorted in a non-ascending
order, namely,µ1 ≥ µ2 ≥ . . . ≥ µp. Recall that the definition ofρ(z, µ) is,

ρ(z, µ) = max

{

j ∈ [p] : µj −
1

j

(
j
∑

r=1

µr − z

)

> 0

}

.

For brevity, we refer toρ(z, µ) simply asρ. Denote byα⋆ the optimal solution of the constrained
optimization problem of Eq. (20) and let

ρ⋆ = max{j : α⋆
j > 0} .

From Eq. (23) we know thatα⋆
r = µr − θ⋆ > 0 for r ≤ ρ⋆ where

θ⋆ =
1

ρ⋆





ρ⋆
∑

j=1

µj − z



 ,

and thereforeρ ≥ ρ⋆. We thus need to prove thatρ = ρ⋆. Assume by contradiction thatρ > ρ⋆. Let
us denote byα the vector induced by the choice ofρ, that is,αr = 0 for r > ρ andαr = µr − θ for
r ≤ ρ, where,

θ =
1

ρ





ρ
∑

j=1

µj − z



 .

From the definition ofρ, we must have thatαρ = µρ − θ > 0. Therefore, since the elements of
µ are sorted in a non-ascending order, we get thatαr = µr − θ > 0 for all r ≤ ρ. In addition,
the choice ofθ implies that‖α‖1 = z. We thus get thatα is a feasible solution as it satisfies the

28



SOPOPO - SOFT PROJECTIONS ONTOPOLYHEDRA

constraints of Eq. (20). Examining the objective function attained atα we get that,

‖α − µ‖2 =

ρ⋆
∑

r=1

θ2 +

ρ
∑

r=ρ⋆+1

θ2 +

p
∑

r=ρ+1

µ2
r

<

ρ⋆
∑

r=1

θ2 +

ρ
∑

r=ρ⋆+1

µ2
r +

p
∑

r=ρ+1

µ2
r

=

ρ⋆
∑

r=1

θ2 +

p
∑

r=ρ⋆+1

µ2
r ,

where to derive the inequality above we used the fact thatµr − θ > 0 for all r ≤ ρ. We now need to
analyze two cases depending on whetherθ⋆ is greater thanθ or not. If θ⋆ ≥ θ than we can further
bound‖α − µ‖2 from above as follows,

‖α − µ‖2 <

ρ⋆
∑

r=1

θ2 +

p
∑

r=ρ⋆+1

µ2
r ≤

ρ⋆
∑

r=1

(θ⋆)2 +

p
∑

r=ρ⋆+1

µ2
r = ‖α⋆ − µ‖2 ,

which contradicts the optimality ofα⋆. We are thus left to show that the caseθ > θ⋆ also leads to a
contradiction. We do so by constructing a vectorα̃ from α⋆. We show that this vector satisfies the
constraints of Eq. (20) hence it is a feasible solution. Finally, we show thatthe objective function
attained byα̃ is strictly smaller than that ofα⋆. We define the vector̃α ∈ R

k as follows,

α̃r =







α⋆
ρ⋆ − ǫ r = ρ⋆

ǫ r = ρ⋆ + 1
α⋆

r otherwise
,

whereǫ = 1
2(µρ⋆+1 − θ⋆). Since we assume thatθ > θ⋆ andρ > ρ⋆ we know thatαρ⋆+1 =

µρ⋆+1 − θ > 0 which implies that

α̃ρ⋆+1 =
1

2
(µρ⋆+1 − θ⋆) >

1

2
(µρ⋆+1 − θ) =

1

2
αρ⋆+1 > 0 .

Furthermore, we also get that,

α̃ρ⋆ = µρ⋆ −
1

2
µρ⋆+1 −

1

2
θ⋆ >

1

2
(µρ⋆+1 − θ) =

1

2
αρ⋆+1 > 0 .

In addition, by construction we get that the rest of components ofα̃ are also non-negative. Our
construction also preserves the norm, that is‖α̃‖1 = ‖α⋆‖1 = z. Thus, the vector̃α is also a
feasible solution for the set of constraints defined by Eq. (20). Alas, examining the difference in the
objective functions attained bỹα andα⋆ we get,

‖α⋆ − µ‖2 − ‖α̃ − µ‖2 = (θ⋆)2 + µ2
ρ⋆+1 −

(

(θ⋆ + ǫ)2 + (µρ⋆+1 − ǫ)2
)

= 2ǫ(µρ⋆+1 − θ⋆

︸ ︷︷ ︸

=2ǫ

) − 2ǫ2 = 2 ǫ2 > 0 .

We thus obtained the long desired contradiction which concludes the proof.

29



SHALEV-SHWARTZ AND SINGER

Proof of Thm. 4
Plugging the value of the optimal solutionα from Eq. (23) into the objective‖α − µ‖2 and using
Lemma 3 give that,

g(z; µ) =
1

ρ(z; µ)





ρ(z;µ)
∑

r=1

µr − z





2

+
∑

r=ρ(z;µ)+1

µ2
r ,

where, to remind the reader, the number of strictly positiveα’s is,

ρ(z; µ) = max

{

ρ : µρ −
1

ρ

(
ρ
∑

r=1

µr − z

)

≥ 0

}

.

Throughout the proofµ is fixed and known. We therefore abuse our notation and use the shorthand
ρ(z) for ρ(z; µ). Recall thatµ is given in a non-ascending order,µi+1 ≤ µi for i ∈ [p − 1].
Therefore, we get that

zi+1 =

i+1∑

r=1

µr − (i + 1)µi+1 =

i∑

r=1

µr + µi+1 − µi+1 − i µi+1

=
i∑

r=1

µr − i µi+1 ≥
i∑

r=1

µr − i µi = zi .

Thus, the sequencez1, z2, . . . , zp is monotonically non-decreasing and the intervals[zi, zi+1) are
well defined. The definition ofρ(z) implies that for allz ∈ [zi, zi+1) we haveρ(z) = ρ(zi) = i.
Hence, the value ofg(z; µ) for eachz ∈ [zi, zi+1) is,

g(z; µ) =
1

i

(
i∑

r=1

µr − z

)2

+

p
∑

r=i+1

µ2
r .

We have thus established the fact thatg(z; µ) is a quadratic function in each interval(zi, zi+1) and
in particular it is continuous in each such sub-interval. To show thatg is continuous in[0, C] we
need to examine all of its knotszi. Computing the left limit and the right limit ofg at each knot we
get that,

lim
z↓zi

g(z; µ) = lim
z↓zi

1

i

(
i∑

r=1

µr − z

)2

+

p
∑

r=i+1

µ2
r

=
1

i

(
i∑

r=1

µr −
i∑

r=1

µr + iµi

)2

+

p
∑

r=i+1

µ2
r

= iµ2
i +

p
∑

r=i+1

µ2
r ,
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and

lim
z↑zi

g(z; µ) = lim
z↑zi

1

i − 1

(
i−1∑

r=1

µr − z

)2

+

p
∑

r=i

µ2
r

=
1

i − 1

(
i−1∑

r=1

µr −
i∑

r=1

µr + iµi

)2

+

p
∑

r=i

µ2
r

= (i − 1)µ2
i +

p
∑

r=i

µ2
r = iµ2

i +

p
∑

r=i+1

µ2
r .

Therefore,limz↓zi
g(z; µ) = limz↑zi

g(z; µ) and g is indeed continuous. The continuity of the
derivative ofg is shown by using the same technique of examining the right and left limits at each
knotzi for the function,

g′(z; µ) =
2

i

(

z −
i∑

r=1

µr

)

.

Finally, we use the fact that a continuously differentiable function is convex iff its derivative is
monotonically non-decreasing. Sinceg is quadratic in each segment[zi, zi+1], g′ is indeed mono-
tonically non-decreasing in each segment. Furthermore, from the continuity of g′ we get thatg′ is
monotonically non-decreasing on the entire interval[0, C]. Thus,g is convex on[0, C].

Appendix C. Derivation of Eq. (38)

In this section we derive conversion of the optimization problem from Eq. (6) to its reduced form
given in Eq. (38). In Sec. 4 (Eq. (30)) we derived the dual of Eq. (6). Assuming that for each
example,E(γi) = {Ai × Bi}, and using the definitions ofai,j , bi,j , andw̄ from Sec. 4, we can
rewrite the dual of Eq. (6) as

max
τ

−
1

2

k∑

r=1

‖wr‖
2 +

m∑

i=1

∑

a∈Ai

∑

b∈Bi

λi
a,b (γi

a − γi
b)

s.t. ∀ i ∈ [m] : ∀ (a, b) ∈ Ai × Bi, λi
a,b ≥ 0

∀ i ∈ [m] :
∑

(a,b)∈Ai×Bi

λi
a,b ≤ C ,

(40)

where
wr =

∑

i:r∈Ai

∑

b∈Bi

λi
r,bx

i −
∑

i:r∈Bi

∑

a∈Ai

λi
a,rx

i . (41)

For eacha ∈ Ai define,
αi

a =
∑

b∈Bi

λi
a,b , (42)

and similarly, for eachb ∈ Bi define,

βi
b =

∑

a∈Ai

λi
a,b . (43)
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Using these definitions, we can rewrite Eq. (41) as,

wr =
∑

i:r∈Ai

αi
rx

i −
∑

i:r∈Bi

βi
rx

i .

Therefore, the dual objective can be rewritten as,

D = −
1

2

k∑

r=1

∥
∥
∥
∥
∥
∥

∑

i:r∈Ai

αi
r x

i −
∑

i:r∈Bi

βi
r x

i

∥
∥
∥
∥
∥
∥

2

+
k∑

r=1




∑

i:r∈Ai

αi
r γi

r −
∑

i:r∈Bi

βi
r γi

r



 .

As in Sec. 3, we need to enforce the additional constraints onα andβ,

∀ i ∈ [m] :∀ a ∈ Ai, αi
a ≥ 0 and ∀ b ∈ Bi, βi

b ≥ 0

∀ i ∈ [m] :
∑

a∈Ai

αi
a =

∑

b∈Bi

βi
b ≤ C .

Combining the dual definition with the above constraints gives the reduced problem from Eq. (38).
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