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Outline

Lemma

f is strongly convex w.r.t. ‖ · ‖ ⇐⇒ f? is strongly smooth w.r.t. ‖ · ‖?
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Rademacher Bounds (⇒ Generalization Bounds)

Low regret online algorithms (⇒ runtime of SGD/SMD)

Boosting
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Motivating Problem – Generalization Bounds

Linear predictor is a mapping x 7→ φ(〈w,x〉)
E.g. x 7→ 〈w,x〉 or x 7→ sgn(〈w,x〉)

Loss of w on (x, y) is assessed by `(〈w,x〉, y)
Goal: minimize expected loss L(w) = E(x,y)[`(〈w,x〉, y)]
Instead, minimize empirical loss L̂(w) = 1

n

∑n
i=1 `(〈w,xi〉, yi)

Bartlett and Mendelson [2002]:
If ` Lipschitz and bounded, w.p. at least 1− δ

∀w ∈ S, L(w) ≤ L̂(w) +
2
n
Rn(S) +

√
log(1/δ)

2n

where

Rn(S) def= E
ε
iid∼{±1}n

[
sup
u∈S

n∑
i=1

εi〈u,xi〉

]
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Background – Fenchel Conjugate

Two equivalent representations of a convex function

Set of Points Set of Tangents
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Background – Fenchel Conjugate

Two equivalent representations of a convex function

Point (w, f(w))

w

f(w)

Tangent (θ,−f?(θ))

slope =
θ

−f?(θ)

f?(θ) = max
w
〈w,θ〉 − f(w)
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Background – Fenchel Conjugate

The definition immediately implies Fenchel-Young inequality:

∀u, f?(θ) = max
w
〈w,θ〉 − f(w)

≥ 〈u,θ〉 − f(u)

If f is closed and convex then f?? = f

By the way, this implies Jensen’s inequality:

f(E[w]) = max
θ
〈θ,E[w]〉 − f?(θ)

= max
θ

E [〈θ,w〉 − f?(θ)]

≤ E[ max
θ
〈θ,w〉 − f?(θ) ] = E[f(w)]
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Background – Fenchel Conjugate

Examples:

f(w) f?(θ)

1
2‖w‖

2 1
2‖θ‖

2
?

‖w‖ Indicator of unit ‖ · ‖? ball∑
iwi log(wi) log

(∑
i e
θi
)

Indicator of prob. simplex maxi θi

c g(w) for c > 0 c g?(θ/c)

infx g1(w) + g2(w − x) g?1(θ) + g?2(θ)
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Background – Fenchel Conjugate

Examples:

f(w) f?(θ)

1
2‖w‖

2 1
2‖θ‖

2
?

‖w‖ Indicator of unit ‖ · ‖? ball

⇒
∑

iwi log(wi) log
(∑

i e
θi
)

⇒ Indicator of prob. simplex maxi θi

c g(w) for c > 0 c g?(θ/c)

infx g1(w) + g2(w − x) g?1(θ) + g?2(θ)

(used for boosting)
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Background – Fenchel Conjugate

Examples:

f(w) f?(θ)

1
2‖w‖

2 1
2‖θ‖

2
?

‖w‖ Indicator of unit ‖ · ‖? ball∑
iwi log(wi) log

(∑
i e
θi
)

Indicator of prob. simplex maxi θi

c g(w) for c > 0 c g?(θ/c)

⇒ infx g1(w) + g2(w − x) g?1(θ) + g?2(θ)

(infimal convolution theorem)
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f is strongly convex ⇐⇒ f ? is strongly smooth

The following properties are equivalent:

f(w) is σ-strongly convex w.r.t. ‖ · ‖

, that is

∀w,u,θ ∈ ∂f(u), f(w)− f(u)− 〈θ,w − u〉 ≥ σ

2
‖u−w‖2 .

f?(w) is 1
σ -strongly smooth w.r.t. ‖ · ‖?

, that is

∀w,u, f?(w)− f?(u)− 〈∇f?(u),w − u〉 ≤ 1
2σ
‖u−w‖2? .

f(u)

f(w)

u w

≥ σ
2
‖u−w‖2

f?(u)

f?(w)

u w

≤ 1
2σ
‖u−w‖2?
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f is strongly convex ⇐⇒ f ? is strongly smooth

Examples:

f(w) f?(θ) w.r.t. norm σ

1
2‖w‖

2
2

1
2‖θ‖

2
2 ‖ · ‖2 1

1
2‖w‖

2
q

1
2‖θ‖

2
p ‖ · ‖q (q − 1)
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f is strongly convex ⇐⇒ f ? is strongly smooth

Examples:

f(w) f?(θ) w.r.t. norm σ

1
2‖w‖

2
2

1
2‖θ‖

2
2 ‖ · ‖2 1

1
2‖w‖

2
q

1
2‖θ‖

2
p ‖ · ‖q (q − 1)

(where q ∈ (1, 2] and 1
q + 1

p = 1)
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f is strongly convex ⇐⇒ f ? is strongly smooth

Examples:

f(w) f?(θ) w.r.t. norm σ

1
2‖w‖

2
2

1
2‖θ‖

2
2 ‖ · ‖2 1

1
2‖w‖

2
q

1
2‖θ‖

2
p ‖ · ‖q (q − 1)∑

iwi log(wi) log
(∑

i e
θi
)

‖ · ‖1 1
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Importance

Theorem (1)

Let

f be σ strongly convex w.r.t. ‖ · ‖
Assume f?(0) = 0 (for simplicity)

v1, . . . ,vn be arbitrary sequence of vectors

Denote wt = ∇f?(
∑

j<t vj)
Then, for any u we have∑

t

〈u,vt〉 − f(u) ≤ f?(
∑
t

vt) ≤
∑
t

(
〈wt,vt〉+ 1

2σ‖vt‖
2
?

)
.

Proof.

The first inequality is Fenchel-Young and the second inequality follows
from the 1

σ smoothness of f? by induction.
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Back to Rademacher Complexities

Theorem 1:∑
t

〈u,vt〉 − f(u) ≤
∑
t

(
〈wt,vt〉+ 1

2σ‖vt‖
2
?

)
.

Therefore, for all S:

sup
u∈S

∑
t

〈u,vt〉 ≤ 1
2σ

∑
t

‖vt‖2? + sup
u∈S

f(u) +
∑
t

〈wt,vt〉

Applying with vt = εtxt and taking expectation we obtain:

Rn(S) ≤ 1
2σ

∑
t

E[ε2t ] ‖xt‖2? + sup
u∈S

f(u) + E

[∑
t

〈wt, εt xt〉

]
︸ ︷︷ ︸

=0

Based on Kakade, Sridharan, Tewari [2008]
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Rademacher Bounds – Examples

S f(w) X Rn(S)

{w : ‖w‖2 ≤W} σ
2 ‖w‖

2
2

P
i ‖xi‖22
n XW

√
n

{w : ‖w‖q ≤W} σ
2 ‖w‖

2
q

P
i ‖xi‖2p
n XW

√
(p− 1)n

Prob. simplex σ
∑

iwi log(dwi)
P
i ‖xi‖2∞
n X

√
log(d)n
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Intermediate Summary

f strongly convex ⇐⇒ f? smooth

Theorem 1

Fenchel-Young

Rademacher Bound

Generalization bound
Fast rates for strongly
convex objectives

zero-mean

Bartlett-Mendelson
S. Sridharan Srebro
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Coming Next ...

f strongly convex ⇐⇒ f? smooth

Theorem 1

Fenchel-Young

Online Regret Bounds

Rademacher Bound

Generalization bound
Fast rates for strongly
convex objectives

zero-mean

Bartlett-Mendelson
S. Sridharan Srebro
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Online Learning – Brief Background

Studied in game theory, information theory, and machine learning

Examples:

Repeated 2-players games (Hannan [57], Blackwell [56])
Predicting with side information (Rosenblatt’s Perceptron [58],
Weighted Majority of Littlestone and Warmuth [88,94])
Predicting of individual sequences (Cover [78], Feder, Merhav and
Gutman [92])

Online convex optimization – a general abstract prediction model
(Gordon [99], Zinkevich [03])

Using our lemma, we can easily derived optimal low regret algorithms
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Online Learning

Prediction Game – Online Optimization

For t = 1, . . . , n
Learner chooses a decision wt ∈ S
Environment chooses a loss function `t : S → R
Learner pays loss `t(wt)

Regret of learner for not always following the best decision in S

n∑
t=1

`t(wt)−min
u∈S

n∑
t=1

`t(u)

Goal: Conditions on S and loss functions that guarantee low regret
learning strategy
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Online Learning

Assume f σ-strongly convex on S w.r.t. ‖ · ‖
Recall Theorem 1: For wt = ∇f?(

∑
j<t vj) we have∑

t

〈u−wt,vt〉 ≤ f(u) + 1
2σ

∑
t

‖vt‖2?

Assume `t convex and apply with vt ∈ ∂`t(wt), thus

`t(wt)− `t(u) ≤ 〈u−wt,vt〉

Assume `t Lipschitz w.r.t. dual norm, thus ‖vt‖? ≤ V
We obtain the regret bound (S. and Singer [06]):

n∑
t=1

`t(wt)−min
u∈S

n∑
t=1

`t(u) ≤ max
u∈S

f(u) +
nV 2

2σ
.
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Online Learning – Example I

Predicting the next bit of a sequence

For t = 1, . . . , n
Learner predict ŷt ∈ {0, 1}
Environment responds with yt ∈ {0, 1}
Learner pays 1 if ŷt 6= yt

Modeling:

S = [0, 1], f(w) = σ
2w

2, σ =
√
n

Predict ŷt = 1 with probability wt ∈ S
Then, probability of ŷt 6= yt is `t(wt) = |yt − wt|, which is convex

The expected regret is thus bounded by
√
n
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Online Learning – Example II

Predicting with expert advice

For t = 1, . . . , n
Learner receives a vector xt ∈ [0, 1]d of experts advice

Learner need to predict ŷt ∈ {0, 1}
Environment responds with yt ∈ {0, 1}
Learner pays 1 if ŷt 6= yt

Modeling:

S is d dimensional probability simplex, f(w) = σ
∑

iwi log(wi),
σ =

√
n/ log(d)

Predict ŷt = 1 with probability 〈wt,xt〉
Then, probability of ŷt 6= yt is `t(wt) = |yt−〈wt,xt〉|, which is convex

The expected regret is thus bounded by
√

log(d)n
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Optimization from a Machine Learning Perspective

Assume we’d like to solve regularized loss minimization:

min
w

f(w) +
1
n

n∑
i=1

`(w, zi)

Stochastic Mirror Descent

At each step, sample i uniformly at random and feed an online learner
the loss `t(w) = `(w, zi)
Return averaged wt of the online learner

Number of iterations required to achieve accuracy ε is order of sample
complexity !

Optimality (S. and Srebro [08])
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Intermediate Summary

f strongly convex ⇐⇒ f? smooth

Theorem 1

Fenchel-Young

Boosting

Rademacher Bound

zero-mean

Online Regret Bounds
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Coming Next ...

f strongly convex ⇐⇒ f? smooth

Theorem 1

Fenchel-Young

Boosting

Rademacher Bound

zero-mean

Online Regret Bounds
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Boosting

Input:

Training set of examples (x1, y1), . . . , (xm, ym)
d weak hypotheses h1, . . . , hd

Output:

Strong hypothesis: Hw(·) =
∑d

i=1wihi(·)
Weak Learnability Assumption

For any probability p ∈ Sm over examples

Exists hj with edge at least γ,∑
i

piyihj(xi) = Pr[hj = y]− Pr[hj 6= y] ≥ γ
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Deriving Boosting Algorithm from Theorem 1

Goal: Find w s.t. mini yiHw(xi) > 0.

Equivalently: Find w,µ s.t. µi = yiHw(xi) and mini µi > 0
Define: L(µ) = log

(
1
m

∑
i exp(−µi)

)
(1-smooth w.r.t. ‖ · ‖∞)

Observe: L(µ) ≤ − log(m) ⇒ mini µi > 0
Recall from Theorem 1: L(µn) ≤

∑
t

(
〈∇L(µt),vt〉+ 1

2‖vt‖
2
∞
)

Observe: p def= ∇L(µt) ∈ Sm.

Weak learnability ⇒ exists rt s.t.
∑

i piyihrt(xi) ≥ γ

Apply Theorem 1 with vt,i = −γyihrt(xi) gives L(µn) ≤ −
nγ2

2

Therefore, n ≥ 2 log(m)
γ2 ⇒ mini µn,i > 0

Shai Shalev-Shwartz (TTI-C) Duality for ML Jan’09 22 / 29



Boosting – Brief history

Is weak learnability equivalent to strong learnability ?

Yes!

You can use AdaBoost

Boosting is related to margin

Of course, it is a corollary of the minimax theorem
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Weak Learnability = Separability with `1 margin

A =

 y1 h1(x1) . . . y1 hd(x1)
...

. . .
...

ym h1(xm) . . . ym hd(xm)


Minimax theorem

max
w∈Sd

min
i

(Aw)i︸ ︷︷ ︸
margin

= γ = min
p∈Sm

max
j

(pTA)j︸ ︷︷ ︸
γ Weak learnability
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Reinterpreting Boosting Result

Assumption #iterations runtime

AdaBoost `1 margin γ log(m)
γ2

m log(m) d
γ2

Perceptron `2 margin γ d
γ2

d2

γ2

Winnow `1 margin γ log(d)
γ2

d log(d)
γ2
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Summary

f strongly convex ⇐⇒ f? smooth

Theorem 1

Fenchel-Young

Boosting

Rademacher Bound

zero-mean

Online Regret Bounds
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More Applications

Sparsification

Theorem: For smooth loss functions, any low `1 linear predictor can
be converted into sparse linear predictor

Proof idea: definition of smoothness + probabilistic construction

Theorem: Also true for non-smooth but Lipschitz loss functions

Proof idea: infimal-convolution + our main lemma ⇒ it’s possible to
approximate any Lipschitz function by a smooth function

Concentration Inequalities

Pinelis-like concentration results for martingales in Banach spaces
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More Applications – Matrix Regularization

Lemma: The matrix function F (A) = f(σ(A)), where f is strongly
convex w.r.t. ‖w‖, is strongly convex w.r.t. ‖σ(A)‖
Corollaries:

Generalization bounds for multi-task learning
Regret bounds for multi-task learning

Lemma: The matrix function F (A) = ‖ (‖A1,·‖2, . . . , ‖Am,·‖2) ‖2q is
strongly convex w.r.t. the matrix norm ‖ (‖A1,·‖2, . . . , ‖Am,·‖2) ‖q
Corollaries:

Generalization bounds for group Lasso, kernel learning, multi-task
learning
Regret bounds for the above and also shifting regret bounds
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Summary

Lemma

f is strongly convex w.r.t. ‖ · ‖ ⇐⇒ f? is strongly smooth w.r.t. ‖ · ‖?

Isolating a single useful property of regularization functions

Deriving many known result easily based on this property

Good theory should also predict new results – we derived new
algorithms and bounds from the generalized theory
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