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Abstract. We describe a novel framework for the design and analysis of online
learning algorithms based on the notion of duality in constrained optimization.
We cast a sub-family of universal online bounds as an optimizatiorigmrotJs-

ing the weak duality theorem we reduce the process of online learning tcsthe ta
of incrementally increasing the dual objective function. The amounttigimthe
dual increases serves as a new and natural notion of progresseWeia able

to tie the primal objective value and the number of prediction mistakes usihg a
the increase in the dual. The end result is a general framework fayniteg and
analyzing old and new online learning algorithms in the mistake bound model.

1 Introduction

Online learning of linear classifiers is an important andlwtldied domain in ma-
chine learning with interesting theoretical propertied @nactical applications [3, 4,
7-10,12]. An online learning algorithm observes instangessequence of trials. Af-
ter each observation, the algorithm predicts a yestno-) outcome. The prediction of
the algorithm is formed by a hypothesis, which is a mappiognfthe instance space
into {41, —1}. This hypothesis is chosen by the online algorithm from algefieed
class of hypotheses. Once the algorithm has made a predidti@ceives the correct
outcome. Then, the online algorithm may choose anotherthgss from the class
of hypotheses, presumably improving the chance of makingcanrate prediction on
subsequent trials. The quality of an online algorithm is saeed by the number of
prediction mistakes it makes along its run.

In this paper we introduce a general framework for the deaighanalysis of on-
line learning algorithms. Our framework emerges from a new\on relative mistake
bounds [10, 14], which are the common thread in the analylsenline learning al-
gorithms. A relative mistake bound measures the perforemafn@n online algorithm
relatively to the performance of a competing hypothesig ddmpeting hypothesis can
be chosen in hindsight from a class of hypotheses, aftemrabgethe entire sequence
of examples. For example, the original mistake bound of greéptron algorithm [15],
which was first suggested over 50 years ago, was derived hy astompetitive anal-
ysis, comparing the algorithm to a linear hypothesis whichieves a large margin on
the sequence of examples. Over the years, the competitalgsimtechnique was re-
fined and extended to numerous prediction problems by ermg@pmplex and varied
notions of progress toward a good competing hypothesisfllily of online learning



algorithms sparked unified analyses of seemingly diffeoafine algorithms by Little-
stone, Warmuth, Kivinen and colleagues [10, 13]. Most nigtabthe work of Grove,
Littlestone, and Schuurmans [8] on a quasi-additive faroflyalgorithms, which in-
cludes both the Perceptron [15] and the Winnow [13] algorghas special cases. A
similar unified view for regression was derived by Kivinerdafarmuth [10, 11]. On-
line algorithms for linear hypotheses and their analysesine more general and pow-
erful by employing Bregman divergences for measuring tlogmss toward a good
hypothesis [7-9]. In the aftermath of this paper we refetise analyses ggimal
views.

We propose an alternative view of relative mistake boundslwis based on the no-
tion of duality in constrained optimization. Online mis¢éaliounds are universal in the
sense that they hold for any possible predictor in a giverothgsis class. We therefore
cast the universal bound as an optimization problem. Spatifj the objective func-
tion we cast is the sum of an empirical loss of a predictor andraplexity term for
that predictor. The best predictor in a given class of hygstis, which can only be de-
termined in hindsight, is the minimizer of the optimizatiproblem. In order to derive
explicit quantitative mistake bounds we make an immediate af the fact that dual
objective lower bounds the primal objective. We therefavéch to the dual represen-
tation of the optimization problem. We then reduce the psead online learning to the
task of incrementally increasing the dual objective fumttiThe amount by which the
dual increases serves as a new and natural notion of prog@es®ing so we are able
to tie the primal objective value, the number of predictioistakes, and the increase
in the dual. The end result is a general framework for desgonline algorithms and
analyzing them in the mistake bound model.

We illustrate the power of our framework by studying two soles for increasing
the dual objective. The first performs a fixed size updatedastely on the last ob-
served example. We show that this dual update is equivalehetprimal update of the
guasi-additive family of algorithms [8]. In particular, oframework yields the tightest
known bounds for several known quasi-additive algorithoehsas the Perceptron and
Balanced Winnow. The second update scheme we study movhsifim the direction
of optimization techniques in several accounts. In thisesoh the online learning al-
gorithm may modify its hypotheses basedmaltiple past examples. Furthermore, the
update itself is constructed by maximizing or approximatabximizing the increase
in the dual. While this second approach still entertains #meesmistake bound of the
first scheme it also serves as a vehicle for deriving new erdigorithms.

2 Problem Setting

In this section we introduce the notation used throughoatpiper and formally de-
scribe our problem setting. We denote scalars with lowes ttters (e.gr andw), and
vectors with bold face letters (e.g.andw). The set of non-negative real numbers is
denoted byR . For anyk > 1, the set of integer$l, . .., k} is denoted byk].

Online learning of binary classifiers is performed in a seqeeof trials. At trial
t the algorithm first receives an instankg € R™ and is required to predict the label
associated with that instance. We denote the predictiomeodlgorithm on the'th trial



by ¢,. For simplicity and concreteness we focus on online legrofrbinary classifiers,

namely, we assume that the labels ar¢-1, —1}. After the online learning algorithm
has predicted the labgl, the true label;, € {+1,—1} is revealed and the algorithm
pays a unit cost if its prediction is wrong, that isgif # ¢;. The ultimate goal of the

algorithm is to minimize the total number of prediction railgs it makes along its run.
To achieve this goal, the algorithm may update its prediati@chanism after each trial
S0 as to be more accurate in later trials.

In this paper, we assume that the prediction of the algoriéthiraach trial is de-
termined by a margin-based linear hypothesis. Namelyetlegists a weight vector
wt € 2 C R™ whereg; = sign({w:, X)) is the actual binary prediction anflv;, x;)]|
is the confidence in this prediction. The tegn{w,, x;) is called themargin of the
prediction and is positive whenevegr and sigri(w;, x;)) agree. We can evaluate the
performance of a weight vectar on a given exampléx, y) in one of two ways. First,
we can check whethepo results in a prediction mistake which amounts to checking
whethery = sign({w, x)) or not. Throughout this paper, we ud£€to denote the num-
ber of prediction mistakes made by an online algorithm oncueece of examples

(x1,%1), - - -, (Xm, ym). The second way we evaluate the predictions of an hypothesis
is by using theninge-lossunction, defined as,
0 it y{w,x) =7y
Y (w: = !
O(wi(xy) = {7 — y {w,x) otherwise ’ (1)

The hinge-loss penalizes an hypothesis for any margin lems~t. Additionally, if
y # sign({w, x)) then?? (w; (x,y)) > . Therefore, theumulative hinge-lossuffered
over a sequence of examples upper bouptds Throughout the paper, when= 1 we
use the shorthanfiw; (x,y)).

As mentioned before, the performance of an online learnigorithm is measured
by the cumulative number of prediction mistakes it makesg@its run on a sequence of
examplesxi,y1),. .., (Xm, ym). Ideally, we would like to think of the labels as if they
are generated by an unknown yeedweight vectorw* such thaty; = sign({w*, x;))
for all i € [m]. Moreover, in an utopian case, the cumulative hinge-loss*obn the
entire sequence is zero, which means thatproduces the correct label with a confi-
dence of at least. In this case, we would likd/, the number of prediction mistakes of
our online algorithm, to be independentaf the number of examples. Usually, in such
casesM is upper bounded by (w*) whereF' : 2 — R is a function which measures
the complexity ofv*. In the more realistic case, there does not existhich perfectly
predicts the data. In this case, we would like the onlinerétigm to be competitive with
anyfixed hypothesiss. Formally, letA andC be two positive scalars. We say that our
online algorithm is(\, C')-competitive with the set of vectors if?, with respect to a
complexity functionF' and the hinge-los#, if the following bound holds,

VweR, M < F(w)+0§:€7(w;(xi,yi)) . (2)

i=1

The paramete€ controls the trade-off between the complexityw{through F) and
the cumulative hinge-loss @b. The parameteh is introduced for technical reasons



that are provided in the next section. The main goal of thigepé to develop a general
paradigm for designing online learning algorithms and yrelthem in the mistake
bound framework given in Eqg. (2).

3 A primal-dual apparatusfor onlinelearning

In this section we describe a methodology for designingnenliéarning algorithms for
binary classification. To motivate our construction let ustftonsider the special case
wherey = 1, F(w) = 1||w||3, andf2 = R". Denote byP(w) the right hand side of
Eq. (2) which in this special case amounts to,

Pw) = llwl” +0 3 e (xiom)
i=1

The bound in Eq. (2) can be rewritten as,

AM < min Plw) € P 3)
Note thatP(w) is the well-known primal objective function of the optimizan prob-
lem employed by the SVM algorithm [5]. Intuitively, we vielwe online learning task
as incrementally solving the optimization problein,, P(w). However, whileP (w)
depends on the entire sequence of examples, y1), - .., (Xm, ym)}, the online al-
gorithm is confined to use on trialonly the firstt — 1 examples of the sequence. To
overcome this disparity, we follow the approach that ok take in solving prob-
lems: we simply ignore the examplé&;, y:), - . ., (Xm, ym ) } @s they are not provided
to the algorithm on triat. Therefore, on triat we use the following weight vector for
predicting the label,

t—1
1
w; = argmin Py(w) where Pi(w) = inHQ—i—C Zﬁ(w;(xi,yi)) .
“ i=1

This online algorithm is a simple (and non-efficient) ad&ptaof the SVM algorithm
for the online setting and we therefore call it the OnlineMs&lgorithm (see also [12]).
Since the hinge-los&w; (x;, y:)) is non-negative we get thi; (w) < P44 (w) for
anyw and thereforeP; (w;) < Pi(wit+1) < Pri1(wer1). Note thatP; (wq) = 0 and
thatP,,+1(w) = P*. Thus,

0= Pl(wl) S Pg(wg) S S Pm+1(wm+1) = 'P* .

Recall that our goal is to find an online algorithm which etai@s the mistake bound
given in Eq. (3). Suppose that we can show that for eachriad which the online
algorithm makes a prediction mistake we have tRat;(w;11) — Pr(wy) > A >
0. Equipped with this assumption, it follows immediatelyttifahe online algorithm
madeM prediction mistakes on the entire sequence of examples®han (wm+1)
should be at least M. SinceP,,,+1(w.,+1) = P* we conclude thak M < P* which



gives the desired mistake bound from Eg. (3). In summaryréeepa mistake bound
one needs to show that the online algorithm constructs aeseguof lower bounds
Pr(w1),- .-, Pmt1(wms1) for P*. These lower bounds should become tighter and
tighter with the progress of the online algorithm. Moregwghenever the algorithm
makes a prediction mistake the lower bound must increase lbast).

The notion of duality, commonly used in optimization thegslays an important
role in obtaining lower bounds for the minimal value of thénpal objective (see for
example [2]). We now take an alternative view of the OnlinédvBalgorithm based on
the notion of duality. As we formally show later, the dual loé toroblemmin,, P(w) is

m
E A Yi X4
i=1

The weak duality theorem states that any value of the duakctibg is upper bounded
by the optimal primal objective. That s, for any< [0, C]™ we have thaD(«) < P*.
If in addition strong duality holds themaxc(o,cj» P(a) = P*. As we show in the
sequel, the valueB; (w1 ), ..., Pm+1(w.m,41) translate to a sequence of dual objective
values. Put another way, there exists a sequence of dugilos® i, . . ., o, 1 Such
that for allt € [m+ 1] we have thaD(a;) = P;(w;). This fact follows from a property
of the dual function in Eq. (4) as we now show.

Denote byD, the dual objective function dp;,

t—1 t—1
1
Di(a) = Zai -3 Zaiyixi
i=1 i=1

Note thatD;, is a mapping fronj0, C]*~! into the reals. From strong duality we know
that the minimum ofP, equals to the maximum @p,. From the definition oD, we get
that for (ay, ..., au—1) € [0, ]! the following equality holds,

m 2

1
ax D(a) where D(a) = ;— —
o Zn D) (@) = 2 ai—y

(4)

2

()

Dt((al,...,at_l)) = D((al,...,at_l,O,...,O)) .

Therefore, the Online-SVM algorithm can be viewed as aneimantal solver of the
dual problem,max,c(o,c)m D(c), where at the end of triglthe algorithm maximizes
the dual function confined to the firsvariables,
max D(a) st Vi>t, a;=0 .

a€el0,Clm
The property of the dual objective that we utilize is thatibde optimized in a sequen-
tial manner. Specifically, if on trialwe groundw; to zero for; > ¢ thenD(«) does not
depend on examples which have not been observed yet.

We presented two views of the Online-SVM algorithm. In thetfwiew the al-
gorithm constructs a sequencemfmal solutionswy, .. ., w,,+1 While in the second
the algorithm constructs a sequencaloél solutions which we analogously denote by
al,...,a™Tt As we show later, the connection betweenanda! is given through
the equality,

m
we = Zafyixi . (6)
i=1



In general, any sequence of feasible dual solutiamhs. ..,a™"! can define an on-
line learning algorithm by setting; according to Eq. (6). Naturally, we require that
al = 0forall i > ¢ since otherwisev, would depend on examples which have not
been observed yet. To prove that the resulting online dlyorentertains the mistake
bound given in Eqg. (3) we impose two additional conditionsst-we require that
D(a!t!) > D(at) which means that the dual objective never decreases. Iti@udi
on trials in which the algorithm makes a prediction mistakerequire that the increase
of the dual objective will be strictly positiveD(a!*1) — D(a') > X > 0. To recap,
any incremental solver for the dual optimization problemichtsatisfies the above re-
quirements can serve as an online algorithm which meets istake bound given in
Eq. (3).

Let us now formally generalize the above motivating dismrsur starting point
is the desired mistake bound of the form given in Eq. (2), Witian be rewritten as,

< 1 Y . - . .
AM < inf) (F(w) +0 X 0w (s ym) @)
As in our motivating example we denote B\w) the primal objective of the optimiza-
tion problem on the right-hand side of Eq. (7). Our goal is¢@alop an online learning
algorithm that achieves this mistake bound. First, let usvelehe dual optimization
problem. Using the definition af” we can rewrite the optimization problem as,

inf Fw)+C Y &
=1

wENELERT (8)
S.t.Vi € [m], yi<w,xi> >y — fl .
We further rewrite this optimization problem using the Lagge dual function,
inf su Flw)+C i+ a; (v —yilw,x;) — &) . 9
wedileny Jup F) ;5 ; (v =il xi) &) - (9)

£ L(w.g0)

Eq. (9) is equivalent to Eq. (8) due to the following fact.Hetconstrainy; (w, x;) >

~v — &; holds then the optimal value ef; in Eq. (9) is zero. If on the other hand the
constraint does not hold then equalsoo, which implies thato cannot constitute the
optimal primal solution. The weak duality theorem (see faraple [2]) states that,

sup inf L(w,&a) < inf sup L(w, & o) . (10)

QGRZL wEQ,gERKL weQ,ﬁERKL CXERT
The dual objective function is defined to be,

Dla) = we(?lﬁfERf{f L(w, € a) . (11)

Using the definition ofZ, we can rewrite the dual objective as a sum of three terms,

D(a) = v ;ai — sup <<w>;aiyixi> F(‘*’)) + gierﬁ@fx ;fi (C—a;) .

wes?



The last term equals to zero far € [0, C] and to—oo for a;; > C'. Since our goal is to
maximizeD(«) we can confine ourselves to the case [0, C|"™ and simply write,

D) = v Za,; — 5161% ((w,ZaiinIv) F(w))

The second term in the above presentatioPde) can be rewritten using the notion of
conjugate functions (see for example [2]). Formally, thejegaté of the functionF” is
the function,
G(0) = sup (w,0)— F(w) . (12)
wen
Using the definition of7 we conclude that foex € [0, C]™ the dual objective function
can be rewritten as,

D(a) = v Zai -G <Z Oéz'ini) . (13)
i=1 i=1

For instance, it is easy to verify that the conjugaté'¢l) = 3 ||w||3 (with 2 = R") is
G(6) = 1]|6||>. Indeed, the above definition &f for this case coincides with the value
of D given in Eq. (4).

We now describe a template algorithm for online classificatdy incrementally
increasing the dual objective function. Our algorithmtstarith the trivial dual solution
a! = 0. On trial t, we usea! for defining the weight vectow, which is used for
predicting the label as follows. First, we defifie = Zﬁ;} a!y; x;. Throughout the

paper we assume that the supremum in the definitia#(é) is attainable and set,

wy = argg}?x ((w,0;) — F(w)) . (14)

Next, we usew, for predicting the labef; = sign({w;, x;)). Finally, we find a new
dual solutiona!+! with the lastm — t elements okx!*! are still grounded to zero. The
two requirements we imposed imply that the new value of tre dijective,D(a!*1),
should be at leagP(at). Moreover, if we make a prediction mistake the increaseén th
dual objective should be strictly positive. In general, wighmnot be able to guarantee a
minimal increase of the dual objective. In the next secti@propose sufficient condi-
tions which guarantee a minimal increase of the dual oljeethenever the algorithm
makes a prediction mistake. Our template algorithm is surizein Fig. 1.

We conclude this section with a general mistake bound fanerdlgorithms be-
longing to our framework. We need first to introduce some tiaithl notation. Let
(x1,%1), - - -, (Xm, ym) be a sequence of examples and assume that an online algorithm
which is derived from the template algorithm is run on thiguence. We denote by
the set of trials on which the algorithm made a predictiortakis,& = {t € [m] : §: #
y+ }. To remind the reader, the number of prediction mistakebe#ftgorithm isM and

8 The functionG is also called the Fenchel conjugatefof In cases wheré is differentiable
with an invertible gradient; is also called the Legendre transform7of



INPUT: Regularization functio'(w) with domains? ;
Trade-off Parametaf’ ; hinge-loss parameter

INITIALIZE: ' =0

For t=1,2,...,m

definew; = argmax (w, 8;) — F(w) where@, = >'_! ol y; x;
weNR
receive an instance; and predict its labelj; = sign({w, x;))

receive correct labe):
If 9¢ # e

find o™ € [0, C]* x {0}™ " such thaD(a'™) — D(a’) > 0
Else

find a' € [0, 01 x {0} such thaD(a'*') — D(a?) >0

Fig. 1. The template algorithm for online classification

thusM = |£|. Last, we denote by theaverageincrease of the dual objective over the

trials in &,
|g| Z t+1 (at)) ) (15)

te€

Recall thatF'(w) is our complexity measure for the vector A natural assumption
on F' is thatmin, e F(w) = 0. The intuitive meaning of this assumption is that the
complexity of the “simplest” hypothesis if? is zero. The following theorem provides
a mistake bound for any algorithm which belongs to our fraorw

Theorem 1. Let (x1,v1),--.,(Xm,ym) be a sequence of examples. Assume that an
online algorithm of the form given in Fig. 1 is run on this seqae with a function
F : 2 — R which satisfiesning, e F(w) = 0. Then,

AM < cjlelf <F +CZE’7 (xt,yt)) ) ,

where) is as defined in Eq. (15).

Proof. We prove the claim by boundirB(a™"!) from above and below. First, let us
rewrite D(a™*!) asD(at) + 31", (P(a!*!) — D(at)). Recall thata! is the zero
vector and therefor@, = 0 which gives,

D(al') = Ofgleag“w,O}fF(w)) = glelgF(w) .

Thus, the assumptianing, ¢, F(w) = 0 implies thatD(a!) = 0. Since on each round
D(alt!) — D(at) > 0 we conclude that,

D(@™™) > Y (D(a') - D(a")) = €]\

te€



This provides a lower bound d(a™*1). The upper boun®(a™*1) < P* follows
directly from the weak duality theorem. Comparing the upgoed lower bounds con-
cludes our proof. a0

The bound in Thm. 1 becomes meaningless whas excessively small. In the next
section we analyze a few known online algorithms. We show tiiese algorithms
tacitly impose sufficient conditions afi and on the sequence of input examples. These
conditions guarantee a minimal increase of the dual obgethich result in mistake
bounds for each algorithm.

4 Analysisof known onlinealgorithms

In the previous section we introduced a template algoritbnofiline learning. In this
section we analyze the family of quasi-additive online &thons described in [8, 10,
11] using the newly introduced dual view. This family inchsdseveral known algo-
rithms such as the Perceptron algorithm [15], BalancedrAd¥in[8], and the family of
p-norm algorithms [7]. Recall that we cast online learninghesproblem of incremen-
tally increasing the dual objective function given by EqB)IWe show in this section
that all quasi-additive online learning algorithms can mved as employing the same
procedure for incrementing Eq. (13). The sole differendgvben the algorithms is the
complexity functionF” which leads to different forms of the functign We exploit this
fact by providing a unified analysis and mistake bounds tdhallabove algorithms.
The bounds we obtain are as tight as the bounds that wereeddv each algorithm
individually yet our proofs are simpler.

To guarantee an increase in the dual as given by Eg. (13) onenus trials we
devise the following procedure. First, if on trighe algorithm did not make a prediction
mistake we do not change and thus set!*t! = . If on trial ¢ there was a prediction
mistake, we change only thigh component ofa and set it toC. Formally, fort € £
the new vector!*! is defined as,

1 fop ifiEt
o = {C if i = ¢ (16)

This form of update implies that the componentsxoére either zero of.

Before we continue with the derivation and analysis of anlgdgorithms, let us
first provide sufficient conditions for the update given by Etf) which guarantee a
minimal increase of the dual objective for alie £. Lett € £ be a trial on whicho
was updated. From the definition D «) we get that the change in the dual objective
due to the update is,

D(a'*!) ~D(a') = vC —G(O: + Cyxi) + G(8,) . (17)

Throughout this section we assume tldatis twice differentiable. (This assumption
indeed holds for the algorithms we analyze.) We denotg(#) the gradient o7 at

6 and by H () the Hessian o7, that is, the matrix of second order derivatives(bf
with respect t@. We would like to note in passing that the vector functidr) is often
referred to as thénk function (see for instance [1, 7, 10, 11]).



Using Taylor expansion aff around@,, we get that there exis&for which,
GO+ Cyxi) = G(0) + Oy (x1,9(8) + 3 O (x, HO)x) . (19)
Plugging the above equation into Eq. (17) gives that,
Da't) = Dla') = €y~ ylxi,g(0) — 5 O (xe, HO)xs) . (19)

We next show thatv, = g¢(8,) and therefore the second term in the right-hand of
Eq. (18) is negative. Put another way, movihgnfinitesimally in the direction ofj;x;
decreaseé’. We then cap the amount by which the second order term caend&ithe
dual value. To show thab; = g(6,) note that from the definition aff andw,, we get
that for all@ the following holds,

G(Of)—|—<wt,0—9t> = <wt,0t>—F(wt)+<wt,0—0t> = <wf,9>—F(wt) . (20)

In addition, G(0) = max,en{w,0) — F(w) > (w0) — F(w;). Combining
Eq. (20) with the last inequality gives the following,

G(@) > G(@t) + <wt,0 — 0t> . (21)

Since Eq. (21) holds for af! it implies thatw, is a sub-gradient af7. In addition, since
G is differentiable its only possible sub-gradientfatis its gradientg(6,), and thus
wy = g(0¢). The simple form of the update and the link betwagrandé, throughg
can be summarized as the following simple yet general cpdditive update:

If 9=y Set 0,41 =0, and w1 =wy
If yt # Yt Set 0t+1 = Ot + Ctht and wt_,_l = g(0t+1)

Getting back to Eq. (19) we get that,
1
D(a'™) = D(a') = C (v~ ye{wi, X)) — 3 C* (xi, HO)x:) . (22)

Recall that we assume thia€ £ and thugy, (x:, w;) < 0. In addition, we later on show
that (x, H(0)x) < 1 for all x € {2 with the particular choices af and under certain
assumptions on the norm &f We therefore can state the following corollary.

Corollary 1. LetG be a twice differentiable function whose domaiiRis. Denote by
H the Hessian ofr and assume that for al € R™ and for allx, (¢ € £) we have that
(x¢, H(0)x;) < 1. Then, under the conditions of Thm. 1 the update given by 1. (
ensures that\ > vC — $C2.

Example 1 (Perceptron)The Perceptron algorithm [15] is derived from Eq. (16) by

setting F(w) = 1|w|/?, £ = R", andy = 1. To see this, note that the conjugate

function of F' for this choice isG(0) = 1||0||?. Therefore, the gradient @ at 6, is

9(0:) = 0, which implies thatw; = ;. We thus obtain a scaled version of the well
known Perceptron update, 1 = w:+C y: x;. Assume thaljx; |2 < 1forallt € [m].



Since the Hessian @F is the identity matrix we get thatx,, H(0) x;) = (x;,x;) < 1.
Therefore, we obtain the following mistake bound,

(C - 702>M < min f||w||2 +C Y bws (xi,30)) - (29)
=1
Note the sequence of predictions of the Perceptron algoritbes not depend on the
actual value of” so long ag” > 0. Therefore, we can choogeso as to minimize the
right hand side of Eq. (23) and rewrite,

1 m
VweR", M < min (——— [z llwl?+C S lw;(xi,u)) |
weR", M < crél(g,lz)(cg— )>< lwl + Z (i, i ))

where the domail0, 2) for C' ensures that the bound will not become vacuous. Solving
the right-hand side of the above equationddyields the following mistake bound,

1
M < L+ Zllw|? (1+ V1T 4L/||w||2)

whereL = > ¢(w; (x;,y;)). The proof is omitted due to the lack of space and
will be presented in a long version of the paper. We wouldtikeote that this bound is
identical to the best known mistake bound for the Percegtlgorithm (see for example
[7]). However, our proof technique is vastly different anthbles us to derive mistake
bounds for new algorithms, as we show later on in Sec. 5.

Example 2 (Balanced Winnow)e now analyze a version of the Winnow algo-
rithm called Balanced-Winnow [8] which is also closely tethto the Exponentiated-
Gradient algorithm [10]. For brevity we refer to the algbnit we analyze simply as

Winnow. To derive the Winnow algorithm we choosé)(w) = Y7, w; log (fj—n)

and? = {w e R} : Y | w; = 1}. The functionF is the relative entropy between
the probability vectorw and the uniform vecto(%, cee %). The relative entropy is
non-negative and measures the entropic divergence betweetistributions. It attains
a value of zero whenever the two vectors are equal. Thergfogeninimum value of
F(w) is zero and is attained fay = (1,..., 1). The conjugate of" is the Iogarithm
of the sum of exponentials (see for example [2][pp. 98]]0) = log (Z:’ Le” ) The
k'th element of the gradient off is, g;(6) = e’/ (31, €%). Note thatg() is a
vector in then-dimensional simplex and therefakg = ¢(0;) € 2. Thek’th element
of w¢1 can be rewritten using a multiplicative update rule,

1 1

_ 9z k+C Y Xe e Cuyt X

Wit1,k = = € Wtk
+ 7. Z ’

whereZ, is a normalization constant which ensures that, is in the simplex.

To analyze the algorithm we need to show that, H(6)x;) < 1, which indeed
holds for||x;||.c < 1. The proof is omitted due to the lack of space. As a result, we
obtain the following mistake bound,

(’yC 02) M < mm (szlog w;) + log(n +CZ€V (xi,yi) )



Since} ", w; log(w;) < 0, if we setC' = , the above bound reduces to,

M <2 <log(n) + min l 0 (w; (Xiayi)))

2 2
Y weE Y i1

Example 3 g-norm algorithms)We conclude this section with the analysis of the fam-
ily of p-norm algorithms [7, 8]. Lep, ¢ > 1 be two scalars such th§t+% = 1. Define,
Flw) = 3|wl? s>, lw;|7)*/?, and let2 = R™. The conjugate function of
Fin this case isG(0) = %||0H§ (For a proof see [2], page 93.) and thi element
of the gradient of7 is,
sign(6;) |0; p—l
(o) = SOOI
161l

To analyze any-norm algorithm we need again to bound forialhe quadratic form
(x¢, H(0)x). It is possible to show (see [7, 8]) that

29

o HO)x) < 2 (101)" plo—1) Y sin6)le P . @4)
=1

Using Holder inequality with the dual norn%% and% we get that,

P

" . _ - _9)y_P_ E - 25 B _
> " sign(6;)|6: P 2a} < <Z|9i|(p 2)P2> (Zw ) = lol5=2 [1xll; -
1=1

i=1 i=1

Combining the above with Eq. (24) givelss, H(0)x) < (p — 1)||x][2. If we further
assume thatx||, < /1/(p — 1) then we can apply corollary 1 and obtain that,

1 ' 1 m
(70 _ 202) M < min <2||w||§ +C > 0 (w; (Xiayi))>
=1

5 Deriving new onlinelearning algorithms

In the previous section we described a family of online lesgralgorithms. The algo-
rithms are based on the simple procedure defined via Eq. (h&hwncrements the
dual using a fixed-size update to a single dual variableitimdly, an update scheme
which results in a larger increase in the dual objective arhegal is likely to yield
online algorithms with refined loss bounds. In this secti@outline a few new online
update schemes which setmore aggressively.

The update scheme of the previous section for increasinduakmodifiesce only
on trials on which there was a prediction mistake<( £). The update is performed
by setting the'th element ofa to C' and keeping the rest of the variables intact. This
simple update can be enhanced in several ways. First, natevtfile settinga!™ to
C guarantees a sufficient increase in the dual, there mighttes valuesy. ™ which
would lead to larger increases of the dual. Furthermore,ameatso updatex on trials



on which the prediction was correct so long as the loss iszavo- Last, we need not
restrict our update to thiéth element ofae. We can instead update several dual variables
as long as their indices are ifj.

We now describe and briefly analyze a few new updates whiatease the dual
more aggressively. The goal here is to illustrate the poWwéneapproach and the list
of new updates we outline is by no means exhaustive. We stale$cribing an update
which setsa/*! adaptively, depending on the loss suffered on rotrithis improved
update constructa*! as follows,

1 _ fal it it

i {min{ﬁ(wt; (xep0), O} fi=t ° (25)
As before, the above update can be used with various comypléxnctions for
F, yielding different quasi-additive algorithms. We now yide a unified analysis
for all algorithms which are based on the update given by B§).(In contrast
to the previous update which modified only when there was a prediction mis-
take, the new update modifies whenever((w,; (x¢,y:)) > 0. This more aggres-
sive approach leads to a more genéoak bound while still attaining the same mis-
take bound of the previous section. The mistake bound stifishsince whenever
the algorithm makes a prediction mistake its loss is at
leasty. Formally, let us define the following mitigating
function,

o) = & (w0 (s~ Lintrcy)) . 7

The functiony is illustrated in Fig. 2. Note thai(-) gt
becomes very similar to the identity function for small o

values ofC'. The following theorem provides a boundrig. 2. The mitigating function
on the cumulative sum Qf(4(wy, (x¢,4t)))- w(x) for different values o',

Theorem 2. Let(x1,%1),---, (Xm,ym) b€ a sequence of examples anddet{? — R
be a complexity function for whichin,c F(w) = 0. Assume that an online algo-
rithm is derived from Eq. (25) using as the conjugate function df. If G is twice
differentiable and its Hessian satisfiés,, H(0)x;) < 1 for all 8 € R™ andt¢ € [m],
then the following bound holds,

(67

;M (Uwe; (xe, 1)) < glel?z (é F(w) + ;g(% (tht)))
Proof. Analogously to the proof of Thm. 1, we prove this theorem byurting
D(a™*t1) from above and below. The upper boulda™*!) < P* follows again
from weak duality theorem. To derive a lower bound, note thatconditions stated in
the theorem imply thab(a') = 0 and thusD(a™ ') = 3" | (D(a'™!) — D(ah)).
Definer, = min{¢(w; (x¢,¥¢)), C} and note that the sole difference between the up-
dates given by Eg. (25) and Eg. (16) is thatreplacesC. Thus, the derivation of
Eqg. (22) in Sec. 4 can be repeated almost verbatim witkplacingC' to get,
1 2

D(O‘H_l) - D(O‘t) > 7 (v — ye{we, X)) — B T - (26)



Summing ovet € [m] and using the definitions df{w:; (x:,v:)), 7+, andy gives that,

D(a™) = Y (D@ ™) =D(@") = 3 ullws (xiu) -

t=1
Finally, we compare the lower and upper boundga™ 1) and rearrange terms.ci

Note that/(w,; (x¢,y:)) > v whenever the algorithm makes a prediction mistake. Since
1 is a monotonically increasing function we get that the iaseein the dual fot € £
is at leasfu(~y). Thus, we obtain the mistake bound,

12

AM < P* where A > Cpu(y) = {gfg ¢ giz 27)
The new update is advantageous over the previous updateisinddition to the same
increase in the dual on trials with a prediction mistake #l& guaranteed to increase
the dual byu(4(-)) on the rest of the trials. Yet, both updates are confined tdfyingd

a single dual variable on each trial. We nonetheless canaserthe dual more dramat-
ically by modifying multiple dual variables on each roundrimally, fort € [m], let I;

be a subset dt] which includest. GivenI;, we can setx!*! to be,

o' = argmax D(a) St.Vi¢ I, oy =al . (28)

aecl0,C]™

This more general update also achieves the bound of Thm. thamdinimal increase in
the dual as given by Eq. (27). To see this, note that the reopgint that € I, implies,

D(a'!) > max{D(a) : @ €[0,C]" andVi#t, o; =al} . (29)

Thus the increase in the duB(a’*!) — D(at) is guaranteed to be at least as large as
the increase due to the previous updates. The rest of thé girdee bound is literally
the same.

Let us now examine a few choices ffr Settingl; = [¢] for all ¢ gives the Online-
SVM algorithm we mentioned in Sec. 3 by choosifigw) = 1|w|/* and 2 = R™.
This algorithm makes use of all the examples that have besgredd and thus is likely
to make the largest increase in the dual objective on eaahltrdoes require however
a full-blown quadratic programming solver. In contrast, E2p) can be solved analyti-
cally when we employ the smallest possible get= {t}, with F'(w) = | w||2. In this
casea! ™! turns out to be the minimum betweéhand/(w; (x¢, y:))/||x:/|?. This al-
gorithm was described in [4] and belongs to a family of Pasaiggressive algorithms.
The mistake bound that we obtain as a by product in this papsowever superior to
the one in [4]. Naturally, we can interpolate between theiméh and maximal choices
for I; by setting the size of, to a predefined valué and choosing, say, the lakt
observed examples as the elementsg;of-ork = 1 andk = 2 we can solve Eq. (28)
analytically while gaining modest increases in the duak Til power of the update
is unleashed for large values bf however, Eq. (28) cannot be solved analytically and
requires the usage of iterative procedures such as infasiot methods.



6 Discussion

We presented a new framework for the design and analysis lofeolearning algo-

rithms. Our framework yields the best known bounds for quaasitive online classifi-

cation algorithms. It also paves the way to new algorithnigere are various possible
extensions of the work that we did not discuss due to the lddpace. Our frame-

work can naturally be extended to other prediction probleath as regression, mul-
ticlass categorization, and ranking problems. Our framkvgalso applicable to set-
tings where the target hypothesis is not fixed but rathetidigifwith the sequence of
examples. In addition, the hinge-loss was used in our d@sivan order to make a
clear connection to the quasi-additive algorithms. Thaaghof the hinge-loss is rather
arbitrary and it can be replaced with others such as thetlod@sss. There are also
numerous possible algorithmic extensions and new updaesses which manipulate
multiple dual variables on each online update. Finally,foamework can be used with
non-differentiable conjugate functions which might beeouseful in settings where
there are combinatorial constraints on the number of noo-deal variables (see [6]).
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