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f is strongly convex w.r.t. || -|| <= f* is strongly smooth w.r.t. || - |«

Applications:

e Rademacher Bounds (= Generalization Bounds)
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f is strongly convex w.r.t. || -|| <= f* is strongly smooth w.r.t. || - |«

Applications:
e Rademacher Bounds (= Generalization Bounds)
o Low regret online algorithms (= runtime of SGD/SMD)
@ Boosting
@ Sparsity and £ norm
@ Concentration inequalities

e Matrix regularization (Multi-task, group Lasso, dynamic bounds)

Shai Shalev-Shwartz (TTI-C) Duality for ML Jan’09 2 /29



Motivating Problem — Generalization Bounds

e Linear predictor is a mapping x — ¢({w,x))

o E.g. x> (w,x) or x — sgn({w,x))

@ Loss of w on (x,y) is assessed by ¢((w,x),y)

@ Goal: minimize expected loss L(w) = E(y ,[(({w,x),y)]

o Instead, minimize empirical loss L(w) = LS (W, x5), ;)
o Bartlett and Mendelson [2002]:

If £ Lipschitz and bounded, w.p. at least 1 — ¢

log(1/9)

A 2
< z
Yw e S, L(w) _L(W)—f—an(S)-l- 50

where

def
Rn(S) = E g rpyn [lsllégztsz u, x; ]
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Two equivalent representations of a convex function

Set of Points Set of Tangents

Shai Shalev-Shwartz (TTI-C) Duality for ML



Two equivalent representations of a convex function

Set of Points Set of Tangents

Shai Shalev-Shwartz (TTI-C) Duality for ML



Background — Fenchel Conjugate

Two equivalent representations of a convex function

Point (w, f(w)) Tangent (8, —f*(9))
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Two equivalent representations of a convex function

Point (w, f(w)) Tangent (8, —f*(9))
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Background — Fenchel Conjugate

@ The definition immediately implies Fenchel-Young inequality:

Yu, 1*(0) max (w,0) — f(w)

w

> (u,0) - f(u)
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Background — Fenchel Conjugate

@ The definition immediately implies Fenchel-Young inequality:

Yu,

f7(8) = max(w,6) — f(w)

w

> (u,0) - f(u)

@ If f is closed and convex then f** = f
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Background — Fenchel Conjugate

@ The definition immediately implies Fenchel-Young inequality:

f7(8) = max(w,6) — f(w)

Yu,

w

> <u7 9> - f(u)

@ If f is closed and convex then f** = f

@ By the way, this implies Jensen's inequality:

f(E[w])
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<

max (6, E[wl) ~ f*(6)
max E((6,w) - ()
E[ max (6,w) — £*(0)
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Background — Fenchel Conjugate

Examples:
f(w) ()
3lIwll? 3110113
l|w| Indicator of unit || - ||« ball
> wilog(w;) log (32 €%)
Indicator of prob. simplex max; 6;
cg(w) forec >0 cg*(0/c)
infx g1(W) + g2(W — x) 91(0) +95(0)
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Background — Fenchel Conjugate

Examples:
f(w) ()
3lwl? 21613
l|w| Indicator of unit || - ||« ball
= >, wilog(w;) log (3°; eei)
= Indicator of prob. simplex max; 6;
cg(w) forec >0 cg*(0/c)
infy g1(W) + g2(W — x) 91(0) + 95(0)

(used for boosting)
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Background — Fenchel Conjugate

Examples:

f(w) ()

3lIwll? 3110113

l|w| Indicator of unit || - ||« ball
> wilog(w;) log (32 €%)
Indicator of prob. simplex max; 6;
cg(w) forec >0 cg*(0/c)
= infx g1(W) + g2(W — x) 91(0) +95(0)

(infimal convolution theorem)
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f is strongly convex <= f* is strongly smooth

The following properties are equivalent:
e f(w) is o-strongly convex w.r.t. || - ||

o f*(w) is L-strongly smooth w.r.t. || - |,
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f is strongly convex <= f* is strongly smooth

The following properties are equivalent:
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Vw0 € Of(w), f(w) = fu) = (6w —u) = Zfu—w]?.
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f is strongly convex <= f* is strongly smooth

The following properties are equivalent:
e f(w) is o-strongly convex w.r.t. || - ||, that is

Vw0 € Of(w), f(w) = fu) = (6w —u) = Zfu—w]?.

o f*(w)is L-strongly smooth w.r.t. || -||,, that is

Vo, ()~ () — (V) w ) < w2
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f is strongly convex <= f* is strongly smooth

Examples:

f(w) f*(0) w.r.t. norm o

slwl3 zl613 -1l 1
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f is strongly convex <= f* is strongly smooth

Examples:
f(w) 1*(0) w.r.t. norm o
slwl3 31013 - 1l2 1
3wl 310115 I 1lq (¢—1)

(where ¢ € (1,2] and % + % =1)
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f is strongly convex <= f* is strongly smooth

Examples:
f(w) f*(0) w.r.t. norm o
3liwll3 311613 112 1
slwli slel; I-llg | (@=1)
>_; wi log(w;) log (3=, ¢%) -1l 1
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Importance

Theorem (1)
Let
e f be o strongly convex w.r.t. | - ||
o Assume f*(0) = 0 (for simplicity)
® Vi,...,V, be arbitrary sequence of vectors

o Denote wy =V f*(3_;, V)
Then, for any u we have

D o(wve) = f() < SO ove) <D ((weve) + gslIvill?) -

t
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Importance

Theorem (1)
Let

[ be o strongly convex w.r.t. || - ||

°
e Assume f*(0) = 0 (for simplicity)
® Vi,...,V, be arbitrary sequence of vectors
o Denote wy =V f*(3_;, V)

Then, for any u we have

D wve) = f(w) < O ve) ((we, ve) + g vellZ) -
t t

t

Proof.

The first inequality is Fenchel-Young and the second inequality follows
from the % smoothness of f* by induction. [

v
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Back to Rademacher Complexities

@ Theorem 1:

Z(u Vi) < Z Wi, Vi) i\lw\lf) .
t

t

Based on Kakade, Sridharan, Tewari [2008]
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Back to Rademacher Complexities

@ Theorem 1:
Z(u Vi) < Z Wi, Vi) i\lw\lf) .
t t

@ Therefore, for all S:

sup Z (u,vy) < %Z [v:l? +Supf( ) + Z<wtuvt>
t t

ues 7 ues

Based on Kakade, Sridharan, Tewari [2008]
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Back to Rademacher Complexities

@ Theorem 1:
Z(u Vi) < Z Wi, Vi) i\lw\lf) .
t t

@ Therefore, for all S:

sup Z (u,vy) < %Z [v:l? +Supf( ) + Z<wtuvt>
t t

ues 7 ues
@ Applying with v; = ¢;x; and taking expectation we obtain:

Z<Wt= €t X1‘>]

+

Ru(S) < 55> Ele] [Ix? + sup f(w) + £
t u

=0

Based on Kakade, Sridharan, Tewari [2008]
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Rademacher Bounds — Examples

S ‘ f(w) ‘ X ‘ R,(S)
{w:|[wlla < W} 2 |lwli2 Xl XW
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Rademacher Bounds — Examples

§ f(w) X Rn(S)
{w:lwl2 < W} A Zlbeill XW i
12
{w:|wl, <W} 2 w2 Sixlk | xw p-Tn
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Rademacher Bounds — Examples

S f(w) X Rn(S)
{w:lwl2 < W} A Zlbeill XW i

llxi )12
(w:wl, <W} g ||w|?2 Zilil | Xy /p—1)n

Prob. simplex | o, w;log(dw;) Zillxillse X /log(d)n
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Intermediate Summary

f strongly convex <= f* smooth

Fenchel-Young

W

| Theorem 1 |

zero-mean

| Rademac;;er Bound |

Bartlett-Mendelson S. Sridharan Srebro

Fast rates for strongly

| Generalization bound | o ebfaeives
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Coming Next ...

f strongly convex <= f* smooth

Fenchel-Young

h 4

|TheoreE|—) Online Regret Bounds

zero-mean

Rademacher Bound

Bartlett-Mendelson S. Sridharan Srebro

Fast rates for strongly

|Genera|ization boundl -
convex objectives
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Online Learning — Brief Background

@ Studied in game theory, information theory, and machine learning
@ Examples:
o Repeated 2-players games (Hannan [57], Blackwell [56])
o Predicting with side information (Rosenblatt's Perceptron [58],
Weighted Majority of Littlestone and Warmuth [88,94])
o Predicting of individual sequences (Cover [78], Feder, Merhav and
Gutman [92])
@ Online convex optimization — a general abstract prediction model
(Gordon [99], Zinkevich [03])

@ Using our lemma, we can easily derived optimal low regret algorithms
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Online Learning

Prediction Game — Online Optimization

Fort=1,...,n
@ Learner chooses a decision w; € S
@ Environment chooses a loss function 4; : S — R

@ Learner pays loss ¢;(w;)

@ Regret of learner for not always following the best decision in S

Z ly(wy) — I&lelgl Z li(ua)
t=1 t=1

@ Goal: Conditions on S and loss functions that guarantee low regret
learning strategy
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Online Learning

@ Assume f o-strongly convex on S w.r.t. || - ||
o Recall Theorem 1: For w;, = V f*(3_,_, v;) we have

D (u—wi,ve) < f(u) + o Z [vil?

t

@ Assume /; convex and apply with v; € 9¢;(w;), thus
Et(Wt) — ét(u) S (u — Wy, Vt>

@ Assume /; Lipschitz w.r.t. dual norm, thus ||v¢|[, <V
@ We obtain the regret bound (S. and Singer [06]):

n ' n 7’LV2
2 ulwn) iy 3w < e fle)+ S5
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Online Learning — Example |

Predicting the next bit of a sequence

Fort=1,...,n
o Learner predict ¢ € {0,1}
@ Environment responds with y; € {0,1}

o Learner pays 1 if 3 #

Modeling:
o S=10,1], f(w) = w? o =n
@ Predict ¢, = 1 with probability w; € S
@ Then, probability of g, # y; is {¢(w;) = |y — wy|, which is convex
@ The expected regret is thus bounded by /n
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Online Learning — Example Il

Predicting with expert advice

Fort=1,...,n

o Learner receives a vector x; € [0, 1]¢ of experts advice
@ Learner need to predict g € {0,1}

e Environment responds with y; € {0,1}

o Learner pays 1 if gy # y;

Modeling:
e S is d dimensional probability simplex, f(w) = o), w; log(w;),
o = +/n/log(d)
@ Predict y; = 1 with probability (wy,x;)
@ Then, probability of §; # y is £i(wy) = |ys — (wy, X¢)|, which is convex
@ The expected regret is thus bounded by \/W
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Optimization from a Machine Learning Perspective

@ Assume we'd like to solve regularized loss minimization:

mln f(w Zﬁwzz

@ Stochastic Mirror Descent

o At each step, sample i uniformly at random and feed an online learner
the loss ¢;(w) = {(w, z;)
e Return averaged w; of the online learner

@ Number of iterations required to achieve accuracy € is order of sample
complexity !
e Optimality (S. and Srebro [08])
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Intermediate Summary

f strongly convex <= f* smooth

Fenchel-Young

h 4

|Theomn:|—) Online Regret Bounds

zero-mean

Rademacher Bound
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f strongly convex <= f* smooth

Fenchel-Young

h 4

Boosting <—|Erem 1 |—> Online Regret Bounds

zero-mean

Rademacher Bound
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Input:
@ Training set of examples (Xx1,¥1),- .-, (Xm, Ym)
@ d weak hypotheses hq,...,hg
Output:
o Strong hypothesis: Hy (-) = % wih;(-)
Weak Learnability Assumption
@ For any probability p € S™ over examples
@ Exists h; with edge at least ,

D> piyihi(xi) = Prlh; = y) = Prlh; #y] > 7
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Deriving Boosting Algorithm from Theorem 1

Goal: Find w s.t. min; y; Hw(x;) > 0.
e Equivalently: Find w, p s.t. pu; = y; Hw(x;) and min; p; > 0
o Define: L(p) = log (£ >, exp(—p;)) (1-smooth w.r.t. || - [loc)
@ Observe: L(p) < —log(m) = min; p; >0
o Recall from Theorem 1: L(p,,) < 3, ((VL(py), vi) + 3[1vel|%)
o Observe: p o VL(p,) € S™.
o Weak learnability = exists r; s.t. >, piyihy, (xi) > v
e Apply Theorem 1 with v¢; = —yy;h,, (x;) gives L(p,,) < —%72

@ Therefore, n >

21 .
210800) - = min; p1y ;> 0
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Boosting — Brief history

& Is weak learnability equivalent to strong learnability ?
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Boosting — Brief history

& Is weak learnability equivalent to strong learnability ?

Yes! 2
zg You can use AdaBoost
Boosting is related to margin zgﬁ

b
a Of course, it is a corollary of the minimax theorem
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Weak Learnability = Separability with ¢; margin

yrhi(x1) ... w1 hq(x1)
A= : . :
Ym h1(Xm) o Ym ha(Xm)
Minimax theorem
max min (Aw); = v = min max (p’ A);
wesd i@ pesS™  j
‘/—/ ~~
margin v Weak learnability
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Reinterpreting Boosting Result

Assumption #iterations runtime
AdaBoost £1 margin ~y bi& %&")d
Perceptron £l margin ~y % %
Winnow £1 margin ~y k’igd) dh;gz(d)

25 /
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f strongly convex <= f* smooth

Fenchel-Young

h 4

Boosting (—@rmn:l—) Online Regret Bounds

zero-mean

Rademacher Bound
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More Applications

Sparsification

@ Theorem: For smooth loss functions, any low ¢; linear predictor can
be converted into sparse linear predictor

@ Proof idea: definition of smoothness + probabilistic construction
@ Theorem: Also true for non-smooth but Lipschitz loss functions

@ Proof idea: infimal-convolution + our main lemma = it's possible to
approximate any Lipschitz function by a smooth function
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More Applications

Sparsification

@ Theorem: For smooth loss functions, any low ¢; linear predictor can
be converted into sparse linear predictor

@ Proof idea: definition of smoothness + probabilistic construction
@ Theorem: Also true for non-smooth but Lipschitz loss functions

@ Proof idea: infimal-convolution + our main lemma = it's possible to
approximate any Lipschitz function by a smooth function

Concentration Inequalities

@ Pinelis-like concentration results for martingales in Banach spaces
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More Applications — Matrix Regularization

@ Lemma: The matrix function F'(A) = f(c(A)), where f is strongly
convex w.r.t. ||[w]|, is strongly convex w.r.t. ||[c(A)]]
@ Corollaries:

o Generalization bounds for multi-task learning
o Regret bounds for multi-task learning
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More Applications — Matrix Regularization

Lemma: The matrix function F'(A) = f(o(A)), where f is strongly
convex w.r.t. ||[w]|, is strongly convex w.r.t. ||[c(A)]]
@ Corollaries:

o Generalization bounds for multi-task learning
o Regret bounds for multi-task learning

@ Lemma: The matrix function F'(A) = | (|| A1, ll2;- -, || Am,||2) ||§ is
strongly convex w.r.t. the matrix norm || ([|A1,.[l2,.. ., [[Am.[l2) [,
@ Corollaries:
o Generalization bounds for group Lasso, kernel learning, multi-task
learning

e Regret bounds for the above and also shifting regret bounds
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f is strongly convex w.r.t. || -|| <= f* is strongly smooth w.r.t. || - |«

@ Isolating a single useful property of regularization functions
@ Deriving many known result easily based on this property

@ Good theory should also predict new results — we derived new
algorithms and bounds from the generalized theory
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