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Abstract. We describe a novel framework for the design and analysis of online
learning algorithms based on the notion of duality in constrained optimization.
We cast a sub-family of universal online bounds as an optimization problem. Us-
ing the weak duality theorem we reduce the process of online learning to the task
of incrementally increasing the dual objective function. The amount by which the
dual increases serves as a new and natural notion of progress. We are thus able
to tie the primal objective value and the number of prediction mistakes using and
the increase in the dual. The end result is a general framework for designing and
analyzing old and new online learning algorithms in the mistake bound model.

1 Introduction

Online learning of linear classifiers is an important and well-studied domain in ma-
chine learning with interesting theoretical properties and practical applications [3, 4,
7–10, 12]. An online learning algorithm observes instancesin a sequence of trials. Af-
ter each observation, the algorithm predicts a yes/no (+/−) outcome. The prediction of
the algorithm is formed by a hypothesis, which is a mapping from the instance space
into {+1,−1}. This hypothesis is chosen by the online algorithm from a predefined
class of hypotheses. Once the algorithm has made a prediction, it receives the correct
outcome. Then, the online algorithm may choose another hypothesis from the class
of hypotheses, presumably improving the chance of making anaccurate prediction on
subsequent trials. The quality of an online algorithm is measured by the number of
prediction mistakes it makes along its run.

In this paper we introduce a general framework for the designand analysis of on-
line learning algorithms. Our framework emerges from a new view on relative mistake
bounds [10, 14], which are the common thread in the analysis of online learning al-
gorithms. A relative mistake bound measures the performance of an online algorithm
relatively to the performance of a competing hypothesis. The competing hypothesis can
be chosen in hindsight from a class of hypotheses, after observing the entire sequence
of examples. For example, the original mistake bound of the Perceptron algorithm [15],
which was first suggested over 50 years ago, was derived by using a competitive anal-
ysis, comparing the algorithm to a linear hypothesis which achieves a large margin on
the sequence of examples. Over the years, the competitive analysis technique was re-
fined and extended to numerous prediction problems by employing complex and varied
notions of progress toward a good competing hypothesis. Theflurry of online learning



algorithms sparked unified analyses of seemingly differentonline algorithms by Little-
stone, Warmuth, Kivinen and colleagues [10, 13]. Most notably is the work of Grove,
Littlestone, and Schuurmans [8] on a quasi-additive familyof algorithms, which in-
cludes both the Perceptron [15] and the Winnow [13] algorithms as special cases. A
similar unified view for regression was derived by Kivinen and Warmuth [10, 11]. On-
line algorithms for linear hypotheses and their analyses became more general and pow-
erful by employing Bregman divergences for measuring the progress toward a good
hypothesis [7–9]. In the aftermath of this paper we refer to these analyses asprimal
views.

We propose an alternative view of relative mistake bounds which is based on the no-
tion of duality in constrained optimization. Online mistake bounds are universal in the
sense that they hold for any possible predictor in a given hypothesis class. We therefore
cast the universal bound as an optimization problem. Specifically, the objective func-
tion we cast is the sum of an empirical loss of a predictor and acomplexity term for
that predictor. The best predictor in a given class of hypotheses, which can only be de-
termined in hindsight, is the minimizer of the optimizationproblem. In order to derive
explicit quantitative mistake bounds we make an immediate use of the fact that dual
objective lower bounds the primal objective. We therefore switch to the dual represen-
tation of the optimization problem. We then reduce the process of online learning to the
task of incrementally increasing the dual objective function. The amount by which the
dual increases serves as a new and natural notion of progress. By doing so we are able
to tie the primal objective value, the number of prediction mistakes, and the increase
in the dual. The end result is a general framework for designing online algorithms and
analyzing them in the mistake bound model.

We illustrate the power of our framework by studying two schemes for increasing
the dual objective. The first performs a fixed size update based solely on the last ob-
served example. We show that this dual update is equivalent to the primal update of the
quasi-additive family of algorithms [8]. In particular, our framework yields the tightest
known bounds for several known quasi-additive algorithms such as the Perceptron and
Balanced Winnow. The second update scheme we study moves further in the direction
of optimization techniques in several accounts. In this scheme the online learning al-
gorithm may modify its hypotheses based onmultiplepast examples. Furthermore, the
update itself is constructed by maximizing or approximately maximizing the increase
in the dual. While this second approach still entertains the same mistake bound of the
first scheme it also serves as a vehicle for deriving new online algorithms.

2 Problem Setting

In this section we introduce the notation used throughout the paper and formally de-
scribe our problem setting. We denote scalars with lower case letters (e.g.x andω), and
vectors with bold face letters (e.g.x andω). The set of non-negative real numbers is
denoted byR+. For anyk ≥ 1, the set of integers{1, . . . , k} is denoted by[k].

Online learning of binary classifiers is performed in a sequence of trials. At trial
t the algorithm first receives an instancext ∈ R

n and is required to predict the label
associated with that instance. We denote the prediction of the algorithm on thet’th trial



by ŷt. For simplicity and concreteness we focus on online learning of binary classifiers,
namely, we assume that the labels are in{+1,−1}. After the online learning algorithm
has predicted the label̂yt, the true labelyt ∈ {+1,−1} is revealed and the algorithm
pays a unit cost if its prediction is wrong, that is, ifyt 6= ŷt. The ultimate goal of the
algorithm is to minimize the total number of prediction mistakes it makes along its run.
To achieve this goal, the algorithm may update its prediction mechanism after each trial
so as to be more accurate in later trials.

In this paper, we assume that the prediction of the algorithmat each trial is de-
termined by a margin-based linear hypothesis. Namely, there exists a weight vector
ωt ∈ Ω ⊂ R

n whereŷt = sign(〈ωt,xt〉) is the actual binary prediction and|〈ωt,xt〉|
is the confidence in this prediction. The termyt 〈ωt,xt〉 is called themargin of the
prediction and is positive wheneveryt and sign(〈ωt,xt〉) agree. We can evaluate the
performance of a weight vectorω on a given example(x, y) in one of two ways. First,
we can check whetherω results in a prediction mistake which amounts to checking
whethery = sign(〈ω,x〉) or not. Throughout this paper, we useM to denote the num-
ber of prediction mistakes made by an online algorithm on a sequence of examples
(x1, y1), . . . , (xm, ym). The second way we evaluate the predictions of an hypothesis
is by using thehinge-lossfunction, defined as,

ℓγ
(
ω; (x, y)

)
=

{
0 if y 〈ω,x〉 ≥ γ
γ − y 〈ω,x〉 otherwise

. (1)

The hinge-loss penalizes an hypothesis for any margin less than γ. Additionally, if
y 6= sign(〈ω,x〉) thenℓγ(ω; (x, y)) ≥ γ. Therefore, thecumulative hinge-losssuffered
over a sequence of examples upper boundsγM . Throughout the paper, whenγ = 1 we
use the shorthandℓ(ω; (x, y)).

As mentioned before, the performance of an online learning algorithm is measured
by the cumulative number of prediction mistakes it makes along its run on a sequence of
examples(x1, y1), . . . , (xm, ym). Ideally, we would like to think of the labels as if they
are generated by an unknown yetfixedweight vectorω⋆ such thatyi = sign(〈ω⋆,xi〉)
for all i ∈ [m]. Moreover, in an utopian case, the cumulative hinge-loss ofω⋆ on the
entire sequence is zero, which means thatω⋆ produces the correct label with a confi-
dence of at leastγ. In this case, we would likeM , the number of prediction mistakes of
our online algorithm, to be independent ofm, the number of examples. Usually, in such
cases,M is upper bounded byF (ω⋆) whereF : Ω → R is a function which measures
the complexity ofω⋆. In the more realistic case, there does not existω⋆ which perfectly
predicts the data. In this case, we would like the online algorithm to be competitive with
anyfixed hypothesisω. Formally, letλ andC be two positive scalars. We say that our
online algorithm is(λ,C)-competitive with the set of vectors inΩ, with respect to a
complexity functionF and the hinge-lossℓγ , if the following bound holds,

∀ ω ∈ Ω, λM ≤ F (ω) + C

m∑

i=1

ℓγ(ω; (xi, yi)) . (2)

The parameterC controls the trade-off between the complexity ofω (throughF ) and
the cumulative hinge-loss ofω. The parameterλ is introduced for technical reasons



that are provided in the next section. The main goal of this paper is to develop a general
paradigm for designing online learning algorithms and analyze them in the mistake
bound framework given in Eq. (2).

3 A primal-dual apparatus for online learning

In this section we describe a methodology for designing online learning algorithms for
binary classification. To motivate our construction let us first consider the special case
whereγ = 1, F (ω) = 1

2‖ω‖2
2, andΩ = R

n. Denote byP(ω) the right hand side of
Eq. (2) which in this special case amounts to,

P(ω) =
1

2
‖ω‖2 + C

m∑

i=1

ℓ(ω; (xi, yi)) .

The bound in Eq. (2) can be rewritten as,

λM ≤ min
ω∈Rn

P(ω)
def
= P⋆ . (3)

Note thatP(ω) is the well-known primal objective function of the optimization prob-
lem employed by the SVM algorithm [5]. Intuitively, we view the online learning task
as incrementally solving the optimization problemminω P(ω). However, whileP(ω)
depends on the entire sequence of examples{(x1, y1), . . . , (xm, ym)}, the online al-
gorithm is confined to use on trialt only the firstt − 1 examples of the sequence. To
overcome this disparity, we follow the approach that ostriches take in solving prob-
lems: we simply ignore the examples{(xt, yt), . . . , (xm, ym)} as they are not provided
to the algorithm on trialt. Therefore, on trialt we use the following weight vector for
predicting the label,

ωt = argmin
ω

Pt(ω) where Pt(ω) =
1

2
‖ω‖2 + C

t−1∑

i=1

ℓ(ω; (xi, yi)) .

This online algorithm is a simple (and non-efficient) adaptation of the SVM algorithm
for the online setting and we therefore call it the Online-SVM algorithm (see also [12]).
Since the hinge-lossℓ(ω; (xt, yt)) is non-negative we get thatPt(ω) ≤ Pt+1(ω) for
anyω and thereforePt(ωt) ≤ Pt(ωt+1) ≤ Pt+1(ωt+1). Note thatP1(ω1) = 0 and
thatPm+1(ω) = P⋆. Thus,

0 = P1(ω1) ≤ P2(ω2) ≤ . . . ≤ Pm+1(ωm+1) = P⋆ .

Recall that our goal is to find an online algorithm which entertains the mistake bound
given in Eq. (3). Suppose that we can show that for each trialt on which the online
algorithm makes a prediction mistake we have thatPt+1(ωt+1) − Pt(ωt) ≥ λ >
0. Equipped with this assumption, it follows immediately that if the online algorithm
madeM prediction mistakes on the entire sequence of examples thenPm+1(ωm+1)
should be at leastλM . SincePm+1(ωm+1) = P⋆ we conclude thatλM ≤ P⋆ which



gives the desired mistake bound from Eq. (3). In summary, to prove a mistake bound
one needs to show that the online algorithm constructs a sequence of lower bounds
P1(ω1), . . . ,Pm+1(ωm+1) for P⋆. These lower bounds should become tighter and
tighter with the progress of the online algorithm. Moreover, whenever the algorithm
makes a prediction mistake the lower bound must increase by at leastλ.

The notion of duality, commonly used in optimization theory, plays an important
role in obtaining lower bounds for the minimal value of the primal objective (see for
example [2]). We now take an alternative view of the Online-SVM algorithm based on
the notion of duality. As we formally show later, the dual of the problemminω P(ω) is

max
α∈[0,C]m

D(α) where D(α) =
m∑

i=1

αi −
1

2

∥
∥
∥
∥
∥

m∑

i=1

αi yi xi

∥
∥
∥
∥
∥

2

. (4)

The weak duality theorem states that any value of the dual objective is upper bounded
by the optimal primal objective. That is, for anyα ∈ [0, C]m we have thatD(α) ≤ P⋆.
If in addition strong duality holds thenmaxα∈[0,C]m D(α) = P⋆. As we show in the
sequel, the valuesP1(ω1), . . . ,Pm+1(ωm+1) translate to a sequence of dual objective
values. Put another way, there exists a sequence of dual solutionsα1, . . . ,αm+1 such
that for allt ∈ [m+1] we have thatD(αt) = Pt(ωt). This fact follows from a property
of the dual function in Eq. (4) as we now show.

Denote byDt the dual objective function ofPt,

Dt(α) =

t−1∑

i=1

αi −
1

2

∥
∥
∥
∥
∥

t−1∑

i=1

αi yi xi

∥
∥
∥
∥
∥

2

. (5)

Note thatDt is a mapping from[0, C]t−1 into the reals. From strong duality we know
that the minimum ofPt equals to the maximum ofDt. From the definition ofDt we get
that for(α1, . . . , αt−1) ∈ [0, C]t−1 the following equality holds,

Dt((α1, . . . , αt−1)) = D((α1, . . . , αt−1, 0, . . . , 0)) .

Therefore, the Online-SVM algorithm can be viewed as an incremental solver of the
dual problem,maxα∈[0,C]m D(α), where at the end of trialt the algorithm maximizes
the dual function confined to the firstt variables,

max
α∈[0,C]m

D(α) s.t. ∀i>t, αi = 0 .

The property of the dual objective that we utilize is that it can be optimized in a sequen-
tial manner. Specifically, if on trialt we groundαi to zero fori ≥ t thenD(α) does not
depend on examples which have not been observed yet.

We presented two views of the Online-SVM algorithm. In the first view the al-
gorithm constructs a sequence ofprimal solutionsω1, . . . ,ωm+1 while in the second
the algorithm constructs a sequence ofdual solutions which we analogously denote by
α1, . . . ,αm+1. As we show later, the connection betweenωt andαt is given through
the equality,

ωt =

m∑

i=1

αt
i yi xi . (6)



In general, any sequence of feasible dual solutionsα1, . . . ,αm+1 can define an on-
line learning algorithm by settingωt according to Eq. (6). Naturally, we require that
αt

i = 0 for all i ≥ t since otherwiseωt would depend on examples which have not
been observed yet. To prove that the resulting online algorithm entertains the mistake
bound given in Eq. (3) we impose two additional conditions. First, we require that
D(αt+1) ≥ D(αt) which means that the dual objective never decreases. In addition,
on trials in which the algorithm makes a prediction mistake we require that the increase
of the dual objective will be strictly positive,D(αt+1) − D(αt) ≥ λ > 0. To recap,
any incremental solver for the dual optimization problem which satisfies the above re-
quirements can serve as an online algorithm which meets the mistake bound given in
Eq. (3).

Let us now formally generalize the above motivating discussion. Our starting point
is the desired mistake bound of the form given in Eq. (2), which can be rewritten as,

λM ≤ inf
ω∈Ω

(

F (ω) + C

m∑

i=1

ℓγ(ω; (xi, yi))

)

. (7)

As in our motivating example we denote byP(ω) the primal objective of the optimiza-
tion problem on the right-hand side of Eq. (7). Our goal is to develop an online learning
algorithm that achieves this mistake bound. First, let us derive the dual optimization
problem. Using the definition ofℓγ we can rewrite the optimization problem as,

inf
ω∈Ω,ξ∈R

m
+

F (ω) + C
m∑

i=1

ξi

s.t.∀i ∈ [m], yi〈ω,xi〉 ≥ γ − ξi .

(8)

We further rewrite this optimization problem using the Lagrange dual function,

inf
ω∈Ω,ξ∈R

m
+

sup
α∈R

m
+

F (ω) + C

m∑

i=1

ξi +

m∑

i=1

αi (γ − yi〈ω,xi〉 − ξi)

︸ ︷︷ ︸

def
= L(ω,ξ,α)

. (9)

Eq. (9) is equivalent to Eq. (8) due to the following fact. If the constraintyi〈ω,xi〉 ≥
γ − ξi holds then the optimal value ofαi in Eq. (9) is zero. If on the other hand the
constraint does not hold thenαi equals∞, which implies thatω cannot constitute the
optimal primal solution. The weak duality theorem (see for example [2]) states that,

sup
α∈R

m
+

inf
ω∈Ω,ξ∈R

m
+

L(ω, ξ,α) ≤ inf
ω∈Ω,ξ∈R

m
+

sup
α∈R

m
+

L(ω, ξ,α) . (10)

The dual objective function is defined to be,

D(α) = inf
ω∈Ω,ξ∈R

m
+

L(ω, ξ,α) . (11)

Using the definition ofL, we can rewrite the dual objective as a sum of three terms,

D(α) = γ

m∑

i=1

αi − sup
ω∈Ω

(

〈ω,

m∑

i=1

αiyixi〉 − F (ω)

)

+ inf
ξ∈R

m
+

m∑

i=1

ξi (C − αi) .



The last term equals to zero forαi ∈ [0, C] and to−∞ for αi > C. Since our goal is to
maximizeD(α) we can confine ourselves to the caseα ∈ [0, C]m and simply write,

D(α) = γ
m∑

i=1

αi − sup
ω∈Ω

(

〈ω,
m∑

i=1

αiyixi〉 − F (ω)

)

.

The second term in the above presentation ofD(α) can be rewritten using the notion of
conjugate functions (see for example [2]). Formally, the conjugate3 of the functionF is
the function,

G(θ) = sup
ω∈Ω

〈ω,θ〉 − F (ω) . (12)

Using the definition ofG we conclude that forα ∈ [0, C]m the dual objective function
can be rewritten as,

D(α) = γ
m∑

i=1

αi − G

(
m∑

i=1

αiyixi

)

. (13)

For instance, it is easy to verify that the conjugate ofF (ω) = 1
2‖ω‖2

2 (with Ω = R
n) is

G(θ) = 1
2‖θ‖

2. Indeed, the above definition ofD for this case coincides with the value
of D given in Eq. (4).

We now describe a template algorithm for online classification by incrementally
increasing the dual objective function. Our algorithm starts with the trivial dual solution
α1 = 0. On trial t, we useαt for defining the weight vectorωt which is used for
predicting the label as follows. First, we defineθt =

∑t−1
i=1 αt

i yi xi. Throughout the
paper we assume that the supremum in the definition ofG(θ) is attainable and set,

ωt = argmax
ω∈Ω

(〈ω,θt〉 − F (ω)) . (14)

Next, we useωt for predicting the label̂yt = sign(〈ωt,xt〉). Finally, we find a new
dual solutionαt+1 with the lastm− t elements ofαt+1 are still grounded to zero. The
two requirements we imposed imply that the new value of the dual objective,D(αt+1),
should be at leastD(αt). Moreover, if we make a prediction mistake the increase in the
dual objective should be strictly positive. In general, we might not be able to guarantee a
minimal increase of the dual objective. In the next section we propose sufficient condi-
tions which guarantee a minimal increase of the dual objective whenever the algorithm
makes a prediction mistake. Our template algorithm is summarized in Fig. 1.

We conclude this section with a general mistake bound for online algorithms be-
longing to our framework. We need first to introduce some additional notation. Let
(x1, y1), . . . , (xm, ym) be a sequence of examples and assume that an online algorithm
which is derived from the template algorithm is run on this sequence. We denote byE
the set of trials on which the algorithm made a prediction mistake,E = {t ∈ [m] : ŷt 6=
yt}. To remind the reader, the number of prediction mistakes of the algorithm isM and

3 The functionG is also called the Fenchel conjugate ofF . In cases whereF is differentiable
with an invertible gradient,G is also called the Legendre transform ofF .



INPUT: Regularization functionF (ω) with domainΩ ;

Trade-off ParameterC ; hinge-loss parameterγ

INITIALIZE : α1 = 0

For t = 1, 2, . . . , m

defineωt = argmax
ω∈Ω

〈ω, θt〉 − F (ω) whereθt =
P

t−1

i=1
αt

i yi xi

receive an instancext and predict its label:̂yt = sign(〈ωt,xt〉)

receive correct labelyt

If ŷt 6= yt

find αt+1 ∈ [0, C]t × {0}m−t such thatD(αt+1) −D(αt) > 0

Else

find αt+1 ∈ [0, C]t × {0}m−t such thatD(αt+1) −D(αt) ≥ 0

Fig. 1. The template algorithm for online classification

thusM = |E|. Last, we denote byλ theaverageincrease of the dual objective over the
trials inE ,

λ =
1

|E|

∑

t∈E

(
D(αt+1) −D(αt)

)
. (15)

Recall thatF (ω) is our complexity measure for the vectorω. A natural assumption
on F is thatminω∈Ω F (ω) = 0. The intuitive meaning of this assumption is that the
complexity of the “simplest” hypothesis inΩ is zero. The following theorem provides
a mistake bound for any algorithm which belongs to our framework.

Theorem 1. Let (x1, y1), . . . , (xm, ym) be a sequence of examples. Assume that an
online algorithm of the form given in Fig. 1 is run on this sequence with a function
F : Ω → R which satisfiesminω∈Ω F (ω) = 0. Then,

λM ≤ inf
ω∈Ω

(

F (ω) + C
m∑

t=1

ℓγ(ω; (xt, yt))

)

,

whereλ is as defined in Eq. (15).

Proof. We prove the claim by boundingD(αm+1) from above and below. First, let us
rewriteD(αm+1) asD(α1) +

∑m
t=1

(
D(αt+1) −D(αt)

)
. Recall thatα1 is the zero

vector and thereforeθ1 = 0 which gives,

D(α1) = 0 − max
ω∈Ω

(〈ω,0〉 − F (ω)) = min
ω∈Ω

F (ω) .

Thus, the assumptionminω∈Ω F (ω) = 0 implies thatD(α1) = 0. Since on each round
D(αt+1) −D(αt) ≥ 0 we conclude that,

D(αm+1) ≥
∑

t∈E

(
D(αt+1) −D(αt)

)
= |E|λ .



This provides a lower bound onD(αm+1). The upper boundD(αm+1) ≤ P⋆ follows
directly from the weak duality theorem. Comparing the upperand lower bounds con-
cludes our proof. ⊓⊔

The bound in Thm. 1 becomes meaningless whenλ is excessively small. In the next
section we analyze a few known online algorithms. We show that these algorithms
tacitly impose sufficient conditions onF and on the sequence of input examples. These
conditions guarantee a minimal increase of the dual objective which result in mistake
bounds for each algorithm.

4 Analysis of known online algorithms

In the previous section we introduced a template algorithm for online learning. In this
section we analyze the family of quasi-additive online algorithms described in [8, 10,
11] using the newly introduced dual view. This family includes several known algo-
rithms such as the Perceptron algorithm [15], Balanced-Winnow [8], and the family of
p-norm algorithms [7]. Recall that we cast online learning asthe problem of incremen-
tally increasing the dual objective function given by Eq. (13). We show in this section
that all quasi-additive online learning algorithms can be viewed as employing the same
procedure for incrementing Eq. (13). The sole difference between the algorithms is the
complexity functionF which leads to different forms of the functionG. We exploit this
fact by providing a unified analysis and mistake bounds to allthe above algorithms.
The bounds we obtain are as tight as the bounds that were derived for each algorithm
individually yet our proofs are simpler.

To guarantee an increase in the dual as given by Eq. (13) on erroneous trials we
devise the following procedure. First, if on trialt the algorithm did not make a prediction
mistake we do not changeα and thus setαt+1 = αt. If on trial t there was a prediction
mistake, we change only thet’th component ofα and set it toC. Formally, fort ∈ E
the new vectorαt+1 is defined as,

αt+1
i =

{
αt

i if i 6= t
C if i = t

(16)

This form of update implies that the components ofα are either zero orC.
Before we continue with the derivation and analysis of online algorithms, let us

first provide sufficient conditions for the update given by Eq. (16) which guarantee a
minimal increase of the dual objective for allt ∈ E . Let t ∈ E be a trial on whichα
was updated. From the definition ofD(α) we get that the change in the dual objective
due to the update is,

D(αt+1) −D(αt) = γ C − G(θt + C ytxt) + G(θt) . (17)

Throughout this section we assume thatG is twice differentiable. (This assumption
indeed holds for the algorithms we analyze.) We denote byg(θ) the gradient ofG at
θ and byH(θ) the Hessian ofG, that is, the matrix of second order derivatives ofG
with respect toθ. We would like to note in passing that the vector functiong(·) is often
referred to as thelink function (see for instance [1, 7, 10, 11]).



Using Taylor expansion ofG aroundθt, we get that there existsθ for which,

G(θt + C ytxt) = G(θt) + C yt 〈xt, g(θt)〉 +
1

2
C2 〈xt,H(θ)xt〉 . (18)

Plugging the above equation into Eq. (17) gives that,

D(αt+1) −D(αt) = C (γ − yt〈xt, g(θt)〉) −
1

2
C2 〈xt,H(θ)xt〉 . (19)

We next show thatωt = g(θt) and therefore the second term in the right-hand of
Eq. (18) is negative. Put another way, movingθt infinitesimally in the direction ofytxt

decreasesG. We then cap the amount by which the second order term can influence the
dual value. To show thatωt = g(θt) note that from the definition ofG andωt, we get
that for allθ the following holds,

G(θt)+〈ωt,θ−θt〉 = 〈ωt,θt〉−F (ωt)+〈ωt,θ−θt〉 = 〈ωt,θ〉−F (ωt) . (20)

In addition,G(θ) = maxω∈Ω〈ω,θ〉 − F (ω) ≥ 〈ωt,θ〉 − F (ωt). Combining
Eq. (20) with the last inequality gives the following,

G(θ) ≥ G(θt) + 〈ωt,θ − θt〉 . (21)

Since Eq. (21) holds for allθ it implies thatωt is a sub-gradient ofG. In addition, since
G is differentiable its only possible sub-gradient atθt is its gradient,g(θt), and thus
ωt = g(θt). The simple form of the update and the link betweenωt andθt throughg

can be summarized as the following simple yet general quasi-additive update:

If ŷt = yt Set θt+1 = θt and ωt+1 = ωt

If ŷt 6= yt Set θt+1 = θt + Cytxt and ωt+1 = g(θt+1)

Getting back to Eq. (19) we get that,

D(αt+1) −D(αt) = C (γ − yt〈ωt,xt〉) −
1

2
C2 〈xt,H(θ)xt〉 . (22)

Recall that we assume thatt ∈ E and thusyt〈xt,ωt〉 ≤ 0. In addition, we later on show
that 〈x,H(θ)x〉 ≤ 1 for all x ∈ Ω with the particular choices ofG and under certain
assumptions on the norm ofx. We therefore can state the following corollary.

Corollary 1. Let G be a twice differentiable function whose domain isR
n. Denote by

H the Hessian ofG and assume that for allθ ∈ R
n and for allxt (t ∈ E) we have that

〈xt,H(θ)xt〉 ≤ 1. Then, under the conditions of Thm. 1 the update given by Eq. (16)
ensures that,λ ≥ γ C − 1

2C2.

Example 1 (Perceptron).The Perceptron algorithm [15] is derived from Eq. (16) by
settingF (ω) = 1

2‖ω‖2, Ω = R
n, andγ = 1. To see this, note that the conjugate

function ofF for this choice is,G(θ) = 1
2‖θ‖

2. Therefore, the gradient ofG at θt is
g(θt) = θt, which implies thatωt = θt. We thus obtain a scaled version of the well
known Perceptron update,ωt+1 = ωt+C yt xt. Assume that‖xt‖2 ≤ 1 for all t ∈ [m].



Since the Hessian ofG is the identity matrix we get that,〈xt,H(θ)xt〉 = 〈xt,xt〉 ≤ 1.
Therefore, we obtain the following mistake bound,

(C −
1

2
C2)M ≤ min

ω∈Rn

1

2
‖ω‖2 + C

m∑

i=1

ℓ(ω; (xi, yi)) . (23)

Note the sequence of predictions of the Perceptron algorithm does not depend on the
actual value ofC so long asC > 0. Therefore, we can chooseC so as to minimize the
right hand side of Eq. (23) and rewrite,

∀ω ∈ R
n, M ≤ min

C∈(0,2)

(
1

C(1 − 1
2C)

)(

1

2
‖ω‖2 + C

m∑

i=1

ℓ(ω; (xi, yi))

)

,

where the domain(0, 2) for C ensures that the bound will not become vacuous. Solving
the right-hand side of the above equation forC yields the following mistake bound,

M ≤ L +
1

2
‖ω‖2

(

1 +
√

1 + 4L/‖ω‖2
)

,

whereL =
∑m

i=1 ℓ(ω; (xi, yi)). The proof is omitted due to the lack of space and
will be presented in a long version of the paper. We would liketo note that this bound is
identical to the best known mistake bound for the Perceptronalgorithm (see for example
[7]). However, our proof technique is vastly different and enables us to derive mistake
bounds for new algorithms, as we show later on in Sec. 5.

Example 2 (Balanced Winnow).We now analyze a version of the Winnow algo-
rithm called Balanced-Winnow [8] which is also closely related to the Exponentiated-
Gradient algorithm [10]. For brevity we refer to the algorithm we analyze simply as

Winnow. To derive the Winnow algorithm we choose,F (ω) =
∑n

i=1 ωi log
(

ωi

1/n

)

,

andΩ =
{
ω ∈ R

n
+ :
∑n

i=1 ωi = 1
}

. The functionF is the relative entropy between
the probability vectorω and the uniform vector( 1

n , . . . , 1
n ). The relative entropy is

non-negative and measures the entropic divergence betweentwo distributions. It attains
a value of zero whenever the two vectors are equal. Therefore, the minimum value of
F (ω) is zero and is attained forω = ( 1

n , . . . , 1
n ). The conjugate ofF is the logarithm

of the sum of exponentials (see for example [2][pp. 93]),G(θ) = log
(∑n

i=1 eθi
)
. The

k’th element of the gradient ofG is, gk(θ) = eθk/
(∑n

i=1 eθi
)
. Note thatg(θ) is a

vector in then-dimensional simplex and thereforeωt = g(θt) ∈ Ω. Thek’th element
of ωt+1 can be rewritten using a multiplicative update rule,

ωt+1,k =
1

Zt
eθt,k+C yt xt,k =

1

Zt
eC yt xt,k ωt,k ,

whereZt is a normalization constant which ensures thatωt+1 is in the simplex.
To analyze the algorithm we need to show that〈xt,H(θ)xt〉 ≤ 1, which indeed

holds for‖xt‖∞ ≤ 1. The proof is omitted due to the lack of space. As a result, we
obtain the following mistake bound,
(

γ C −
1

2
C2

)

M ≤ min
ω∈Ω

(
n∑

i=1

ωi log(ωi) + log(n) + C

m∑

i=1

ℓγ(ω; (xi, yi))

)

.



Since
∑n

i=1 ωi log(ωi) ≤ 0, if we setC = γ, the above bound reduces to,

M ≤ 2

(

log(n)

γ2
+ min

ω∈Ω

1

γ

m∑

i=1

ℓγ(ω; (xi, yi))

)

.

Example 3 (p-norm algorithms).We conclude this section with the analysis of the fam-
ily of p-norm algorithms [7, 8]. Letp, q ≥ 1 be two scalars such that1

p + 1
q = 1. Define,

F (ω) = 1
2‖ω‖2

q = 1
2 (
∑n

i=1 |ωi|
q)

2/q, and letΩ = R
n. The conjugate function of

F in this case is,G(θ) = 1
2‖θ‖

2
p (For a proof see [2], page 93.) and thei’th element

of the gradient ofG is,

gi(θ) =
sign(θi) |θi|

p−1

‖θ‖p−2
p

.

To analyze anyp-norm algorithm we need again to bound for allt the quadratic form
〈xt,H(θ)xt〉. It is possible to show (see [7, 8]) that

〈x , H(θ)x〉 ≤
1

p

(
‖θ‖p

p

) 2
p
−1

p (p − 1)
n∑

i=1

sign(θi)|θi|
p−2x2

i . (24)

Using Holder inequality with the dual normspp−2 and p
2 we get that,

n∑

i=1

sign(θi)|θi|
p−2x2

i ≤

(
n∑

i=1

|θi|
(p−2) p

p−2

) p−2

p
(

n∑

i=1

x
2 p

2

i

) 2
p

= ‖θ‖p−2
p ‖x‖2

p .

Combining the above with Eq. (24) gives,〈x , H(θ)x〉 ≤ (p − 1)‖x‖2
p. If we further

assume that‖x‖p ≤
√

1/(p − 1) then we can apply corollary 1 and obtain that,

(

γ C −
1

2
C2

)

M ≤ min
ω∈Rn

(

1

2
‖ω‖2

q + C

m∑

i=1

ℓγ(ω; (xi, yi))

)

.

5 Deriving new online learning algorithms

In the previous section we described a family of online learning algorithms. The algo-
rithms are based on the simple procedure defined via Eq. (16) which increments the
dual using a fixed-size update to a single dual variable. Intuitively, an update scheme
which results in a larger increase in the dual objective on each trial is likely to yield
online algorithms with refined loss bounds. In this section we outline a few new online
update schemes which setα more aggressively.

The update scheme of the previous section for increasing thedual modifiesα only
on trials on which there was a prediction mistake (t ∈ E). The update is performed
by setting thet’th element ofα to C and keeping the rest of the variables intact. This
simple update can be enhanced in several ways. First, note that while settingαt+1

t to
C guarantees a sufficient increase in the dual, there might be other valuesαt+1

t which
would lead to larger increases of the dual. Furthermore, we can also updateα on trials



on which the prediction was correct so long as the loss is non-zero. Last, we need not
restrict our update to thet’th element ofα. We can instead update several dual variables
as long as their indices are in[t].

We now describe and briefly analyze a few new updates which increase the dual
more aggressively. The goal here is to illustrate the power of the approach and the list
of new updates we outline is by no means exhaustive. We start by describing an update
which setsαt+1

t adaptively, depending on the loss suffered on roundt. This improved
update constructsαt+1 as follows,

αt+1
i =

{
αt

i if i 6= t
min {ℓ(ωt; (xt, yt)) , C} if i = t

. (25)

As before, the above update can be used with various complexity functions for
F , yielding different quasi-additive algorithms. We now provide a unified analysis
for all algorithms which are based on the update given by Eq. (25). In contrast
to the previous update which modifiedα only when there was a prediction mis-
take, the new update modifiesα wheneverℓ(ωt; (xt, yt)) > 0. This more aggres-
sive approach leads to a more generallossbound while still attaining the same mis-
take bound of the previous section. The mistake bound still holds since whenever

0 1 2 3 4
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C=0.1
C=1
C=2

Fig. 2. The mitigating function
µ(x) for different values ofC.

the algorithm makes a prediction mistake its loss is at
leastγ. Formally, let us define the following mitigating
function,

µ(x) =
1

C

(

min{x,C}

(

x −
1

2
min{x,C}

))

.

The functionµ is illustrated in Fig. 2. Note thatµ(·)
becomes very similar to the identity function for small
values ofC. The following theorem provides a bound
on the cumulative sum ofµ(ℓ(ωt, (xt, yt))).

Theorem 2. Let(x1, y1), . . . , (xm, ym) be a sequence of examples and letF : Ω → R

be a complexity function for whichminω∈Ω F (ω) = 0. Assume that an online algo-
rithm is derived from Eq. (25) usingG as the conjugate function ofF . If G is twice
differentiable and its Hessian satisfies,〈xt,H(θ)xt〉 ≤ 1 for all θ ∈ R

n andt ∈ [m],
then the following bound holds,

m∑

t=1

µ (ℓ(ωt; (xt, yt))) ≤ min
ω∈Ω

(

1

C
F (ω) +

m∑

t=1

ℓ(ω; (xt, yt))

)

.

Proof. Analogously to the proof of Thm. 1, we prove this theorem by bounding
D(αm+1) from above and below. The upper boundD(αm+1) ≤ P⋆ follows again
from weak duality theorem. To derive a lower bound, note thatthe conditions stated in
the theorem imply thatD(α1) = 0 and thusD(αm+1) =

∑m
t=1

(
D(αt+1) −D(αt)

)
.

Defineτt = min{ℓ(ωt; (xt, yt)), C} and note that the sole difference between the up-
dates given by Eq. (25) and Eq. (16) is thatτt replacesC. Thus, the derivation of
Eq. (22) in Sec. 4 can be repeated almost verbatim withτt replacingC to get,

D(αt+1) −D(αt) ≥ τt (γ − yt〈ωt,xt〉) −
1

2
τ2
t . (26)



Summing overt ∈ [m] and using the definitions ofℓ(ωt; (xt, yt)), τt, andµ gives that,

D(αm+1) =

m∑

t=1

(
D(αt+1) −D(αt)

)
≥ C

m∑

t=1

µ (ℓ(ωt; (xt, yt))) .

Finally, we compare the lower and upper bounds onD(αm+1) and rearrange terms.⊓⊔

Note thatℓ(ωt; (xt, yt)) ≥ γ whenever the algorithm makes a prediction mistake. Since
µ is a monotonically increasing function we get that the increase in the dual fort ∈ E
is at leastµ(γ). Thus, we obtain the mistake bound,

λM ≤ P⋆ where λ ≥ C µ(γ) =

{
γ C − 1

2 C2 if C ≤ γ
1
2 γ2 if C > γ

. (27)

The new update is advantageous over the previous update since in addition to the same
increase in the dual on trials with a prediction mistake it isalso guaranteed to increase
the dual byµ(ℓ(·)) on the rest of the trials. Yet, both updates are confined to modifying
a single dual variable on each trial. We nonetheless can increase the dual more dramat-
ically by modifying multiple dual variables on each round. Formally, fort ∈ [m], let It

be a subset of[t] which includest. GivenIt, we can setαt+1 to be,

αt+1 = argmax
α∈[0,C]m

D(α) s.t. ∀i /∈ It, αi = αt
i . (28)

This more general update also achieves the bound of Thm. 2 andthe minimal increase in
the dual as given by Eq. (27). To see this, note that the requirement thatt ∈ It implies,

D(αt+1) ≥ max
{
D(α) : α ∈ [0, C]m and ∀i 6= t, αi = αt

i

}
. (29)

Thus the increase in the dualD(αt+1) −D(αt) is guaranteed to be at least as large as
the increase due to the previous updates. The rest of the proof of the bound is literally
the same.

Let us now examine a few choices forIt. SettingIt = [t] for all t gives the Online-
SVM algorithm we mentioned in Sec. 3 by choosingF (ω) = 1

2‖ω‖2 andΩ = R
n.

This algorithm makes use of all the examples that have been observed and thus is likely
to make the largest increase in the dual objective on each trial. It does require however
a full-blown quadratic programming solver. In contrast, Eq. (29) can be solved analyti-
cally when we employ the smallest possible set,It = {t}, with F (ω) = 1

2‖ω‖2. In this
caseαt+1

t turns out to be the minimum betweenC andℓ(ωt; (xt, yt))/‖xt‖
2. This al-

gorithm was described in [4] and belongs to a family of Passive Aggressive algorithms.
The mistake bound that we obtain as a by product in this paper is however superior to
the one in [4]. Naturally, we can interpolate between the minimal and maximal choices
for It by setting the size ofIt to a predefined valuek and choosing, say, the lastk
observed examples as the elements ofIt. Fork = 1 andk = 2 we can solve Eq. (28)
analytically while gaining modest increases in the dual. The full power of the update
is unleashed for large values ofk, however, Eq. (28) cannot be solved analytically and
requires the usage of iterative procedures such as interiorpoint methods.



6 Discussion

We presented a new framework for the design and analysis of online learning algo-
rithms. Our framework yields the best known bounds for quasi-additive online classifi-
cation algorithms. It also paves the way to new algorithms. There are various possible
extensions of the work that we did not discuss due to the lack of space. Our frame-
work can naturally be extended to other prediction problemssuch as regression, mul-
ticlass categorization, and ranking problems. Our framework is also applicable to set-
tings where the target hypothesis is not fixed but rather drifting with the sequence of
examples. In addition, the hinge-loss was used in our derivation in order to make a
clear connection to the quasi-additive algorithms. The choice of the hinge-loss is rather
arbitrary and it can be replaced with others such as the logistic loss. There are also
numerous possible algorithmic extensions and new update schemes which manipulate
multiple dual variables on each online update. Finally, ourframework can be used with
non-differentiable conjugate functions which might become useful in settings where
there are combinatorial constraints on the number of non-zero dual variables (see [6]).
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