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ABSTRACT

We describe an efficient learning algorithm for aligning a
symbolic representation of a musical piece with its acous-
tic counterpart. Our method employs a supervised learn-
ing approach by using a training set of aligned sym-
bolic and acoustic representations. The alignment func-
tion we devise is based on mapping the input acoustic-
symbolic representation along with the target alignment
into an abstract vector-space. Building on techniques used
for learning support vector machines (SVM), our align-
ment function distills to a classifier in the abstract vector-
space which separates correct alignments from incorrect
ones. We describe a simple iterative algorithm for learn-
ing the alignment function and discuss its formal proper-
ties. We use our method for aligning MIDI and MP3 rep-
resentations of polyphonic recordings of piano music. We
also compare our discriminative approach to a generative
method based on a generalization of hidden Markov mod-
els. In all of our experiments, the discriminative method
outperforms the HMM-based method.

1. INTRODUCTION

There are numerous ways to represent musical recordings.
Typically, a representation is either symbolic (e.g. a mu-
sical score or MIDI events) or a digitized audio form such
as PCM. Symbolic representations entertain quite a few
advantages which become handy in applications such as
content-based retrieval. However, performances of musi-
cal pieces are typically recorded in one of the common
forms for coding of audio signals. Score alignment is
the task of associating each symbolic event with its actual
time of occurrence in the observed audio signal.

There are several approaches to the alignment problem
(see for instance [18, 19] and the references therein). Most
of the previous work on alignment has focused ongen-
erative models and employed parameter estimation tech-
niques in order to find a model that fits the data well. In
this paper we propose an alternative approach for learning
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alignment functions that builds on recent work ondiscrim-
inative supervised learning algorithms. The advantage of
discriminative learning algorithms stems from the fact that
the objective function used during the learning phase is
tightly coupled with the decision task one needs to per-
form. In addition, there is both theoretical and empiri-
cal evidence that discriminative learning algorithms are
likely to outperform generative models for the same task
(cf. [5, 22]). To facilitate supervised learning, we need
to have access to a training set of aligned data, consisting
of symbolic representations along with the division of the
performance into the actual start times of notes.

There are numerous applications where an accurate
and fast alignment procedure may become handy. Soulez
et al. [19] describe few applications of score alignment
such as content-based retrieval and comparisons of differ-
ent performances of the same musical piece. In addition,
the ability to align between symbolic and acoustic repre-
sentations is an essential first step toward a polyphonic
note detection system (see also [21, 23, 12]). The goal
of a polyphonic note detection system is to spot notes in
an audio signal. This detection task is rather difficult if
numerous notes are played simultaneously (e.g. in poly-
phonic pieces). There exist theoretical and empirical evi-
dences that supervised learning is effective also for com-
plex decision problems and is thus likely to be adequate
for polyphonic note detection. However, supervised learn-
ing algorithms rely on the existence of labeled examples.
Fortunately, the abundance of large acoustic and symbolic
databases together with an efficient alignment procedure
enables the construction of training set for the polyphonic
note detection problem.

Related work Music to score alignment is an important
research topic and has many applications. Most of the
previous work has focused on monophonic signals. See
for example [17, 6, 8] and the references therein. Several
recent works [19, 18] deal with more complex polyphonic
signals. In this paper, we suggest to automatically learn
an alignment function from examples using a discrimina-
tive learning setting. Our learning algorithm builds upon
recent advances in kernel machines and large margin clas-
sifiers for sequences [3, 1, 20] which in turn build on the
pioneering work of Vapnik and colleagues [22, 5]. The
specific form of the learning algorithm described in Sec. 3
stems from recent work on online algorithms [9, 4].



2. PROBLEM SETTING

In this section we formally describe the alignment prob-
lem. We denote scalars using lower case Latin letters (e.g.
x), and vectors using bold face letters (e.g.x). A sequence
of elements is designated by a bar (x̄) and its length is de-
noted by|x̄|.

In the alignment problem, we are given a digitized au-
dio signal of a musical piece along with a symbolic rep-
resentation of the same musical piece. Our goal is to gen-
erate an alignment between the signal and the symbolic
representation. The audio signal is first divided into fixed
length frames (we use20ms in our experiments) and ad
dimensional feature vector is extracted from each frame
of the audio signal. For brevity we denote the domain of
the feature vectors byX ⊂ R

d. The feature represen-
tation of an audio signal is therefore a sequence of fea-
ture vectorsx̄ = (x1, . . . ,xT ), wherext ∈ X for all
1 ≤ t ≤ T . A symbolic representation of a musical piece
is formally defined as a sequence of events which repre-
sent a standard way to perform the musical piece. There
exist numerous symbolic representations. For simplicity
and concreteness we focus on events of type “note-on”.
Formally, each “note-on” event is a pair(p, s). The first
element of the pair,p ∈ P = {0, 1, . . . , 127} is the note’s
pitch value (coded using the MIDI standard). The second
element,s is assumed to be a positive integer (s ∈ N) as
it measures the start time of the note in a predefined dis-
crete units (we use20ms in our experiments). Therefore,
a symbolic representation of a musical piece consists of
a sequence of pitch values̄p = (p1, . . . , pk) and a corre-
sponding sequence of start-timess̄ = (s1, . . . , sk). Note
that the number of notes clearly varies from one musical
piece to another and thusk is not fixed. We denote by
P? (and similarlyN

? andX ?) the set of all finite-length
sequences overP. In summary, an alignment instance is
a triplet (x̄, p̄, s̄) wherex̄ is an acoustic representation of
the musical piece and(p̄, s̄) is a symbolic representation
of the piece. The domain of alignment instances is de-
noted byZ = X ? × (P × N)

?. An alignment between
the acoustic and symbolic representations of a musical
piece is formally defined as a sequence ofactual start-
times ȳ = (y1, . . . , yk) whereyi ∈ N is the observed
start-time of notei in the acoustic signal.

Clearly, there are different ways to perform the same
musical score. Therefore, the actual (or observed) start
times of the notes in the perceived audio signal are very
likely to be different from the symbolic start-times. Our
goal is to learn an alignment function that predicts the
observed start-times from the audio signal and the sym-
bolic representation,f : Z → N

?. To facilitate an
efficient algorithm we confine ourselves to a restricted
class of alignment functions. Specifically, we assume
the existence of a predefined set of alignment features,
{φj}

n
j=1. Each alignment feature is a function of the form

φj : Z × N
? → R . That is, each alignment feature

gets acoustic and symbolic representations of a musical
piecez = (x̄, p̄, s̄), together with a candidate alignment

ȳ, and returns a scalar which, intuitively, represents the
confidence in the suggested alignmentȳ. We denote by
φ(z, ȳ) the vector inR

n whosejth element isφj(z, ȳ).
The alignment functions we use are of the form

f(z) = argmax
ȳ

w · φ(z, ȳ) , (1)

wherew ∈ R
n is a vector of importance weight that we

need to learn. In words,f returns a suggestion for an
alignment sequence by maximizing a weighted sum of the
scores returned by each feature functionφj . Note that the
number of possible alignment sequences is exponentially
large. Nevertheless, as we show below, under mild con-
ditions on the form of the feature functionsφj , the opti-
mization in Eq. (1) can be efficiently calculated using a
dynamic programming procedure.

As mentioned above, we would like to learn the func-
tion f from examples. Each example containing an align-
ment is composed of an acoustic and a symbolic represen-
tation of a musical piecez = (x̄, p̄, s̄) ∈ Z together with
the true alignment between them,ȳ. Let ȳ′ = f(z) be the
alignment suggested byf . We denote byγ(ȳ, ȳ′) the cost
of predicting the alignment̄y′ where the true alignment is
ȳ. Formally,γ : N

? × N
? → R is a function that gets two

alignments and returns a scalar which is the cost to predict
the second input alignment where the true alignment is the
first. We assume thatγ(ȳ, ȳ′) ≥ 0 and thatγ(ȳ, ȳ) = 0.
An example for a cost function is,

γ(ȳ, ȳ′) =
1

|ȳ|

|ȳ|
∑

i=1

|yi − y′
i| .

In words, the above cost is the average of the absolute
difference between the predicted alignment and the true
alignment. In our experiments, we used a variant of the
above cost function and replaced the summands|yi − y′

i|
with max{0, |yi − y′

i| − ε}, whereε is a predefined small
constant. The advantage of this cost is that no loss is in-
curred due to theith note ifyi andy′

i are within a distance
of ε of each other. The goal of the learning process is
to find an alignment functionf that attains small cost on
unseen examples. Formally, letQ be any (unknown) dis-
tribution over the domain of alignment examples,Z×N

?.
The goal of the learning process is to minimize the risk
of using the alignment function, defined as the expected
error of f on alignment examples, where the expectation
is taken with respect to the distributionQ,

risk(f) = E(z,ȳ)∼Q [γ(ȳ, f(z))] .

To do so, we assume that we have a training set of align-
ment examples each of which is identically and indepen-
dently distributed (i.i.d.) according to the distributionQ.
(Note that we only observe the training examples but we
do not know the distributionQ.) In the next section we
show how to use the training set in order to find an align-
ment functionf which achieves small cost on the training
set and that with high probability, achieves small average
cost on unseen examples as well.



The paper is organized as follows. In Sec. 3 we de-
scribe an efficient algorithm that learns an alignment func-
tion f from examples. The learning algorithm assumes
thatf is as described in Eq. (1). A specific set of acous-
tic features and feature functions is discussed in Sec. 4. In
Sec. 5 we describe a dynamic programming procedure that
efficiently calculatesf . In Sec. 6 we describe an alterna-
tive method for alignment which is based on a generative
model. In Sec. 7 we report experiments on alignment of
polyphonic piano musical pieces and compare our method
to the generative method. Finally, some future directions
are discussed in Sec. 8.

3. DISCRIMINATIVE LEARNING ALGORITHM

Recall that a supervised learning algorithm
for alignment receives as input a training set
S = {(z1, ȳ1), . . . , (zm, ȳm)} and returns a weight
vector w defining an alignment functionf given
in Eq. (1). In the following we present an iterative
algorithm for learning the weight vectorw. We denote
by wt the weight vector after iterationt of the algorithm.
We start with the zero vectorw0 = 0. On iterationt
of the algorithm, we first receive a tripletz = (x̄, p̄, s̄)
representing the acoustic and symbolic representations
of one of the musical pieces from our training set. Next,
we use the current weight vectorwt for predicting the
alignment between̄x and(p̄, s̄) as in Eq. (1). Let̄y′

t be the
predicted alignment. We then receive the true alignment
ȳ from the training set and suffer costγ(ȳ, ȳ′

t). If the
cost is zero we continue to the next iteration and keep
wt intact, hencewt+1 = wt. Otherwise, we update the
weight vector to be

wt+1 = wt +

√

γ(ȳ, ȳ′
t) − wt · at

‖at‖2
at , (2)

whereat = φ(z, ȳ) − φ(z, ȳ′
t). In words, we add towt

a vector which is a scaled version of the difference be-
tween the alignment feature vector resulting from the true
alignmentφ(z, ȳ) and the one obtained by the alignment
function φ(z, ȳ′

t). It is simple to show thatwt+1 is the
minimizer of the following projection problem

min
w

‖w − wt‖
2 s.t. (3)

w · φ(z, ȳ) ≥ w · φ(z, ȳ′
t) +

√

γ(ȳ, ȳ′
t)

Therefore, after updatingw, the score of the true align-
mentȳ is larger than the score of the predicted alignment
ȳ′

t by at least
√

γ(ȳ, ȳ′
t). Moreover, among all weight vec-

torsw that satisfy the inequality in Eq. (3),wt+1 is clos-
est to the vectorwt. After each update ofw, we find the
largest alignment error on the training set

ε = max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} .

If ε is lower than a termination parameter, denotedε0, we
stop and return the last value ofw. A pseudo-code of the
learning algorithm is given in Fig. 1.

Input: A training setS = {(z1, ȳ1), . . . , (zm, ȳm)} ;
accuracy parameterε0

Initialize: Setw = 0 ;
(z, ȳ) = arg max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} ;
ε = γ(ȳ, f(z))

While ε ≥ ε0 do:

Predict: ȳ′ = f(z) = argmax
ȳ

w · φ(z, ȳ)

Pay Cost: γ(ȳ, ȳ′)

Set: a = φ(zi, ȳi)− φ(zi, ȳ
′)

Update: w← w +

√

γ(ȳi, ȳ′)−w · a

‖a‖2
a

Choose next example:
(z, ȳ) = arg max{γ(ȳ, f(z)) : (z, ȳ) ∈ S} ;
ε = γ(ȳ, f(z))

Output: Final weight vectorw

Figure 1. The alignment learning algorithm.

The following theorem bounds the number of iterations
performed by the above learning algorithm. Our analysis
assumes that there exists a weight vectorw

? ∈ R
n such

that the following inequality holds for all examples in the
training set(z, ȳ) ∈ S and for allȳ′

w
? · φ(z, ȳ) ≥ w

? · φ(z, ȳ′) +
√

γ(ȳ, ȳ′) . (4)

Note that if we usew? in Eq. (1) thenγ(ȳ, f(z)) = 0 for
all the examples in the training set. A modification of the
algorithm to the case where such vector does not exist can
be derived using a similar technique to the one described
in [4].

Theorem 1. Let S = {(z1, ȳ1), . . . , (zm, ȳm)} be a set
of training examples. Assume that there exists a weight
vector w

? ∈ R
n such that Eq. (4) holds for all (zt, ȳt)

and ȳ′. In addition, assume that for all t and for all ȳ′ we
have ‖φ(zt, ȳ

′)‖ ≤ 1/2. Let f be the alignment function
obtained by running the algorithm from Fig. 1 on S with
accuracy parameter εo. Then the total number of itera-
tions of the algorithm is at most ‖w?‖2/ε0.

The proof of the theorem is provided in Appendix A.
Thm. 1 states that the number of iterations of the algorithm
does not depend on the number of examples. Therefore,
only a small part of the examples in the training set actu-
ally effects the resulting alignment function. Intuitively,
we can view the examples which do not effect the result-
ing alignment function as a validation set. By construc-
tion, the error of the alignment function on this validation
set is small and thus it is very likely that the true risk of
the alignment function (on unseen data) is also small. The
following theorem formalizes this intuition.

Theorem 2. Let S = {(z1, ȳ1), . . . , (zm, ȳm)} be a train-
ing set of examples identically and independently dis-
tributed according to an unknown distribution Q. As-
sume that the assumptions of Thm. 1 hold. In addition,
assume that γ(ȳ, ȳ′) ≤ L for all pairs (ȳ, ȳ′) and let k be
the smallest integer such that k ≥ ‖w?‖2/ε0. Let f be



the alignment function obtained by running the algorithm
from Fig. 1 on S. Then for any 0 ≤ δ ≤ 1 the following
bound holds with a probability of at least 1 − δ

risk(f) ≤ ε0 + L

√

k ln(em/k) + ln(1/δ)

2(m − k)
.

The proof of this theorem is also provided in Ap-
pendix A. In summary, Thm. 2 states that if we present
the learning algorithm with a large number of examples,
the true risk of the resulting alignment function is likely
to be small.

4. FEATURES

In this section we describe the alignment feature functions
{φj}

n
j=1. In our experiments we usedn = 10 alignment

features as follows.
The first9 alignment features take the following form,

φj(x̄, p̄, s̄, ȳ) =

|p̄|
∑

i=1

φ̂j(xyi
, pi) , 1 ≤ j ≤ 9 (5)

where eacĥφj : X × P → R (1 ≤ j ≤ 9) is a set of local
templates for an alignment function. Intuitively,φ̂j is the
confidence that a pitch valuepi starts at time indexyi of
the signal.

We now describe the specific form of each of the above
local templates, starting witĥφ1. Given thetth acous-
tic feature vectorxt and a pitch valuep ∈ P, the lo-
cal templateφ̂1(xt, p) is the energy of the acoustic sig-
nal at the frequency corresponding to the pitchp. For-
mally, let Fp denote a band-pass filter with a center fre-
quency at the first harmony of the pitchp and cut-off fre-
quencies of1/4 tone below and abovep. Concretely, the
lower cut-off frequency ofFp is 440 · 2

p−57−0.5
12 Hz and

the upper cut-off frequency is440 · 2
p−57+0.5

12 Hz, where
p ∈ P = {0, 1, . . . , 127} is the pitch value (coded us-
ing the MIDI standard) and440 · 2

p−57
12 is the frequency

value in Hz associated with the codewordp. Similarly,
φ̂2(xt, p) and φ̂3(xt, p) are the output energies of band-
pass filters centered at the second and third pitch harmon-
ics, respectively. All the filters were implemented using
the fast Fourier transform.

The above3 local templates{φ̂j}
3
j=1 measure energy

values for each timet. Since we are interested in identify-
ing notes onset times, it is reasonable to compare energy
values at timet with energy values at timet−1. However,
the (discrete) first order derivative of the energy is highly
sensitive to noise. Instead, we calculate the derivatives of
a fitted second-order polynomial of each of the above lo-
cal features. (This method is also a common technique
in speech processing systems [15].) Therefore, the next
6 local templates{φ̂j}

9
j=4 measure the first and second

derivatives of the first3 local templates.
While the first 9 alignment features measure confi-

dence of alignment based on spectral properties of the

Input: Acoustic-symbolic representationz = (x̄, p̄, s̄) ;
An alignment function defined by a weight vectorw

Initialize: ∀(1 ≤ t ≤ |x̄|), D(0, t, 1) = 0
Recursion:
For i = 1, . . . , |p̄|
For t = 0, . . . , |x̄|
Forµ ∈M

If (si − si−1 > τ)
D(i, t, µ) = max

µ′∈M
D(i−1, t−l, µ

′)+w · φ̂(xt, pi, µ, µ
′),

where l = µ′(si − si−1)
Else [If (si − si−1 ≤ τ)]

D(i, t, µ) = max
l∈L

D(i−1, t−l, µ) + w · φ̂(xt, pi, µ, µ),

whereL = {−τ,−τ + 1, . . . , τ − 1, τ}
Termination: D

? = max
t,µ

D(|p̄|, t, µ)

Figure 2. The procedure for calculating the best alignment.

signal, the last alignment feature captures the similarity
between̄s andȳ. Formally, let

µi =
yi − yi−1

si − si−1
(6)

be the ratio between theith interval according to the obser-
vation to the interval of the corresponding symbolic rep-
resentation. We also refer toµi as the relative tempo. The
sequence of relative tempo values is presumably constant
in time, sinces̄ and ȳ represent two performances of the
same musical piece. However, in practice the tempo ratios
often differ from performance to performance and within
a given performance. The local templateφ̂10 measures the
local change in the tempo,

φ̂10(µi, µi−1) = (µi − µi−1)
2

,

andφ10 is simply the cumulative sum of the changes in
the tempo,

φ10(x̄, p̄, s̄, ȳ) =

|s̄|
∑

i=2

φ̂10(µi, µi−1) . (7)

The relative tempo of Eq. (6) is ill-defined whenever
si − si−1 is zero (or relatively small). Since we deal
with polyphonic musical pieces, very short intervals be-
tween notes are rather relevant. Therefore, we define the
tempoµi as in Eq. (6) but confine ourselves to indicesi
for whichsi−si−1 is greater than a predefined valueτ (in
our experiments we setτ = 60 ms). Finally, we denote by
φ̂(xt, p, µ, µ′) the vector inR10 of local templates, whose
jth element isφ̂j(xt, p) if 1 ≤ j ≤ 9 and whose10th
element isφ̂10(µ, µ′).

5. EFFICIENT CALCULATION OF THE
ALIGNMENT FUNCTION

So far we have put aside the problem of evaluation time of
the functionf . Recall that calculatingf requires solving
the following optimization problem,

f(z) = argmax
ȳ

w · φ(z, ȳ) .



A direct search for the maximizer is not feasible since the
number of possible alignment sequencesȳ is exponential
in the length of the sequence. Fortunately, as we show
below, by imposing a few mild conditions on the struc-
ture of the alignment feature functions, the best alignment
sequence can be found in polynomial time.

For simplicity, we describe an efficient algorithm for
calculating the best alignment using the feature functions
φj described in Sec. 4. Similar algorithms can be con-
structed for any feature functions that can be described as
a dynamic Bayesian network (c.f. [7, 20]).

We now turn to the description of a dynamic pro-
gramming procedure for finding the best alignment given
an alignment function defined by a weight vectorw.
Let M be the set of potential tempo ratios of the form
(yi − yi−1)/(si − si−1). For a given ratioµ ∈ M , de-
note byD(i, t, µ) the score for the prefix of the notes
sequence1, . . . , i assuming that their actual start times
are y1, . . . , yi−1 and for the last noteyi = t with µ =
(yi − yi−1)/(si − si−1). This variable can be computed
efficiently in a similar fashion to the forward variables cal-
culated by the Viterbi procedure in HMMs (see for in-
stance [16]). The pseudo code for computingD(i, t, µ)
recursively is shown in Fig. 2. The best sequence of ac-
tual start times,ȳ′, is obtained from the algorithm by
saving the intermediate values that maximize each ex-
pression in the recursion step. The complexity of the
algorithm isO(|p̄| |x̄| |M |2), where |M | is the size of
the setM . Note that|M | is trivially upper bounded by
|x̄|2. However, in practice, we can discretize the set of
tempo ratios and obtain a good approximation to the ac-
tual ratios. In our experiments we chose this set to be
M = {2−1, 2−0.5, 1, 20.5, 21}.

6. GENERATIVE METHOD FOR ALIGNMENT

We compare our discriminative method for alignment to
a generative method based on the Generalized Hidden
Markov Model (GHMM) [14]. In the generative setting,
we assume that the acoustic signalx̄ is generated from the
symbolic representation(p̄, s̄) as follows. First, the ac-
tual start times sequencēy is generated from̄s. Then, the
acoustic signal̄x is generated from the pitch sequencep̄
and the actual start time sequenceȳ. Therefore,

Pr [x̄|p̄, s̄] =
∑

ȳ

Pr [x̄, ȳ|p̄, s̄]

=
∑

ȳ

Pr [ȳ|p̄, s̄] Pr [x̄|ȳ, p̄, s̄]

=
∑

ȳ

Pr [ȳ|s̄] Pr [x̄|ȳ, p̄] .

We now describe the parametric form we use for each of
the terms in the above equation. As in [18], we model
the probability of the actual start-times given the sym-
bolic start time byPr [ȳ|s̄] =

∏|ȳ|
i=1 Pr [µi|µi−1], where

µi is as defined in Sec. 4. In our experiments, we esti-
mated the probabilityPr [µi|µi−1] from the training data.

Input: Acoustic-symbolic representationz = (x̄, p̄, s̄) ;
Parameters of the probability functionsPr [µ|µ′],
Pr [xt|p] andPr [xt|¬p]

Initialize: ∀(1 ≤ t ≤ |x̄|), D(0, t, 1) = 0
Recursion:
For i = 1, . . . , |p̄|
For t = 0, . . . , |x̄|
Forµ ∈M

If (si − si−1 > τ)

D(i, t, µ) = max
µ′∈M

D(i−1, t−l, µ
′) + log(Pr

[

µ|µ′
]

)

+ log(Pr [xt|pi])− log(Pr [xt|¬pi]) ,

where l = µ′(si − si−1)
Else [If (si − si−1 ≤ τ)]

D(i, t, µ) = max
l∈L

D(i−1, t−l, µ
′) + log(Pr [xt|pi])

− log(Pr [xt|¬pi]) ,

whereL = {−τ,−τ + 1, . . . , τ − 1, τ}
Termination: D

? = max
t,µ

D(|p̄|, t, µ)

Figure 3. A dynamic programming procedure for calculating
the alignment which maximizes the likelihood.

To model the probabilityPr [x̄|ȳ, p̄] we use two Gaussian
Mixture Models (GMM). The first GMM approximates
the probability ofxt given that a pitchp starts at time
t. We denote this probability function byPr [xt|p]. The
second GMM approximates the probability ofxt given
that a pitchp doesnot start at timet. This probabil-
ity is denoted byPr [xt|¬p]. For a given timet, let
Pt = {p ∈ P : ∃i, yi = t, pi = p} be the set of all
pitches of notes that start on timet, and letPt = P\Pt be
the completion set. Using the above definitions the prob-
ability of the acoustic signal̄x given the actual start time
sequencēy and the pitch sequencēp can be written as

Pr [x̄|ȳ, p̄] =

|x̄|
∏

t=1

∏

p:Pt

Pr [xt|p]
∏

p:Pt

Pr [xt|¬p] .

We estimated the parameters of the GMMs from the train-
ing set using the Expectation Maximization (EM) algo-
rithm. The best alignment of a new example(x̄, p̄, s̄) from
the test set is the alignment sequenceȳ′ that maximizes the
likelihood of x̄ according to the model described above.
A dynamic programming procedure for finding this best
alignment is given in Fig. 3.

7. EXPERIMENTAL RESULTS

In this section we describe experiments with the algo-
rithms described above for the task of alignment of poly-
phonic piano musical pieces. Specifically, we compare
our discriminative and generative algorithms. Recall
that our algorithms use a training set of alignment ex-
amples for deducing an alignment function. We down-
loaded12 musical pieces fromhttp://www.piano-
midi.de/mp3.php where sound and MIDI were



GHMM-1 GHMM-3 GHMM-5 GHMM-7 Discrim.

1 10.0 188.9 49.2 69.7 8.9
2 15.3 159.7 31.2 20.7 9.1
3 22.5 48.1 29.4 37.4 17.1
4 12.7 29.9 15.2 17.0 10.0
5 54.5 82.2 55.9 53.3 41.8
6 12.8 46.9 26.7 23.5 14.0
7 336.4 75.8 30.4 43.3 9.9
8 11.9 24.2 15.8 17.1 11.4
9 11473 11206 51.6 12927 20.6
10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 12.4
12 13.4 14.5 13.8 28.1 9.6

mean 1000.1 998.1 30.3 1106.4 14.4
std 3159 3078.3 14.1 3564.1 9.0

median 15.8 54.2 28.5 25.8 10.7

Table 1. Summary of the LOO loss (in ms) for different algo-
rithms for alignment.

both recorded. Here the sound serves as the acous-
tical signal x̄ and the MIDI is the actual start times
ȳ. We also downloaded other MIDI files of the
same musical pieces from a variety of other web-
sites and used these MIDI files for creating the se-
quences p̄ and s̄. The complete dataset we used
is available fromhttp://www.cs.huji.ac.il/∼
shais/alignment.

We used the leave-one-out (LOO) cross-validation pro-
cedure for evaluating the test results. In the LOO setup the
algorithms are trained on all the training examples except
one, which is used as a test set. The loss between the
predicted and true start times is computed for each of the
algorithms. We compared the results of the discriminative
learning algorithm described in Sec. 3 to the results of the
generative learning algorithm described in Sec. 6. Recall
that the generative algorithm uses a GMM to model some
of the probabilities. The number of Gaussians used by
the GMM needs to be determined. We used the values
of 1, 3, 5 and7 as the number of Gaussians and we de-
note by GHMM-n the resulting generative model withn
Gaussians. In addition, we used the EM algorithm to train
the GMMs. The EM algorithm converges to a local max-
imum, rather than to the global maximum. A common
solution to this problem is to use a random partition of
the data to initialize the EM. In all our experiments with
the GMM we used 15 random partitions of the data to ini-
tialize the EM and chose the one that leads to the highest
likelihood. The LOO results for each of the 12 musical
pieces are summarized in Table 1. As seen from the table,
the discriminative learning algorithm outperforms all the
variants of generative algorithms in all of the experiments.
Moreover, in all but two of the experiments the loss of the
discriminative algorithm is less than20 ms, which is the
length of an acoustic frame in our experiments, thus it is
the best accuracy one can hope for this time resolution.
The best value for the number of Gaussians of the GMM
is 5. A scatter plot comparing the loss of the discrimi-
native algorithm vs. GHMM-5 is given in Fig. 4. It can
be seen that the variance of the LOO loss obtained by the
generative algorithms is rather high. This can be attributed
to the fact that the EM algorithm converges to a local max-
imum which depends on initialization of the parameters.
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Figure 4. A scatter plot describing the error of the discrimina-
tive algorithm vs. GHMM-5

Therefore, we omitted the highest and lowest loss values
obtained by each of the algorithms and re-calculated the
average loss over the 12 experiments. The resulting mean
values along with the range of the loss values are depicted
in Fig. 5.

8. DISCUSSION AND FUTURE WORK

In this paper we described and analyzed discriminative
and generative methods for the musical alignment prob-
lem. We devised efficient algorithms for learning align-
ment functions. We also provided a theoretical analysis
of our discriminative algorithm. We reported experiments
with the two methods for the task of aligning polyphonic
piano MP3 files to MIDI files. In our experiments, the dis-
criminative method systematically outperforms the gener-
ative one.

We are currently pursuing a few extensions. First,
we are now working on applying the methods described
in this paper to other musical instruments. The main
difficulty here is to obtain a training set of labeled ex-
amples. We are examining semi-supervised methods
that might overcome the lack of supervision. Sec-
ond, we plan to automatically generate large databases
of aligned acoustic-symbolic representations of musical
pieces. These datasets would serve as a necessary step to-
wards the implementation of a polyphonic note detection
system.
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A. PROOFS

The proofs of Thm. 1 and Thm. 2 are based on the follow-
ing lemma.

Lemma 1. Let (z1, ȳ1), . . . , (zt, ȳt), . . . be a sequence of
alignment examples. Assume that there exists a weight
vector w

? ∈ R
n such that Eq. (4) holds for all t and

assume that ‖φ(zt, ȳ
′)‖ is bounded above by 1/2. Let

ȳ′
1, . . . , ȳ

′
t, . . . be the sequence of alignment sequences

predicted by the algorithm in Fig. 1. Then the following
bound holds for any T ≥ 1,

T
∑

t=1

γ(ȳt, ȳ
′
t) ≤ ‖w?‖2 . (8)

Proof. Define∆t = ‖wt − w
?‖2 − ‖wt+1 − w

?‖2. We
prove the theorem by bounding

∑T

t=1 ∆t from above and
below. First note that

∑T

t=1 ∆t is a telescopic sum and
therefore

T
∑

t=1

∆t = ‖w1 − w
?‖2 − ‖wT+1 − w

?‖2

≤ ‖w1 − w
?‖2 = ‖w?‖2 . (9)

This provides an upper bound on
∑

t
∆t. In the following

we prove the lower bound

T
∑

t=1

∆t ≥

T
∑

t=1

γ(ȳt, ȳ
′
t) . (10)

Recall thatwt+1 is the projection ofwt onto the set of all
vectorsw which satisfy Eq. (3). Sincew? also satisfies
this inequality we get from Thm. 2.4.1 in [2] that

∆t = ‖wt −w
?‖2 − ‖wt+1 −w

?‖2 ≥ ‖wt+1 −wt‖
2 .

(11)



Plugging the explicit definition ofwt+1 from Eq. (2) in
the above equation we get

‖wt+1 − wt‖
2 =

(

√

γ(ȳ, ȳ′
t) − wt · at

)2

‖at‖2
. (12)

Next, note thatȳ′
t is the maximizer ofwt · φ(zt, ȳ

′
t).

Therefore,wt · at = wt · (φ(zt, ȳt) − φ(zt, ȳ
′
t)) ≤ 0

and thus

√

γ(ȳ, ȳ′
t) − wt · at ≥

√

γ(ȳ, ȳ′
t) . (13)

In addition, due to the assumption that‖φ(zt, ȳ)‖ ≤ 1/2
for all ȳ we get that

‖at‖ ≤ ‖φ(zt, ȳt)‖ + ‖φ(zt, ȳ
′
t)‖ ≤ 1 . (14)

Combining Eqs. (11)-(14) gives

∆t ≥ γ(ȳ, ȳ′
t) . (15)

Summing the above gives the lower bound from Eq. (10).
Comparing the upper bound in Eq. (9) with the lower
bound in Eq. (10) concludes the proof.

Proof of Thm. 1
After thekth iteration of the algorithm in Fig. 1 we either
stop (ifε < ε0) or choose an example(z, ȳ) ∈ S for which
γ(ȳ, f(z)) ≥ ε0. Therefore, if the algorithm performsk
iterations, the cumulative loss suffered by the algorithm is
at leastk ε0. On the other hand, using the above lemma,
we know that the cumulative loss is at most‖w?‖2 and
thus

k ε0 ≤ ‖w?‖2 ,

which gives the bound in the theorem. �

Proof of Thm. 2
In order to prove the theorem we use the proof technique
given in [13]. First, note thatf is completely characterized
by at mostk examples from the training setS. Let S
denote the rest of the examples in the training set. Let
ε(f) be the error off onS,

ε(f) =
1

|S|

∑

(z,ȳ)∈S

γ(ȳ, f(z)) .

For each choice of at mostk examples fromS and for
eachβ > 0, we get from Hoeffding’s inequality [10] that

Pr [risk(f) − ε(f) ≥ β] ≤ e−
2(m−k)β2

L2 . (16)

Let F be the set of all alignment functions defined by at
mostk examples fromS. The size of the setF is (see
lemma 3.2 in [11])

|F | =

k
∑

i=0

(

m

i

)

≤
(em

k

)k

.

Using the union bound, we get that

Pr[∃f ∈ F : risk(f) − ε(f) ≥ β]

≤
(em

k

)k

e−
2(m−k)β2

L2 .
(17)

If we setβ to be

β = L

√

k ln(em/k) + ln(1/δ)

2(m − k)
,

we get that the right hand side of Eq. (17) is equal toδ. We
have thus shown that with probability of at least1− δ, for
all the functions inF , we have that risk(f) ≤ ε(f) + β.
In particular, the above is true for the alignment function
f learned by the algorithm in Fig. 1. Finally note that
by construction,ε(f) ≤ ε0, and therefore we get that
risk(f) ≤ ε0 + β. �


