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Abstract

Feature ranking is a fundamental machine learning task weittous applications, including fea-
ture selection and decision tree learning. We describe nalyze a new feature ranking method
that supports categorical features with a large number s§ipte values. We show that existing
ranking criteria rank a feature according to th@ning error of a predictor based on the feature.
This approach can fail when ranking categorical featuréls many values. We propose the Ginger
ranking criterion, that estimates tigeneralizationerror of the predictor associated with the Gini
index. We show that for almost all training sets, the Ging#eon produces an accurate esti-
mation of the true generalization error, regardless of timalver of values in a categorical feature.
We also address the question of finding the optimal preditiatr is based on a single categori-
cal feature. It is shown that the predictor associated wighmisclassification error criterion has
the minimal expected generalization error. We bound ths biahis predictor with respect to the
generalization error of the Bayes optimal predictor, analyae its concentration properties. We
demonstrate the efficiency of our approach for feature 8eteand for learning decision trees in a
series of experiments with synthetic and natural datasets.

Keywords: feature ranking, categorical features, generalizatiambe, Gini index, decision trees

1. Introduction

In this paper we address the problem of supervised feature ranking préisence of categorical
features. Feature ranking mechanisms have various applications; FEodasthey can be used
to define a filter for feature selection or as a splitting criterion for growingsiten trees. In the
feature ranking task we order a given set of features according itoréhevance for predicting a
target label. As in other supervised learning tasks, the ranking of tierésais generated based
on an input training set. Examples of widely used feature ranking critegighar Gini index, the
misclassification error, and Information Gain, also termed ‘cross-eritfbfastie et al.2001). The
focus of this paper is feature ranking in the presenceatégoricalfeatures. We show that a direct
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application of existing ranking criteria might lead to poor results in the presehcategorical
features that can take many values. We propose an adaptation of exastikigg criteria that copes
with these difficulties.

Many feature ranking methods are equivalent to the following two-pheseegs: First, each
individual feature is used to construct a predictor of the label. Theffielteres are ranked based on
the errors of these predictors. Most current approaches usentteetsgining set both for construct-
ing the predictor and for evaluating its error. When dealing with binary feafuhe training error is
likely to be close to the generalization error, and therefore the rankirgygia by current methods
works rather well. However, this is not the case when dealing with catedéemtures that can take
a large number of values. To illustrate this fact, consider the problem digbireg whether someone
is unemployed, based on their social security number (SSN). A predmbstreicted using any fi-
nite training set would have zero error on the training set but a largeaeation error. Therefore,
a ranking criterion that supports categorical features should employeanaioust estimation of the
generalization error.

The first contribution of this paper is an estimator for the generalizatiom efrihe predictor
associated with the Gini index. This estimator can be calculated from the traitiagd we propose
to use it instead of the original Gini index criterion in the presence of cataddeatures. We
prove that regardless of the underlying distribution, our estimation is clode tivue value of the
generalization error for almost all training sets.

Based on our perspective of ranking criteria as estimators of the djigaticm error of a certain
predictor, a natural question that arises is which predictor to use. Antigergdictors that are based
on a single feature, we ultimately would like to use the one whose generalizatozriseminimal.
We prove that the best predictor in this sense is the predictor associatethevitiisclassification
error criterion. We analyze the difference between the expectedalizagion error of this predictor
and the error of the Bayes optimal hypothesis. Finally, we show a coatientresult for the
generalization error of this predictor.

Feature ranking criteria have been extensively studied in the contegtision treesNlingers
1989 Kearns and Mansouf996 Quinlan 1993. The failure of existing feature ranking criteria
in the presence of categorical features with a large number of possibksvaas been previously
discussed iQuinlan (1993, Mitchell (1997. Quinlan suggested the Information Gain Ratio as
a correction to the Information Gain criterion. In a broader context, infaondheoretic mea-
sures are commonly used for feature ranking (see for examgpleola (2006 and the references
therein). One justification for their use is the existence of bounds on thesBmtimal error that are
based on these measur@srkkola 2006. However, obtaining estimators for the entropy or mu-
tual information seems to be difficult in the general casatds and Kontoyianni2001). Another
ranking criterion designed to address the above difficulty is a distarssdbaeasure introduced
by de Mantarag1991).

The problem we address shares some similarities with the problem of estimating the
missing mass of a sample, typically encountered in language modeBapd( 1953
McAllester and Schapire200Q Drukh and Mansoyr2005. The missing mass of a sample is the
total probability mass of the values not occurring in the sample. Indeed, afdhementioned ex-
ample of the SSN feature, the value of the missing mass will be close to onanénaf@mur proofs
we borrow ideas fronMcAllester and Schapir€000, Drukh and Mansou(2005. However, our
problem is more involved, as even for a value that we do observe in thdesafripappears only
a small number of times then the training error is likely to diverge from the gémation error.
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Finally, we would like to note that classical VC theory for bounding the diffiee between the
training error and the generalization error is not applicable here. Theceuse the VC dimension
grows with the number of values a categorical feature may take, and imasneork this number
is unbounded.

This paper is organized as follows. In S€cwe formally describe our problem setting. We
introduce our main results in Segand prove them in Sed. We present experimental results in
Sec.5 and concluding remarks are given in Séc.

2. Problem Setting

In this section we establish the notation used throughout the paper andljodescribe our prob-
lem setting. In the supervised feature ranking setting we are providedkvathegorical features
and with a label. Each categorical feature is a random variable that takess\from a finite set.
We denote a feature h¥ and the set of valueX can take byi’. We make no assumptions on the
identity of V' for eachX nor on its size. The label is a binary random variable, denbteatiat takes
values from{0, 1}.

Generally speaking, the goal of supervised feature ranking is to rarfealtures based on their
merit in constructing an accurate classification rule. The features akedatcording to their
“relevance” to the label. Different criteria exist for assessing the agle® of a feature to the label.
Since relevance is assessed for each feature separately, let wstignéact that we haviefeatures
and from now on focus on defining a relevance measure for a sindgledgda. We denote by the
set of values thak can take. To simplify our notation we denote

A

py=Pr[X =v] and ¢, = PrlY =1|X = v].

In practice, the probabilitie§p, } and{q,} are unknown. Instead, it is assumed that we have
atraining setS = {(z;,v;)}/*, which is sampled i.i.d. according to the joint probability distribu-
tion Pr[X, Y]. Based onS, the probabilities(p, } and{q,} are usually estimated as follows. Let
¢y = [{i : x; = v}| be the number of examples for which the feature takes the valueand let
¢ = |{i:x; =vAy; = 1}| be the number of examples in which the value of the featureaisd
the label is 1. Thekp,} and{q,} are estimated as follows:

+
Cy

>0
2= and qvé{fv “ @)
m 5 CUIO

Note thatp, andg, are implicit functions of the training sét
Two popular relevance criterigd@stie et al.2001) are the misclassification error

> po min{do, (1 —Gu)} ©)
veV
and the Gini index
2 Zﬁv@)(l*‘jv) . (3)
veV

In these criteria, smaller values indicate more relevant features.
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Both the misclassification error and the Gini index were found to work ratledirin practice
when |V | is small. However, for categorical features with a large number of possililes, we
might end up with a poor feature ranking criterion. As an example (seeMitsbell (1997),
suppose that” indicates whether a person is unemployed and we have two featiress the
person’s SSN an, is 1 if the person has a mortgage amdtherwise. For the first featur, is
the set of all the SSNs. Because the SSN alone determines the target Bbhalenthat,, is either
0 or 1 for anyv such that,, > 0. Thus, both the misclassification error and the Gini index are zero
for this feature. For the second feature, it can be shown that with higbapility over the choice
of the training set, the two criteria mentioned above take positive valuesefdher both criteria
prefer the first feature over the second. In contrast, for our E@g 8- is much better thark; .
This is becaus&, can be used later for learning a reasonable classification rule basefinite a
training set, whileX; will suffer from over-fitting.

It would have been natural to attribute the failure of the relevance critetieettact that we use
estimated probabilities instead of the true (unknown) probabilities. Howeots that in the above
example, the same problem would arise even if we Ysedl and{¢,} in Eq. 2) and Eq. 8). The
aforementioned problem was previously underscored in the contex¢ dfftbrmation Gain crite-
rion (Quinlan 1993 de Mantaras1991, Mitchell, 1997). In that contextQuinlan(1993 suggested
an adaptation of the Information Gain, called Information Gain Ratio, whichfewasd rather ef-
fective in practice.

In this paper we take a different approach, and propose to interfeatae ranking criterion as
the generalization error of a classification rule that can be inferredtfiertraining set. To do so, let
us first introduce some additional notation. A probabilistic hypothesis isaitum : V' — [0, 1],
whereh(v) is the probability to predict the labélgiven the valuey. The generalization error éf
is the probability to incorrectly predict the label,

(h) 23 po (@0 (1— h(v)) + (1 - g,) h(v)) (4)

veV

We now define two hypotheses based on the training séhe first one is
hgmi(v) =quv - (5)

As its name indicate$,3" is closely related to the Gini index filter given in E§)(To see this, we
note that the generalization error/g§™ is

E(hg’ini> = va (QU (1 - (jv) + (1 - QU) (jv) : (6)
veV
If the estimated probabilitie§), } and{j, } coincide with the true probabilitie®, } and{q, }, then
¢(hg") is identical to the Gini index defined in EQ)( This will be approximately true, for example,
whenm > |V|. In other words, the Gini index is the training error’df". When the training set is
small, using/(hg") is preferable to using the Gini index given in Eg),(becausé(h3") takes into
account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

1 Gy>3
W) = {0 dn <3 Y
2 =3
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Note that if{g, } coincide with{q, } thenh3’**is the Bayes optimal classifier, which we denote by
hees |f in addition {p, } and{p, } are the same, thef{r3"*) is identical to the misclassification
error defined in Eq.2). Here again, the misclassification error might differ frégh%"*) for small
training sets.

To illustrate the advantage @fhS™) and ¢(h%3*) over their counterparts given in E3)(
and Eqg. B), we return to the example mentioned above. Bar, the SSN feature we have

((hS™) = £(h2) = LMy, whereMy 2 3", _ p,. In general, we denote

> o ®)

vicy=Kk

The quantityM, is known as the missing masSdod 1953 McAllester and Schapire2000 and
for the SSN feature), > (|V| — m)/|V|. Therefore, the generalization error of batf" and
hBayeSwouId be close td for a reasonablen. On the other hand, fok,, the feature of having a
mortgage it can be verified that botfh %) and(hg™) are likely to be small. Therefore, using
¢(hG™) or £(h$”®) yields a correct ranking for this naive example.

We have proposed a modification of the Gini index and the misclassificationtbat uses the
generalization error and therefore is suitable even whénsmaller thanV'|. In practice, however,
we cannot directly use the generalization error criterion since it depemtise unknown probabil-
ities {p, } and{¢,}. To overcome this obstacle, we must derive estimators for the generalization
error that can be calculated from the training set. In the next section wesgishe problem of
estimating/(hg™) and ¢(h%”*) based on the training set. Additionally, we analyze the difference
betweer?(h2**) and the error of the Bayes optimal hypothesis.

3. Main Results

We start this section with a derivation of an estimator4@Z"), which can serve as a new feature
ranking criterion. We show that for most training sets, this estimator will beedtmghe true value
of £(h§™). We then shift our attention t&(h%”*). First, we prove that among all predictors with
no prior knowledge on the distributioRr[ X, Y|, the generalization error dff‘;yes is smallest in
expectation. Next, we bound the difference between the generalizatmmoéh;** and the error
of the Bayes optimal hypothesis. Finally, we prove a concentration baurf@z**). Regretfully,
we could not find a good estimator fé¢h%>*). Nevertheless, we believe that our concentration
results can be utilized for finding such an estimator. This task is left fordutsearch.

We propose the following estimator for the generalization errdr2st

A A viec,=1 2c ~ A ~
= ‘{ . }‘ s pva(l_QU) . (9)
2m Cy — 1
vicy>1

This estimator can be derived using a leave-one-out technique (se&asgermarf2004). In the

next section we show a different derivation, based on a conditionateralidation technique. We
suggest to use the estimation@h3™) given in Eq. @) rather than the original Gini index given
in Eq. 3) as a feature ranking criterion. Let us compare these two criteria: Forstafuesv that

appear many times in the training set we have tﬁaff ~ 1. Iffor all v € V we have that the size
of the training set is much larger thap,, then all values iV are likely to appear many times in
the training set and thus the definitions in E9).dnd Eq. 8) consolidate. The two definitions differ
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when there are values that appear rarely in the training set. For su@sy#ie correction term is
larger than 1. Special consideration is given to values that appeatyesace in the training set.
For such values we estimate the generalization error té,behich is the highest possible error.
Intuitively, since one example provides us with no information as to the variahthe labelY”
given X = v, we cannot have a more accurate estimation for the contribution of this vatbe to
total generalization error. Furthermore, the fraction of values thatagx@ctly once in the training
set is an estimator for the probability mass of those values that do not adpahim the training
set (see als@ood (1953, McAllester and Schapiré2000).

We now turn to analyze the quality of the proposed estimator. We first showwrin T'that the
bias of this estimator is small. Then, in Th&).we prove a concentration bound for the estimator,
which holds for any joint distribution dPr[ X, Y] and does not depend on the sizéofSpecifically,
we show that for any € (0, 1), in a fraction of at least — ¢ of the training sets the error of the
estimator i@(%).

Theorem 1 Let S be a set ofm examples sampled i.i.d. according to the probability measure
Pr[X,Y]. LethZ" be the Gini hypothesis given in E) @nd let/(hg™) be the generalization error
of hg™, wherel is as defined in Eq4]. Let/ be the estimation of(hg") as given in Eq.). Then,

E[¢(hg™)] — E[]| < s, Where expectation is taken over all samptesfm examples.

The next theorem shows that for most training sets, our estimator is closetto¢hgeneraliza-
tion error of A",

Theorem 2 Under the same assumptions as in Thiet 6 be an arbitrary scalar in0, 1). Then,
with probability of at leasi — § over the choice of, we have

In(m/d)+/In(1/9)
vm

‘e(hgi"i) - 2‘ <0 (

Based on the above theorefizan be used as a ranking criterion. The convergence rate shown can
be used to establish confidence intervals on the true Gini generalizatisn®ne proofs of Thml
and Thm.2 are given in the next section.

So far we have derived an estimator for the generalization error of thieh@mothesis and
shown that it is close to the true Gini error. The Gini hypothesis has thengalye of being highly
concentrated around its mean. This is important especially when the sampie f&izéy small.
However, the Gini hypothesis does not produce the lowest generatiztior in expectation. We
now turn to show that the hypothegi§”* defined in Eq. 7) is optimal in this respect, but that its
concentration might be weaker. These two facts are characteristic oethknewn bias-variance
tradeoff commonly found in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have use8dyes optimal
hypothesish52% that achieves the smallest possible generalization error. When the ungerly
distribution is unknown, the training set is used to construct the hypothElsia. 3 below shows
that among all hypotheses that can be learned from a finite traininggévéstachieves the smallest
generalization error in expectation. More preciséf§)**is optimal among all the hypotheses that
are symmetric with respect to bofti| and the label values. Clearly, symmetric hypotheses cannot
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exploit prior knowledge on the underlying distributi®[ X, Y|. Formally, letF be the set of all
symmetric functions ovel x N, that is,

F = {f :NxN-— [0,1] ‘an,ng eN, f(nl,ng) =1 —f(nl,nl —m)}
and letH be the following set of mappings from samples of siz¢o hypotheses:

H = {h:(Vx{0,1})™ - v0I| (10)
3f € FstvS e (V x{0,1})™, Vv eV, h[S|(v) = f(cs(S),ct(S)} -

That is, H is the set of mappings that given a sample, generate a hypothesis bbdgdsdhe
sample. Thus, hypotheses that rely on any prior knowledderpk, Y| are excluded.

The following theorem establishes the optimality/gf*** and bounds the difference between
the Bayes optimal error and the error achievedz?ifs.

Theorem 3 Let S be a set ofm examples sampled i.i.d. according to the probability measure
Pr[X,Y]. For any hypothesi, let¢(h) be the generalization error df, as defined in Eq4). Let
h>**be the hypothesis given in Eq)(let h5¥be the Bayes optimal hypothesis, andAebe the

set of hypothesis mappings defined in B).( Then

E[((hg*)] = min E[¢(h[S])], (11)
and .
1 1 1 1
E[£(hg™)] — £(h52™) < 5 E[Mo] + £ E[M] + - E[Ms] + E[My], (12)
s g TR T R A ;3 Vek "

whereM;, is as defined in Eq8). Furthermore,

ﬂ

lim (; E[MO] + 1IE[]Wl] + 1E[]Wﬂ + Z 1ek; E[Mk]) = 0. (13)
k=3

Note that the first term in the difference betwegjd(h3"*)] and ¢(h52%) is exactly half the ex-
pectation of the missing mass. This is expected, because we cannot imprguedistion over

the baseline error o% for values not seen in the training set, as exemplified in the SSN example
described in the previous section. Subsequent terms in the bound cérithged to the fact that
even for values observed in the training set, a wrong prediction mightrieraged if there is a small
number of examples.

We have shown that**has the smallest generalization error in expectation, but this does not
guarantee a small generalization error on a given sample. Zbalow bounds the concentration of
¢(h$”®). This concentration along with Thrfi.provides us with a bound on the difference between
hg¥**and the Bayes optimal error that is true for most samples.

Theorem 4 Under the same assumptions of Ttidnassume that. > 8 and lety be an arbitrary
scalar in(0, 1). Then, with probability of at least — ¢ over the choice of, we have

In (m/5) «/ln(l/é)) |

[6(hg”*) — B[¢(hg*]| < O ( 16
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The concentration bound fd(.3") is weaker than the concentration bound £0i¢™), sug-
gesting that indeed the choice betwee§t' and 15" is not trivial. To use/(h%”"*) as a ranking
criterion, an estimator for this quantity is needed. However, at this pointweat provide such an
estimator. We conjecture that based on THman estimator with a small bias but a weak concen-
tration can be constructed. We leave this task to further work. Finally, wednike to note that
Antos et al.(1999 have shown that the Bayes optimal error cannot be estimated basednite a fi
training set. Finding an estimator fé(h%**) would allow us to approximate the Bayes optimal
error up to the bias term quantified in Th&.

4. Proofs of Main Results
4.1 Proof of Thm. 1

In the previous section, an estimator for the generalization error of theh@ptthesis was pre-
sented. We statedAthat for most training sets this estimation is reliable. In thisnsetédirst
derive the estimatof given in Eq. @) using a conditional cross-validation technique, and then uti-
lize this interpretation of to prove Thml1 and Thm.2.

To derive the estimator given in EQ)( let us first rewrite/(hg") as the suny |, ¢, (h3"), where
¢,(hZ™) is the amount of error due to valweand is formally defined as

to(h) 2 PrX =] Prh(X) £ Y | X =v] = py (00 (1= h(v)) + (1 = q) h(v)) -

We now estimate the two factoRs[X = v] andPr[hZ"(X) # Y | X = v] independently. Later
on we multiply the two estimations. The resulting local estimatof,¢f) is denoted/, and our

global estimator ig 2 32 7.

To estimatePr[X = v], we use the straightforward estimafiy:. Turning to the estimation of
Pr[hG"(X) #Y | X = v], recall thath3", defined in Eq.%), is a probabilistic hypothesis whejg
is the probability to return the label 1 given that the valu&as v. Equivalently, we can think of the
label thath g™ (v) returns as being generated based on the following processi(bgbe the set of
those indices in the training set in which the feature takes the val@mely,S(v) = {i : z; = v}.
Then, to set the labéig™ (v) we randomly choose an indéx S(v) and return the labe};. Based
on this interpretation, a natural path for estimatihdh3™(X) # Y | X = o] is through cross-
validation: Select am € S(v) to determineh3"(v), and estimate the generalization error to be the
fraction of the examples whose label is different from the label of thectleexample. That is,
the estimation is— > jes(w):ji Lui#y;- Obviously, this procedure cannot be used,it= 1. We
handle this case separately later on. To reduce the variance of this estintt@isgrocess can be
repeated, selecting each single example fi$m) in turn and validating each time using the rest
of the examples irb(v). It is then possible to average over all the choices of the examples. The
resulting estimation therefore becomes

1 1 1
Z o 1 Z 1y, 2y, = 1 Z Ly, 2y, -

iesw) @\ @ FES(v):j£i co(er —1) i,GES(v):iA]
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Thus, we estimat®r[hg"(X) # Y | X = v] based on the fraction of differently-labeled pairs of
examples inS(v). Multiplying this estimator by, we obtain the following estimator fdf, (hZ"),

- 1
b= T D lumy, (14)
v i,JES(v),i#]
. 2¢y (co — 7)) . 2¢2Gu(1 — Gu) . 2¢ R
b co(cy, — 1) P co(cy — 1) P Co — 1%( @)

Finally, for valuesv that appear only once in the training set, the above cross-validationdonece
cannot be applied, and we therefore estimate their generalization err@%tdh:e highest possible

error. The full definition of,, is thus:

R 5 . L <1
b=t = (15)
Py - Cﬂ%lch(l - QU) Cy > 2

The resulting estimatardefined in Eq. 9) is exactly the suny_, /..

Based on the above derivation@f, we now turn to prove Third, in which it is shown that the
expectations of our estimator and of the true generalization error of theh@doithesis are close.
To do so, we first inspect each of these expectations separately,gsmiﬂir{E[ZU}. The following
lemma calculates the expectationfpfover those training sets with exacttyappearances of the
valuew.

Lemma5 For k suchthatl < k < m,E[l, | ¢,(S) = k] = £ - 2¢,(1 - g,).

Proof If ¢, = k, thenp, = % Therefore, based on Ed.4), we have
Elly | eo(S) =K = 2L B[ 3 Ay, | clS)=k] . (16)
mk(k—1) " o TUTY
i,J€S(v),i#]

Let Z1, ..., Zx be independent binary random variables vi#thZ; = 1] = ¢, for all i € [k]. The
conditional expectation on the right-hand side of Bd) equals to

E[Z]‘Zﬁézj} = ZE[lzﬁﬁZg‘] = 22(]1} (1 - Q”U) = k(k - 1) “2qp (1 - Q”U) .
i#] i#] i#]

Combining the above with Eql6) concludes the proof. |

Based on the above lemma, we are now ready to calcElété. We have

E[Z,] ZPr E[f,] Z > PrS]-Ely | cu(S) = k. (17)

k=0 S:c, (S)=k
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From the definition of, we haveE[/, | ¢,(S)=1] = 5& andE[/, | ¢,(S)=0] = 0. Combining
this with Lemmab and Eq. L7), we get

BIE) = Prley =1 5+ >~ Pries = k] = 20,(1 — )

= (5 —2q,(1 — qv)) Prle, = 1] +2¢,(1 — Z{)Pr

S\?T

11

- E (5 - 2(]1)(1 - qv)) PI‘[ ] +Dv- 2(]1)(1 - QU) ) (18)

where the last equality follows from the fact that," , Pr(c, = k] = E[p,] = p,. Having
calculated the expectation 6f we now calculate the expectation@f hZ").

Lemma6 E[Ev(hg’lm)] pv( 2%}(1 - Qv)) PI‘[ ] +Du- 2QU( - qu)'
Proof From the definition of,(hg™), we have that
E[ty(h3")] = E[py (qu(1 — h3"(v)) + (1 = qu)hG" (v))]

= pu (qo(1 = E[AZ"(v)]) + (1 = qu) E[AG" (v)])
=po (@0 + (1 = 2q,) E[RZ"(v)])) - (19)

Next, we calculaté&[hg"(v)] as follows

hGInI Z PI' hGInI

m k .
= Pr[c,(S) =0] - % + ;;Pr[cv(S) =k andc, (9) = i] %

m k .
= Pr[e,(S) = 0] - % + ) Prle(S) =k Y _Prle(S) =i | cy(S) = k] %

k=1 =0
= Prleu(S) = 0] 5 + > Prlen(s) = g,

k=1
— Prley(S) = 0] % + Prleo(S) > 0] - o
= 4o+ 51~ 24,) Pries(8) = 0] (20)
Plugging Eg. 20) into Eq. (L9) and rearranging terms we conclude our proof. |

Equipped with the expectation df, given in Eqg. (8) and the expectation of, (hg™) given in
Lemma6, we are now ready to prove Thrh. A
Proof [of Thm. 1] Using the definitions of(hg™) and/ we have that

E[f] —E[((hg")] = E[Y 0] —E_6(h§)] = Y (E[L] - EL(hg")]) . (21)

10
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Fix somev € V. From Eg. (8) and Lemmas we have
. . 1 1
E[f,] — va(hgm)] = (5 —2g,(1 — %))(EPT[CU = 1] — py Pr[e, = 0]) . (22)
Also, it is easy to see that

1 — m
E PI‘[CU = 1] — Dv PI‘[CU = 0] = pv(l _pv)m 1 pv(l _pv)
201 -1 _Pv _
=pi(1—p)" " = T Prle, = 1 .
Plugging this into Eq.42) we obtain:

Bl2,] — B[] = (5 — 260(1 — a0))--po Prley = 1],

For anyq, we have tha0 < 2¢,(1 — ¢,) < % which implies the following inequality:

N ini 1 Dy
< _ Gini < — < .
0 < E[4y] — E[£,(hT")] < Py Pr[e, =1] < o
Summing this over and using Eqg.41) we conclude that

0 < E[f|—Ejerey] < S° P = L

- 2m 2m

4.2 Proof of Thm. 2

We now turn to prove ThnR in which we argue that with high confidence on the choicé athe
value of our estimator is close to the actual generalization errbfgl%.f To do this, we show that
both our estimator and the true generalization errgr®fare concentrated around their mean. The
proof of Thm.2 will then follow from Thm. 1.

We start by showing that our estimatbis concentrated around its expectation. The concen-
tration of # follows relatively easily by application of McDiarmid’s Theorem¢Diarmid, 1989:

Theorem 7 (McDiarmid) Let Xy, ..., X,, be independent random variables taking values in a set
Vandletf : V™ — R be such that forevery < ¢ < m

sup ‘f(xla cee 7xm) - f(xla cee 7xi—17x;>xi+la v 7xm)| < Cj
where the supremum is taken overail . . ., z,,, z; € V. Then with probability at least — &

f(X1, . X)) S E[f(Xq, ..

and with probability at least — §

F(X1,eos, Xon) 2 ELf(X0, .

11
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To simplify our notation, we will henceforth use the shorthafd =[S, §] to indicate that the
predicater[S, J] holds with probability of at least — ¢ over the choice of.
Lemma8 Letd € (0,1). Theny’S ‘Z— E[é]‘ <12 % .
Proof We prove the lemma using McDiardmid’s theorem. To do so, we need to showhhatthe
bounded differences property; namely, we shall find an upper bimutioe effect of any change of a
single example irf on /. Changing exampléz;, ;) in S to («},y.) is tantamount to first removing
(xi,y;) and then addingz}, y;). Since the effect of adding is simply the opposite of the effect of
removing, it is sufficient to find an upper bound for the effect a singteosal of example can have.
Then the effect of a change on the sample would be no larger than twicHebea the removal.
Let S\ denote the se$ \ {(z;,y:)}. We therefore need to boundS) — /(S\))|. Assume,
without loss of generality, that; = v andy; = 0. Then, using the definition df, we have that

‘E(S) - é(s\z)| - ‘év(s) - gv(S\i)‘ :
Based on the definitions @f, = ¢,/m andg, = ¢} /c,, we can rewrite Eq.1(5) as

R ﬁ ey =1
KU(S) = 2¢f (co—c)
m(cy—1)

Therefore, ife, > 3,

. S 2cF ey —cf  cy—cf —1 2¢t (ef — 1)
_ \iy| — “*v v v v v _ v \*v
[6(S) = Lu(ST)] m ( ey —1 Cy — 2 ) m(cy —1)(cy — 2)
2¢y(cy — 1) B 2¢,

<

m(c, —1)(cy, —2)  m(cy, —2)

while if ¢, = 2 then
Lastly, if ¢, = 1 then|l,(S) — £,(S\?)| = 5L Therefore for any samplé

and thus the effect of a single changeSris no larger than}%. We can now apply McDiarmid’s
theorem to get that with probability of at ledst- §:

n 2
7~ [0 < \/; i () m(2p =12y 151).
|

We now turn to show a concentration bound on the true generalization/¢hfit). Here we cannot
directly use McDiarmid’s Theorem since the bounded differences pyogees not hold fof(hg™).

12
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To see this, suppose thit = {0,1}, pg = p1 = % go = 0.99 andg; = 1. Assume in addition
that|S(0)| = 1; namely, there is only a single exampleSrfor which the feature takes the value
0, an unlikely but possible scenario. In this case, if the single examp¥@nis labeledl, then
¢(hG™) = 0.01, but if this example is labeled, then/(hg™) = 0.99. That is, a change of a single
example might have a dramatic effect i Z"). This problem can intuitively be attributed to the
fact thatS is an atypical sample of the underlying distributign, }. To circumvent this obstacle, we
use the following lemma. Note that a similar result can be derived from thiég@siutin (2002,
albeit with much larger constants. The lemma below provides tighter boundsnfiare restricted
case.

Lemma9 LetS be a sample withn examples drawn i.i.d from the distributidh[ X, Y]. Letd be
a confidence parameter. For two samplasand S, with m examples, we say thd{S;, S2) < 1 if
there is at most one example that is different between the two sampleg beet real function of
the sample. If there exists a function of the samypdad real numbersg, b such that the following
conditions hold:

VS1, S st d(S1,8) <1 |g(S1) — g(Ss)| < % (23)
VS £(S) = g(S) (24)
b
[E[f(5)] —E[g(S)]] < T (25)
then
cy/In(3) +bv2
26
vES () - E[f(9)]] < W
Proof From Eq. £3) and McDiarmid’s theorem we have
¥ 1g(S) - E[g(S))] < - ()
l9(S) —E[g(S)]] < W
In addition,
1£(S) =E[f(SN < [£(S) = 9(S)] + [9(S) — E[g(5)]] + [ELf ()] — E[g(S)]] -
Therefore, using Eq2¢) and Eq. 25) and applying a union bound, we have
c\/In(3) b cy/In(3) +bv2
25 _ _
VESF(S) —E[f(S)]l <0+ o T Nors
|

To use Lemma& we define a new hypothesfb% that depends both on the sampland on the
desired confidence parameterThis hypothesis would ‘compensate’ for atypical samples. We let
f 2 ¢(hg™) andyg 2 ¢(h%), and show that the conditions of the lemma hold.

We construct a hypothesig, such that satisfies the three requirements given in E§8-25)
based on Lemmao below. This lemma states that except for values with small probabilities, we

13
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can assure that with high confideneg(.S) grows withp,,. This means that as long as is not too
small, a change of a single examplecii{S) does not changg?(v) too much. On the other hand,

if p, is small then the value has little effect on the error to begin with. Therefore, regardless of
the probabilityp,,, the errorf(hg) cannot be changed too much by a single change of example in
This would allow us to prove a concentration bound/tiy) using McDiardmid’s theorem. Let us
first introduce a new notation. Given a confidence parandeter0, a probabilityp € [0, 1], and a
sample sizen, we define

p(6,p,m) 2 mp —/mp - 31n(2/6). (26)

Lemmal0 below states that,(S) is likely to be at leasp(5/m, p,, m) for all values with non-
negligible probabilities.

Lemma 10 Letd € (0,1) be a confidence parameter. Then,

o2m
WS VoeV: p, > OMEE)

cv(S) > p(6/m, py,m) > 1.

Proof The proof is based on lemma 44 frdbmukh and Mansou(2005. This lemma states that

- 2
forall v € V such thap, > ‘HHT%) we have that
5 ~ Dv - 3111(%)
VS py — Po] < — (27)

Based on this lemma, we immediately get that for:alich thap, > 31n(%)/m,
VoS ey, > p(6, py,m).

Note, however, that this bound is trivial fpr, = 31n(2)/m, because in this cagés, p,, m) = 0.
We therefore use the bound for values in whigh> 61n(§)/m. For these values it is easy to
show thatp(0, p,,m) > 1 for anyd € (0,1). Trivially, there are at most: valuesv for which

Dy > % Hence, substituting/m for 6 and applying a union bound, we conclude our proof.
[ |

Based on the bound given in the above lemma, we défine be

61n(2m)

W 2 8O pv < Tt orey = pliy, peym)
S e +qv[(£f(fp»f’v£;ﬂ‘cv) otherwise

That is, h%(v) is equal toh"(v) if either p, is negligible or if there are enough representatives
of v in the sample. If this is not the case, th€ns not a typical sample and thus we “force” it to
be typical by addingrp(%,pv, m)] — ¢, ‘pseudo-examples’ t&' with the valuev and with labels
that are distributed according tg. Therefore, except for values with negligible probability;
the hypothesi&? (v) is determined by at Iea$p(%,pv, m)| ‘examples’. As a direct result of this
construction we obtain that a single example frSrhas a small effect on the value €f:%).

We can now show that each of the properties2825) hold. From the definition ohg and
LemmalOitis clear that Eq.Z4) holds. Let us now show that EQ25) holds, withb.

14
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Lemmall |[E[¢(hE™)] — E[¢(h))]| < L.

Proof We have
E[(hS™)] — BLhE)] = (Bl (hg™) — (1)) (28)

v

We boundE[¢, (h§™) — £,(h%)] as follows. First, for values such thalp, < 6ln(22)/m, we
have thath&"(v) = h%(v). ThusE[(,(hS™) — ¢,(h%)] = 0. For the rest of the values,
py > 61n(22)/m and thus the definition df, (h%) implies

E[l,(hG") — £o(h3)] =
Prc, < p(6/m,py,m)] - E [@U(hg”i) — (R | ey < p(8/m, py,m)| . (29)

Using Eq. 7) again, we obtain thaPr[c, < p(d/m,p,,m)] < §/m. In addition, since both
(,(h&") andt, (k%) are in[0, p,] we have that

E (608" = 6.68) [ s < p(6/m.prm)]| < p.

Combining the above two facts with EQ9) we get

. o
Gini\ _ 0 < Po < &
Bl () — ()] < P2 < 2

Summing the above overand using Eq.48) we conclude that,

[Efe(ng — el < 2=

m

Finally, the following lemma shows that E®3) also holds.

Lemmal2 For any § > 0, and for any two sample§; and S, with m examples such that
d(S1,S2) < 1 with d defined as in Lemm@,
121n(2m)
b} )
Uh,) — U, < —— -2,
The proof of this lemma is deferred to the appendix.

We have shown that the functiogsé ¢(h%) and f 2 ¢(hg™) satisfy the three requirements
given in Egs. 23-25) and therefore Lemm@can be used to show th&t°") is concentrated.

121n(%2) /n(2)

<

Lemmal3 V6 >0 Y°S |¢(hS™) —E[((hg™)]| < +

1
g

E

Proof In Lemmag, let f £ ¢(hS") and letg £ £(hY). Letc £ 121n(#2), and letb 2 T
By Lemmal0, Eq. 24) holds. By Lemmal2, Eqg. 23) holds, and by Lemmal, Eq. 5) holds.

Therefore, from Lemma we have

In(22),/In(2
V>0 WS |7(S) -~ Elf(S)| < e WD)

1
s

¥

15
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The proof is concluded by substitutirgfor 4. u

Thm.2 states that with high confidence, the estimditisrclose to the true generalization error of the
Gini hypothesis¢(hg™). We conclude the analysis of the Gini estimator by proving this theorem.
Proof [of Thm. 2] Substitutingg for  and applying a union bound, we have that all three properties
stated in Lemmad.3, Thm. 1 and Lemma8 hold with probability of at least — §. We therefore
conclude that with probability of at least— 4,

le(rg™) — 1] < 1e(rg™) — BLe(hg™)] + ‘IEE [e(hg™)] — EL4)| + |EL2 —é\

2 121n ( Tm V/In (3 1 m% O( ((15))

| /\

4.3 Proof of Thm. 3

Throughout this section we use the notati$ffi*) to denote a random training setaf examples.
Before proving Thm23, we provide the following lemma, that shows that the expectatiom/pf
converges t® for anyk.

Lemma 14 For any naturalk and a countabléd/,

lim E[M,(S"™)] =0

m—0o0

Proof Following McAllester and Schapir€000 we have that for anyn

E[M;(S™)] Zp Pr[|S(™)| = k] .
veV
SinceV is a countable set we can rewrite it Es= {v1,v9,vs,...}. Lete > 0, and letN be a
positive integer such thgfv 1 Py, > 1 — 5. Sincelimy, oo ( [|S(m)] = k:]) = 0 for any natural
k, there exists amn’ such that for anym > m/, SN | p,. PrHSvm)\ = k] < 5. In addition,
ZLWNHPvl < §. Hence, for everyn > m/,

N V]
E[Mi(S"™)] =Y puo, Pr(ST =kl + > py Pr(ISIV] = K] <e.
=1 i=N+1

Proof [of Thm. 3] To prove Eq. L1), we calculate the expectation of the generalization error
E[¢(hg)] of an arbitrary hypothesis mappitgc H and show that this error is minimized when
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h[S] = hBSayes. Let f, : N x N — [0, 1] be a function such that,(n1,n2) = 1 — fr(n1,n1 — na)
and leth be a hypothesis mapping such that forialf V', h[S]|(v) = fr(cy(S), ¢ (S)). Then,

E[ﬁ(h[S])] = ZP’UE[q’U(]‘ - fh(CU(S),Cj(S))) + (1 - %})fh(cv(s)vcj(s))]
= _polao + (1= 200)) Elfa(eo(5), f (5))-

From the above expression it is clear that ¢f < 3 then E[{(h[S])] is minimal

when E[f,(cy(S), ¢ (S))] is minimal, and if g, > 1 then E[¢((h[S])] is minimal when
E[fn(cu(S), ¢ (S))] is maximal. Ifg, = 3 the expectation equals regardless of the choice of
fn. We have

E[fn(co(S), e (S)] =D PriSlfules(S), ¢ (5))
S

=Y Prle,(S) = k] Y Prlcf(S) =i | cu(S) = k] fulk, i)
k=0 ]

Consider the summation arfor a singlek from the above sum. [ is odd, then

k

S Prlef =i | v = Ktk )

1=0
k= k

=Y Prlet =ilc, =klfa(k,i)+ Y Plef =i ey =k(1— fulk,k—1))
=0 i:%

= ZZ:Pr[c:}r =1il|c, =k|fn(k, i)+ iPr[cj =k—i|c,=k|(1— fn(k,i))
i=0 i=0

ZC'—I—i(Pr[cj:Hcv:k‘] —Prlc; =k —i|cy =k]) falk, 1)

i=0

where(C' is a constant that does not dependfgnin the above expression, note thag,jf< % then

for eachi < 551, Pricf =i | ¢, = k] — Pr[e} = k —i | ¢, = k] is positive, and that i, > 3
then this expression is negative. This means that in both cases, to mirfif¥i{ze)], we need to
maximizefy, (k, i) for: < % For an everk the analysis is similar, except that we have the special
case ofi = % that does not pair with another summand. However, from the symmetry aonstr
on fy, it follows that f, (k, %) = % Therefore no maximization or minimization is allowed for this
value ofi. Based on the above analysis, the functfgrihat minimizest[/(hg)] is:

ni—1
1 ng < P}
_ 1
fo(ni,m2) = 40 ng > M=
1 — nu
2 MN2=73

Settinghs(v) = fr(cu(9), ¢ (S)) we have thatis(v) = hg”*(v) for all valuesv in V.
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To prove Eq. {2), we first calculate the difference betwegr{h22*) and the expectation of
£, (R%*). Assume without loss of generality that > 3. Thent, (h¥%) = p,(1 — g,), and

aye: ~ 1 N 1 1 N 1
E [, (h5")] = po(av Prld < 5]+ (1 = @) (1 = Prldy < 5]) + 5 Prlée = 3]).
Subtracting, we have
. 1 1 R 1
E[£o(h$**)] — £o(h%*) = po(2q0 = 1)(Prlds < 5]+ 5 Prldo = 5))

1 “ 1
< po(2g0 — 1) Prley = 0] - 5 + o > " Prle, = k|(2gy — 1) Pr[g, < Slew =H].

We use Lemma.7 below to bound2q, — 1) Pr[g, < %|e, = k] for k > 3. Fork = 0,1,2 we
maximize this term individually for each. This leads us to the following bound:

B[y (hig")] — €u(h32™)
1

1 1 — 1
< 3P Pric, = 0] + 3P Pric, = 1] + 3P Prlc, = 2] + Z ﬁpv Prlc, = k].

Recall thatM;, is the probability mass of the values sekrtimes in the sample. Following
McAllester and Schapir¢2000 we have that folk > 0, E[M;] = > p, Pr[c, = k]. Hence,
summing over all the valuas we have

E [f(hBaye hBayeS) Z hBaye Ev (hgzyeﬁ)

m

]E[Mo]+8E[M1 + = EMQ kz

I\D\H

To prove Eq. {3), denote byS(™ a sample ofn examples. Let > 0 be a scalar. Then there
exists an integer such that-= < §. Since}_"; E[M(S™))] = 1, we have

Vet
2

k=t

E[M;(S™)] < (30)

l\D\m

@\H
oy

Now, by Lemmal4, for everyk < t, lim,, ., E[M(S™))] = 0. Hence, there exists an’ such
that for everym > m/,

t
1 1 1 1 €
ZE[My(ST™)] + = E[M;(S"™)] 4+ = E[M(S™ —— E[My(S™)] < =. (31
5 EIMo(ST™)] + 2 E[M(ST)] + 2 E[Ma(S >]+§\@ [Mi(S™)] <5 (D)
Combining Eq. 80) and Eq. 81), we have that for every: > m/,
AN |
E[M>)] .
QE[M0]+8E[M1]+8 2+Z;’\@ My] < e
Hence the limit of this expression whemn — oo is 0. |
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4.4 Proof of Thm. 4

To prove Thm4, we first introduce some additional notation. ket (0, 1) be a confidence param-
eter. LetV?, Vi, andVZ be three sets that partitidn according to the values of the probabilities
Du-

VP ={v|p, <6In (2;1) m”s}
VY = {v|6In (%’;‘) m™3 < p, <6ln (%’;‘) m=3)

2m

V= (ol om (% ) m <p)

We denote the contribution of each setth:*) by ¢2(S) 2 > vevs ,(h”*). Additionally, given

two samplesS and .S’, let k(S, S") be the predicate that gets the value “true” if forale V we
havec, (S) = ¢, (5).

Using the above definitions and the triangle inequality, we can bpi(h@>*) — E[¢(h%"™)]|
as follows:

|£(hig™) — E[e(hg™)| =

S () - E[ﬁ?})‘

i=1
< | A0~ Bl | + | )~ BIES) | 5(S,80 | +

| 65(5) ~EIA(S) | w(S, )] | + | EI(S") + 6(S) | x(S, 8] ~ElG + 6] | (32)

To prove Thm.4 we bound each of the above terms as follows: First, to bdui§ds) — E[¢!] |
(Lemma15 below), we use the fact that for eache V7 the probabilityp, is small. Thus, a
single change of an example fhhas a moderate effect on the error and we can use McDiarmid’s
theorem. To bounwg(S) —E[65(S") | (S, S")] | (Lemmal6 below) we note that the expectation
is taken with respect to those samp#sn which ¢, (S’) = ¢, (.5) for all v. Therefore, the variables
(,(hg”™) are independent. We show in addition that each of these variables isdabimid, p,] and
thus we can apply Hoeffding's bound. Next, to boyrt(S) — E[¢5(S") | (5, S")] | (Lemmal9
below), we use the fact that in a typical sampig,S) is large for allv € V:f. Thus, we bound the
difference betweei, (h5**) andE[¢,(S") | x(S,S")] for each value i separately. Then, we
apply a union bound to show that for all of these values the above differis small. Finally, we
use the same technique to boynB[¢3(S") + ¢5(S") | k(S,5")] — E[¢5 + ¢3] | (Lemma20 below).
The proof of the first lemma, stated below, is omitted.

2m
Lemmal5 V6 >0 V°S |69(S) —E[¢]| < 121mn$/65 )M‘

Proof We prove the lemma using McDiarmid’s theorem. To do so, we examine the affectoval
of a single exampléz;, y;) from S can have ort$(h5”®). The largest effect occursif, € V;’ and
the removal ofy; changes the value &f¥*{z;). In this case,

(5) - 808V = 16,5~ 6 (3] < < 010 (5 3
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Applying McDiarmid’s theorem, it follows thdt$(S) — E[¢9]| is at most

1. /2 2m\ _2\* 12In(%) 1 /1
a2 (i (B ) met) = 28080 1 ()

n n(2
Lemmal6 V5 >0 WS [65(S) — E[&3(S") | w(S,S")]| < M

Proof Since the expectation is taken over samgé$or which ¢, (S’) = ¢,(S) for eachv € V,

we get that the value of the random variabléh**) for eachv depends only on the assignment of
label for each example. Therefore the random variahl@s; ") are all independent of each other
when conditioned om(S, S’), and#3(S) = >, evg bo (hBay“) is a sum of independent random

variables. The expectation of this sunfig$(S’) | «(S,S")]. In addition, it is trivial to show that
0y(hS”*) € [0, py] for all v. Thus, by Hoeffding's inequality,

_2t2/ Zvevés p%

Pr(|65(5) —E[3(S") | 5(S, S| = 4] < 2e (33)
Using the fact that fov in V3, p, < 61n (2£) /\/m we obtain that
va < maX{pv} va < 61n< )/\/7
veVy veVy
Plugging the above into Eg38) we get that
Pr{|£}(S) — E[63(S") | K(S,8")]| > 1] < 2~ 27Vm/©G(5))
Setting the right-hand side tband solving fort, we conclude our proof. |
So far, we have bounded the terin& (S) — E[¢] | and | £3(S [65(5’) | &(S,80] . In
both of these cases, we utilized the fact tanS small for allv e V1 U VY. We now turn to
bound the ternq 03(8) — E[63(S") | K(S,5")] . In this case, the probabilitigs, are no longer

negligible. Therefore, we use a different technique whereby we 2@y probability of.%"*(v)
to be ‘wrong’, i.e. to return the less probable label. Sipges no longer small, we expeet, to
be relatively large. The following key lemma bounds the probability‘?fs(v) to be wrong given
thatc, is large. The resulting bound depends on the difference betgeand1/2 and becomes
vacuous whenevey, is close tol /2. On the other hand, i, is close tol /2, the price we pay for a
wrong prediction is small. In the second part of this lemma, we balance thesertweand end up
with a bound that does not dependgn

Lemmal7 Let Z = (Z1,...,Z;) be a sequence of i.i.d. binary random variables such that
Pr[Z; = 1] = ¢ for all i, and assume that > % Then,
1
Zi<kJ2] < e 202’% and (2¢—1) Pr[> Z < k/2] < :
Z / < (q ) [; > /} = m
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Proof The firstinequality is a direct application of Hoeffding’s inequality. Multiplyimoth sides by
2¢g—1 we get that the left-hand side of the second inequality is bounded abc@quy)e*Q(Q*%V’“.
We now letr = ¢ — % and utilize the inequalityxe”mzk < 1/vek, which holds for alk: > 0 and
k> 0. |

Based on the above lemma, we now bolif§(S) — E[¢5(5") | (S, 5")] |. First, we show that if
cy(9) is large ther?,(S) is likely to be close to the expectation 6f over samplesS’ in which
ey (S) = ¢,(5"). This is equivalent to the claim of the following lemma.

Lemma 18 Under the same assumptions of LemidalLet f(Z) be the function

(1—q) if >, Zi>k/2
f(Z) = {q if >, Zi < k/2
: if >, Zi=k/2

Proof To simplify our notation, denoter = Pr[} . Z; > k/2], § = Pr[>_, Z; < k/2], and
v =Pr[>, Z; = k/2]. A straightforward calculation shows that

Then, for alls € (0,e'/?|we havev’Z |f(Z) — E[f]| < 21‘;](6%) .

(2¢ — 1) (B+~/2) with probability o
lf(Z)—E[f(Z)]]| = {(2q—1)(a+~v/2) with probability 3
(2¢—1)(a—p) with probability
Using the fact thata, 3, ) is in the probability simplex we immediately obtain that
If(2) —E[f(2)]| < (2¢-1) .
f2¢g—1<4/2In (%) /k then the bound in the lemma clearly holds. Therefore, from now on we

assume thatq — 1 > /2 In (}) /k. In this case, using the first inequality of Lemmawe have

thatB +~ < e 243k < 5 Therefore] — § < a, and so with probability of at least— § we
have that

f(Z)=E[f(2)]] = (2¢-1)(B+7/2) < (2¢—1)(B+7) -
Applying the second inequality of Lemni& on the right-hand side of the above inequality we get
that|f(Z) — E[f(Z2)]] < /1/ek < +/2In(1/6)/ek, where the last inequality holds since we
assume that < e~1/2, u

Equipped with the above lemma we are now ready to bqufidS) — E[¢5(5") | (S, 5")] |.
Lemma19 If m > 4then VDS [63(S) —E[65(S") | k(S, 8] < 1/mi.

Proof Recall thatt3(S) = > vevs Lo(S). m > 4, henced/m < 1/m < e~ /2. Choosev € V3
and without loss of generality assume that> 1/2. Thus, from Lemma.8 and the definition of
2,(S) we get that with probability of at least— 6 /m over the choice of the labels v):

2In (%)

[60(S) = B[t () | 5(S, S| < py e o(9)

(34)
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By the definition ofVy and Lemmal0, ¥°S, Vv € V3, ¢,(S) > p(5/m,p,, m). Using the fact
that p is monotonically increasing with respectjig it is possible to show (see Lemn24 in the
appendix) thap(5/m, p,,m) > 2In g%) m!/? for all v € V{ for m > 4. Therefore, if indeed
co(S) = p(6/m, py, m) for anyv € Vi, we have that

2In (%) ~1/4
6'61,(5) <pym .

Using a union bound to make sure that this condition holds and &).hplds for allv € V3
simultaneously, we obtain thet?")S Vo € Vi [£,(S) — E[£,(S") | x(S,S))]| < pym~ Y4 .
Summing ovew € V3, using the triangle inequality, and using the fact hitp, = 1 we conclude
the proof. |

Lemma20 Form > §,

WS |EI(S") +B(S") | 5(5,5)] — EIES) + BN < -+ .

Proof As in the proof of Lemma.9, we use the definitions dfy andVy’ along with Lemmal0
and Lemma1to get that forn > 8

VS Yoe VS UVE ¢ (S) > p(d/m,py,m) > 3In(m/8)m'/3 . (35)

To bound the difference between the conditional expectation and thenditiooal expectation,
let us first examine both these quantities for individual valuesTo simplify our notation, de-
notea; = Pr[§,(S") > 1/2 | ¢,(S") = ¢ (9)], 1 = Pr[¢(S") < 1/2 | ¢y(S) = ¢n(9)],
andy; = Pr[¢,(9) = 1/2 | ¢,(5") = ¢,(5)]. Similarly, denoteas = Pr[g,(S") > 1/2],
B2 = Pr[¢,(S") < 1/2], andy, = Pr|[§,(S") = 1/2]. Using the definition of,, we have that

E[£,(S") | cu(S) = cu(S")] = pu <(1 —qv) a1 +qB1+ ;71> : (36)

Similarly, for the unconditional expectation:

i8] = (1= @) an +adt g ) - @7)

Subtracting the above two equations and rearranging terms it can be giaiwn

A 2 E[6(S) | co(S) = ()] — E[6,(S")]

1
=po(a= ) Br+m) =Bt + (-7l . (38)
LetZy,...,Z., (s be ani.i.d. sequence of random variables WitfiZ; = 1] = ¢,. Then we have

B1+m =Pr]d>, Z; <c,(5)/2]. Inadditione, (S) > [p(d/m, p,, m)] 2 p. Assume without loss
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of generality thay, > 1/2. Thus we havér[} " | Z; < p/2] > Pr[Zf;(ls) Z; < ¢,(5)/2]. We
clearly have thab < 3; + vy < Pr| le Z; < p/2]. We now argue that

5 P
0<f2+72 < %+PY[ZZ¢SP/Q] :
i=1

The left-hand side inequality is trivial. To prove the right-hand side inequal#ynote that

Batn= 3 Pria(s) =P 080 < 5 () =]
< Prle(8) < g1+ Pr () < | () =)
5 14
< — —|—Pr[; Zi < p/2 .
Therefore,
k
[(B1+7) = (B2 +72)| < %+PT[ZZiSk/2] : (39)

i=1
Similarly, sinced < v < 81 + 71 and0 < v, < 35 + 72 we also have that

5 P
el < P Zi<p/2) (40)
i=1

Combining Eq. 89) and Eq. 40) with Eq. (38) we get that

A < p,(2¢-1) %—I—Pr[ZZigp/Q] < po %—I- )
i=1

€ - p(%?I)’U?m)

where the last inequality follows from Lemni&. Finally, by summing over € V¥ U V{ and
using Eq. 85) we conclude our proof. |

5. Experiments

In this section we present experimental results that demonstrate the merits feature ranking
criterion given in Eqg. 9). Throughout this section we compare the following four feature ranking
criteria:

1. IG: The Information Gain criterionQuinlan 1993 de Mantaras1991, Mitchell, 1997).
2. IGR: The Information Gain Ratio criteriorQuinlan 1993.

3. Gini: The original Gini Index Breiman et al.1984), which is given in Eq. §).
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IG IGR Gini Ginger

0.5] 0.5 0.5] 0.5
0.4 0.4/ 0.4] 0.4/
I 0.3] 0.3 0.3] 0.3
0.2] 0.2 0.2] 0.2

0.1] 0.1 0.1] 0.1

0.5] 0.5] 0.5] 0.5]

0.4] 0.4 0.4] 0.4]

0.2] 0.2] 0.2] 0.2]

0.1] 0.1] 0.1] 0.1]

0.5 0.5] 0.5 0.5
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| I I 0.3] 0.3] 0.3] 0.3
0.2] 0.2 0.2] 0.2

0.1 0.1 0.1 0.1]

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Figure 1: Each of the plots above show the generalization error of eatlré (the y axis) against
the ranking order of the feature in one of the ranking criteria (the x akagh column
corresponds to a specific ranking criteria. Each row correspondsgeciis synthetic
dataset.

4. Ginger: Our modified Gini criterion that aims to minimize the generalization error, given in
Eq. 9).

We first present experiments with synthetic data that exemplify the gendiaiipsoperties of
the different criteria. Next, we compare the performance of the difterieria on a natural dataset
from the UCI repository. Finally, we compare the use of the differerkirmncriteria for the task of
growing a decision tree.

5.1 Synthetic Data

Three synthetic datasets were constructed to exemplify the generalizaieries of the different
ranking criteria in different scenarios. In all of the synthetic datasetgattyet label was first
sampled according to the probability meashkigy = 1] = % Synthetic dataset | includes only
binary features. The goal of dataset | is to show that the Ginger critbabaves similarly to the
Gini criterion on binary featured.1 binary features were constructed. For eaeh{0,1,...,10}
the ith feature was sampled according to the probability meaBu&; = Y|Y] = % Thus,
featureX is completely uncorrelated with the label, while featifg) perfectly predicts the label.
A training set 05000 examples was generated, and the features were ranked using eaelffioafrth
ranking criteria on the training set. The generalization errors of theassification rules of each
feature, defined as in Eq7)( were measured on a fresh test seb@i0 examples. A plot of the
generalization error of each feature against the ranking order oé#tert is given for each of the
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ranking criteria on the top row of Fid.. This plot should be monotonically increasing for good
feature ranking criteria. As the plots show, all four criteria perform welthis dataset.

Dataset Il is identical to dataset |, except that one more feature, iddéxe was addedX7; is
simply the index of the example (this simulates an SSN-like feature as descriBed.it). Clearly,
the generalization error of 1 is % as no value of the feature that occurred in the training set would
occur in a test set. The performance of the four feature ranking craar@ataset Il is shown on
the second row of Figl. As expected, the Gini criterion and the IG criterion both suffer from
overfitting and rankX; very high. The IGR criterion, suggested RQuinlan (1993 attempts to
fix the overfitting effect of the IG criterion by dividing IG by the entropytbe feature. As the
plots show, this correction indeed causes IGR to r&aklower than do IG and Gini. However, the
correction is not strong enough, as the new feature is still ranked 8tbof dut features although
its generalization error is the worst. Finally, it is clear from the plots that the@iager criterion
produces a correct ranking of the features in this example.

Dataset Il is identical to dataset I, except that one more feature @utlEx, was added X1
was constructed according to the following probability measure:

1 i
PriX —i|y—1 — Jm Mieil.... 2000
0 otherwise

056 if @ € {2001, .. .,4000}
0 otherwise
X714 is thus categorical with many values but it is still highly predictive of the lableé gerformance
of the four feature ranking criteria on dataset Il is shown on the bottnaf Fig. 1. As the plots
show, the rankings of the Gini criterion and of the IG criterion are noeeshly affected by the
addition of this feature, although they still fail o¥i;;, the SSN-like feature. IGR penalizés,
because it has a large number of values, thus its ranking for this featoel@®v. The new Ginger
criterion is the only one to rank the features in accordance with their reégpgeneralization error,
as is apparent from its monotonically increasing plot.

5.2 Natural Data

To test the ranking criteria on natural data, we used the USCensus¥®€@ataset from the UCI
Repository* This dataset contains person records, where each record hasat@&s, such as age,
salary, marital status etc. Several labeled datasets were construstetd§6ensus1990raw by
defining a binary target label based on one of the attributes, and usimgsthef the attributes as
features. For attributes that take more than two values, the binary labaewvtsl if the feature
takes its most frequent value and otherwise. Only cases where the probability of the label to
be 1 was at leas0.1 and no more thaf.9 were used. This process resultedsihbinary learning
problems.

In Fig. 2, each of the rows corresponds to one learning problem. A plot is showeaaich
problem and each ranking criterion, depicting the generalization erreadt feature against the

1. The original census dataset was used rather than the prepibdesaset. The preprocessed dataset obtained from
Meek, Thiesson, and Heckerman eliminates categorical attributes treatrtaay values, exactly the type of attributes
that this paper addresses. The dataset used in our experiments islahilaugh
http://kdd.ics.uci.edul/ dat abases/ census1990/ USCensus1990r aw. dat a. t xt .
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Figure 2:

Each of the plots above show the generalization error of theésan a learning problem
(the y axis) against the ranking order of the features in one of the rquakiteria (the x
axis). Each column corresponds to a specific ranking criterion. Eackaooesponds to
a specific learning problem, generated from USCensus1990raw byggtitabel to be
the most common value of one of the attributes.
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IG IGR Gini
|| — | |

Figure 3: Each plot above portrays the difference in generalizatian between the feature that
was top-ranked by Ginger and the feature that was top-ranked byf time @ther criteria,
for each of thes2 learning problems obtained from USCensus1990raw.

ranking order of the features. Recall that good ranking criteria shanaduce monotonically in-
creasing graphs. The plots clearly show that the Ginger criterion pesdhe most accurate feature
ranking. Fig.3 compares the Ginger criterion to each of the other ranking criteria. In afetie
plots, each data point corresponds to one oftthdéearning problems and portrays the difference
in generalization error between the feature that was top-ranked by iGindgehe feature that was
top-ranked by the other criterion. Positive data points are cases wiliegerGutperformed the
other criterion. Again, it is apparent that the Ginger criterion outperfahm®ther criteria.

5.3 Decision Trees

Decision tress are a popular classification tool (see for institimdell (1997). The process of
growing a decision tree is a greedy iterative procedure which is pertbasitollows: The procedure
starts with a tree composed only of a root node. At each iteration, one téahes of the tree is
turned into an inner node, whose children represent all the possiblesvaiione feature. Choosing
which leaf to split and which feature to use for splitting can be based onréeednking criteria
such as the ones discussed in this paper. In our experiments, we cdrdpaigion tree learning
with each of the four feature ranking criteria: 1G, IGR, Gini, and GingHne experiments were
performed on thé2 learning problems described in S&c2

Usually, the iterative process of growing a decision tree continues urtilrttzer splits can be
made. Then, as a post processing step, the tree is pruned, so as toeitigrgeneralization error
of the decision tree. Since this paper focuses on splitting criteria ratheothpruning methods,
the experiments do not include tree post-pruning. Instead, the gengoaliearor is measured
as a function of the number of splits. Given a ranking criterion, the followirogedure is used to
choose which leaf to split and which feature to split by: kebe the number of training examples. A
decision tred” with k leaves is equivalent to a mappitg: {1,...,m} — {1,...,k}. Thatis, each
example is mapped to one of the leaves of the tree. We can think of the Y&¢10r. .., T'(m)) as
the vector of values of a constructed feature. At each iteration of thisioedree learning process,
a new tree needs to be generated from the current tree by splitting one ofittent tree leaves
based on one of the features. Each possible new tree induces ardifiere constructed feature
as described above. To select the leaf to split and the feature to spliebgssess the quality of
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Label Gini IGR Ginger

Attr. 70

Attr. 84

Attr. 86

Attr. 106

Attr. 110

Attr. 123

Figure 4: The training and generalization errors of decision trees gemearding to the Gini,
IGR, and Ginger splitting criteria, as a function of the number of splits. Eatlnmm
corresponds to a specific splitting criterion. Each row corresponds tedifisdearning
problem, generated from USCensus1990raw by setting the label to be shieonamon
value of one of the attributes.
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Figure 5: Left: The minimal generalization error of the IG criterion minus the mihgeaeraliza-
tion error of the Ginger criterion for each of the labeled datasets. Mid@leieSor IGR.
Right: Same for Gini.

each new constructed feature based on the ranking criterion in useelHuted leaf and feature are
those that correspond to the top-ranked constructed feature.

Fig. 4 shows the training error and generalization error of the Gini, IGR and&Bisplitting
criteria as a function of the number of splits, for several learning probldrhe IG criterion plot
was omitted since its behavior was almost identical to that of the Gini criterioncaAde seen
from the plots, the training error of the Gini criterion drops faster, butéiselting tree suffers from
severe overfitting. In contrast, the generalization error of the Gingterion is much smaller and
remains close to the training error, as long as the number of splits is not teo fssgxpected, after
making a large number of splits all criteria exhibit an overfitting effect. Comgdhe IGR and the
Ginger criteria, we observe that both methods perform rather well, éemhirsg an advantage on
some of the learning problems.

Lastly, Fig.5 compares the performance of the decision tree learning with the Ginger splitting
criterion to decision tree learning with the other splitting criteria. In each ofltits,ihe data points
correspond to thé2 learning problems, and portray the difference in the minimal generalization
error achieved by the decision tree grown using Ginger and the one &saaehieved using the
other criterion. Positive data points are cases where Ginger outpeddhaether criterion. The
plots show that the Ginger criterion outperforms the IG and Gini criteriatt@atdn most cases the
Ginger criterion outperforms the IGR criterion as well.

6. Discussion

In this paper, a new approach for feature ranking is proposedd lmasa direct estimation of the
true generalization error of predictors that are deduced from the tgagginh We focused on two
specific predictors, namehZ™ andr$”*. An estimator for the generalization error/d§™, termed
the Ginger criterion, was proposed and its convergence was analyzquerimental evaluation
suggests that the Ginger criterion outperforms existing feature rankingodsete showed that
the expected error dff;‘yes is optimal and proved a concentration bound for this error. Constructing
an estimator fohz**is left for future work.

There are various extensions for this work that we did not pursuet, Ritis interesting to
analyze the number of categorical features one can rank while avoidinfitting. The experiments
with decision trees suggest that the Ginger criterion has potential to imprevgetieralization
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error of decision trees. It may be possible to use the bounds for cofisg@a stopping criterion
for growing the decision tree. Second, our view of a ranking criterioaragstimator for the
generalization error of a predictor can be used for constructing nekng criteria by defining
other predictors. Finally, understanding the relationship between this nigwmtormation theoretic
measures is also an interesting future direction.
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Appendix A. Technical Proofs

Lemma 2l Letc be a positive constant. Thenpif > 61n (%) —¢, andm > 97 we have
Vo >0 p(6,py,m 23111(

Proof By the definition ofp,

p(6, Py, m) = mpy — m: Vmpy (m— 3n (2)) .

Therefore (-2, p,,m) is upward monotonic with,. Thus ifp, > 61n (22) m~¢,

2
(5 P, M) = MpPy — A/ MPy * 31ln <5
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Proof [Lemmal12] Similarly to the proof of Lemma, we will bound the effect a single removal of
an example front' can have orf(hg). The maximal effect of a single change in the sample is no
larger than twice the maximal effect of a single removal. Assume without logsradrality that the
removed example is; = (v,0), and denote the resulting sample $Yi. The removal only affects
(,(h%). Therefore

£%) — 60| = (k) = £o(h,)
= [po (@01 = B3 () + (1 = @& () = pugo(1 = B (0)) + (1 — @) () |
po(1 = 20,)(h(v) — . (0))

Py(v) = B ().

< Pov
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2m
Forv such thap, < %m“)

61n(22
Ay — 1018 )] < o < TS @)

61In(2
Forv such thap, > %

vin S:

, we distinguish between three cases:pythe number of examples of

1. ¢y < p(2,py,m),
2. p(S,pu,m) < ey < p(S,pu,m) +1,
3. p(L,py,m) +1< ¢

In casel,

h%(v) B CqJ;r + QU(H)(%apv;m)—l - Cv) and h6\~(v) B CUJr —i—qv([p(%’pmmﬂ —(cp — 1))
= N _ |

’Vp(%)pvvmﬂ [p(%’pvumﬂ

hence ;
|hg(v) — b, (0)] = —5—— .
° S [p(Z,poym)]

In case2, [p(2, p,,m)] = c,, therefore

. cf cf + qucy — (cy — 1
W) = () = and 1l () = @@= (@2 D)

hence ¢ ¢
W (v) — ho (v)| = = = ——— .
S ¢ [p(L,ps,m)]

In case3, sincep(%,pv, m) > 1 we havec, > 2 and

5 Gini Cv+ 5 5 C;r
hg(v) = hg"(v) = o and hg,; (v) = b (v) = p—
Hence
A 1 1
ha(v) — ke, (v)] = “ < v = < .
|hs(v) — Ay (v)] coleo—1) = epleu—1)  ew—17 [p(Z,p,,m)]
2m
Therefore, in all cases, farsuch thap, > %
5 5 5 5 Po Du
£(%) = U] < po | (o) = W (0)]| < —5 -
p(a,pv,m) MPy — A/ MPy * 31n(27m)
n(2m
11 - _12 4
_m\/pTJ— 3n(3) T m \/61n(27m)_\/31n(27m) T mV2-1"m’
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Combining this with Eq.41), we have

4 6In(Zm) 61n(2m)
) é 0 )

Hence, doubling the effect of a single removal, we have that for any angpkesS; and.S; such
thatd(Sl,Sg) <1
121In(22)

m

[€(hs,) — €(hg,)| <
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