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Abstract. We describe and analyze a new approach for feature ranking in the
presence of categorical features with a large number of possible values. It is
shown that popular ranking criteria, such as the Gini index and the misclassifica-
tion error, can be interpreted as the training error of a predictor that is deduced
from the training set. It is then argued that using the generalization error is a more
adequate ranking criterion. We propose a modification of the Gini index criterion,
based on a robust estimation of the generalization error of a predictor associated
with the Gini index. The properties of this new estimator are analyzed, showing
that for most training sets, it produces an accurate estimation of the true general-
ization error. We then address the question of finding the optimal predictor that
is based on a single categorical feature. It is shown that the predictor associated
with the misclassification error criterion has the minimal expected generalization
error. We bound the bias of this predictor with respect to the generalization error
of the Bayes optimal predictor, and analyze its concentration properties.

1 Introduction

Filter methods for supervised feature selection rank a given set of features according
to their relevance for predicting the label. As in other supervised learning methods, the
ranking of the features is generated based on an input training set. Examples of widely
used filter ranking criteria are the Gini index, the misclassification error, and the cross-
entropy [6]. In this paper we address the problem of feature ranking in the presence of
categorical features. We show that a direct application of existing ranking criteria might
lead to poor results in the presence of categorical features that can take many values.
We propose an adaptation of existing filter criteria that copes with these difficulties.

Many feature ranking methods can be viewed as a two-phase process: First, each
individual feature is used to construct a predictor of the label. Then, the features are
ranked based on the errors of these predictors. The training set is used both for con-
structing each predictor and for evaluating its error. Most current filters use the error
over the training set as the ranking criterion. In contrast, we argue that the generaliza-
tion error of each predictor is a more adequate ranking criterion. When dealing with
binary features, the training error is likely to be close to the generalization error, and
therefore the ranking generated by current filters works rather well. However, this is not
the case when dealing with categorical features that can take a large number of values.
To illustrate this fact, consider the problem of predicting whether someone is unem-
ployed, based on their social security number (SSN). A predictor constructed using any



finite training set would have zero error on the training set but a large generalization
error. The first contribution of this paper is an estimator for the generalization error of
the predictor associated with the Gini index. This estimator can be calculated from the
training set and we propose to use it instead of the original Gini index criterion in the
presence of categorical features. We prove that regardless of the underlying distribution,
our estimation is close to the true value of the generalization error for most training sets.

Based on our perspective of ranking criteria as estimators of the generalization error
of a certain predictor, a natural question that arises is which predictor to use. Among
all predictors that are based on a single feature, we ultimately would like to use the one
whose generalization error is minimal. We prove that the best predictor in this sense is
the predictor associated with the misclassification error criterion. We analyze the dif-
ference between the expected generalization error of this predictor and the error of the
Bayes optimal hypothesis. Finally, we show a concentration result for the generalization
error of this predictor.

Filter methods have been extensively studied in the context of decision trees [10, 7,
12]. The failure of existing filter ranking criteria in the presence of categorical features
with a large number of possible values has been previously discussed in [12, 11]. Quin-
lan suggested the Information Gain Ratio as a correction to the cross-entropy (a.k.a.
Information Gain) criterion. In a broader context, information-theoretic measures are
commonly used for feature ranking (see for example [14] and the references therein).
One justification for their use is the existence of bounds on the Bayes optimal error that
are based on these measures [14]. However, obtaining estimators for the entropy or mu-
tual information seems to be difficult in the general case [2]. Another ranking criterion
designed to address the above difficulty is a distance-based measure introduced by [3].

The problem we address shares some similarities with the problem of estimating
the missing mass of a sample, typically encountered in language modeling [5, 8, 4]. The
missing mass of a sample is the total probability mass of the values not occurring in
the sample. Indeed, in the aforementioned example of the SSN feature, the value of the
missing mass will be close to one. In some of our proofs we borrow ideas from [8, 4].
However, our problem is more involved, as even for a value that we do observe in the
sample, if it appears only a small number of times then the training error is likely to
diverge from the generalization error. Finally, we would like to note that classical VC
theory for bounding the difference between the training error and the generalization
error is not applicable here. This is because the VC dimension grows with the number of
values a categorical feature may take, and in our framework this number is unbounded.

2 Problem Setting

In this section we establish the notation used throughout the paper and formally describe
our problem setting. In the supervised feature selection setting we are provided with k
categorical features and with a label. Each categorical feature is a random variable that
takes values from a finite set. We denote by Xi the i’th feature and by Vi the set of
values Xi can take. We make no assumptions on the identity of Vi nor on its size. The
label is a binary random variable, denoted Y , that takes values from {0, 1}.



Generally speaking, the goal of supervised feature selection is to find a subset of the
features that can be used later for constructing an accurate classification rule. We focus
on the filter approach in which we rank individual features according to their “rele-
vance” to the label. Different filters employ different criteria for assessing the relevance
of a feature to the label. Since we are dealing with individual features, let us ignore the
fact that we have k features and from now on focus on defining a relevance measure
for a single feature X (and denote by V the set of values X can take). To simplify our

notation we denote pv
∆
= Pr[X = v] and qv

∆
= Pr[Y = 1|X = v].

In practice, the probabilities {pv} and {qv} are unknown. Instead, it is assumed
that we have a training set S = {(xi, yi)}m

i=1, which is sampled i.i.d. according to the
joint probability distribution Pr[X,Y ]. Based on S, the probabilities {pv} and {qv} are
usually estimated as follows. Let cv = |{i : xi = v}| be the number of examples in S
for which the feature takes the value v and let c+

v = |{i : xi = v ∧ yi = 1}| be the
number of examples in which the value of the feature is v and the label is 1. Then {pv}
and {qv} are estimated as follows:

p̂v
∆
=

cv

m
and q̂v

∆
=

{

c+
v

cv
cv > 0

1
2 cv = 0

(1)

Note that p̂v and q̂v are implicit functions of the training set S.
Two popular filters used for feature selection [6] are the misclassification error

∑

v∈V p̂v min{q̂v, (1 − q̂v)} , (2)

and the Gini index
2
∑

v∈V p̂v q̂v(1 − q̂v) . (3)

In these filters, smaller values indicate more relevant features.
Both the misclassification error and the Gini index were found to work rather well

in practice when |V | is small. However, for categorical features with a large number of
possible values, we might end up with a poor feature ranking criterion. As an example
(see also [11]), suppose that Y indicates whether a person is unemployed and we have
two features: X1 is the person’s SSN and X2 is 1 if the person has a mortgage and 0
otherwise. For the first feature, V is the set of all the SSNs. Because the SSN alone
determines the target label, we have that q̂v is either 0 or 1 for any v such that p̂v > 0.
Thus, both the misclassification error and the Gini index are zero for this feature. For the
second feature, it can be shown that with high probability over the choice of the training
set, the two criteria mentioned above take positive values. Therefore, both criteria prefer
the first feature over the second. In contrast, for our purposes X2 is much better than
X1. This is because X2 can be used later for learning a reasonable classification rule
based on a finite training set, while X1 will suffer from over-fitting.

It would have been natural to attribute the failure of the filter criteria to the fact that
we use estimated probabilities instead of the true (unknown) probabilities. However,
note that in the above example, the same problem would arise even if we used {pv} and
{qv} in Eq. (2) and Eq. (3). The aforementioned problem was previously underscored
in the context of the Information Gain filter [12, 3, 11]. In that context, Quinlan [12]



suggested an adaptation of the Information Gain, called Information Gain Ratio, which
was found rather effective in practice.

In this paper, we take a different approach, and propose to interpret a filter’s criterion
as the generalization error of a classification rule that can be inferred from the training
set. To do so, let us first introduce some additional notation. A probabilistic hypothesis
is a function h : V → [0, 1], where h(v) is the probability to predict the label 1 given
the value v. The generalization error of h is the probability to wrongly predict the label,

`(h)
∆
=
∑

v∈V pv (qv (1 − h(v)) + (1 − qv)h(v)) . (4)

We now define two hypotheses based on the training set S. The first one is

hGini
S (v) = q̂v . (5)

As its name indicates, hGini
S is closely related to the Gini index filter given in Eq. (3). To

see this, we note that the generalization error of hGini
S is

`(hGini
S ) =

∑

v∈V pv (qv (1 − q̂v) + (1 − qv) q̂v) . (6)

If the estimated probabilities {p̂v} and {q̂v} coincide with the true probabilities {pv}
and {qv}, then `(hGini

S ) is identical to the Gini index defined in Eq. (3). This will be
approximately true, for example, when m � |V |. In contrast, when the training set
is small, using `(hGini

S ) is preferable to using the Gini index given in Eq. (3), because
`(hGini

S ) takes into account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

hBayes

S (v) =











1 q̂v > 1
2

0 q̂v < 1
2

1
2 q̂v = 1

2

. (7)

Note that if {q̂v} coincide with {qv} then hBayes

S is the Bayes optimal classifier, which
we denote by hBayes

∞ . If in addition {p̂v} and {pv} are the same, then `(hBayes

S ) is identical
to the misclassification error defined in Eq. (2). Here again, the misclassification error
might differ from `(hBayes

S ) for small training sets.
To illustrate the advantage of `(hGini

S ) and `(hBayes

S ) over their counterparts given in
Eq. (3) and Eq. (2), we return to the example mentioned above. For the SSN feature we

have `(hGini
S ) = `(hBayes

S ) = 1
2M0, where M0

∆
=
∑

v:cv=0 pv . In general, we denote

Mk
∆
=
∑

v:cv=k pv . (8)

The quantity M0 is known as the missing mass [5, 8] and for the SSN feature, M0 ≥
(|V |−m)/|V |. Therefore, the generalization error of both hGini

S and hBayes

S would be close
to 1 for a reasonable m. On the other hand, for the second feature (having a mortgage),
it can be verified that both `(hBayes

S ) and `(hGini
S ) are likely to be small. Therefore, using

`(hGini
S ) or `(hBayes

S ) yields a correct ranking for this naive example.
We have proposed a modification of the Gini index and the misclassification error

that uses the generalization error and therefore is suitable even when m is smaller than



|V |. In practice, however, we cannot directly use the generalization error criterion since
it depends on the unknown probabilities {pv} and {qv}. To overcome this obstacle,
we must derive estimators for the generalization error that can be calculated from the
training set. In the next section we discuss the problem of estimating `(hGini

S ) and `(hBayes

S )
based on the training set. Additionally, we analyze the difference between `(hBayes

S ) and
the error of the Bayes optimal hypothesis.

3 Main Results

We start this section with a derivation of an estimator for `(hGini
S ), which can serve as a

new feature ranking criterion. We show that for most training sets, this estimator will be
close to the true value of `(hGini

S ). We then shift our attention to `(hBayes

S ). First, we prove
that among all predictors with no prior knowledge on the distribution Pr[X,Y ], the
generalization error of hBayes

S is smallest in expectation. Next, we bound the difference
between the generalization error of hBayes

S and the error of the Bayes optimal hypothesis.
Finally, we prove a concentration bound for `(hBayes

S ). Regretfully, we could not find a
good estimator for `(hBayes

S ). Nevertheless, we believe that our concentration results can
be utilized for finding such an estimator. This task is left for future research.

We propose the following estimator for the generalization error of hGini
S :

ˆ̀ ∆
=

|{v : cv = 1}|
2m

+
∑

v:cv>1

2cv

cv − 1
p̂v q̂v(1 − q̂v) . (9)

In the next section, we derive this estimator based on a conditional cross-validation
technique. We suggest to use the estimation of `(hGini

S ) given in Eq. (9) rather than the
original Gini index given in Eq. (3) as a feature ranking criterion. Let us compare these
two criteria: First, for values v that appear many times in the training set we have that

cv

cv−1 ≈ 1. If for all v ∈ V we have that the size of the training set is much larger than
1/pv , then all values in V are likely to appear many times in the training set and thus the
definitions in Eq. (9) and Eq. (3) consolidate. The two definitions differ when there are
values that appear rarely in the training set. For such values, the correction term is larger
than 1. Special consideration is given to values that appear exactly once in the training
set. For such values we estimate the generalization error to be 1

2 , which is the highest
possible error. Intuitively, since one example provides us with no information as to the
variance of the label Y given X = v, we cannot have a more accurate estimation for
the contribution of this value to the total generalization error. Furthermore, the fraction
of values that appear exactly once in the training set is an estimator for the probability
mass of those values that do not appear at all in the training set (see also [5, 8]).

We now turn to analyze the quality of the proposed estimator. We first show (Thm. 1
below) that the bias of this estimator is small. Then, in Thm. 2, we prove a concentration
bound for the estimator, which holds for any joint distribution of Pr[X,Y ] and does not
depend on the size of V . Specifically, we show that for any δ ∈ (0, 1), in a fraction of
at least 1 − δ of the training sets the error of the estimator is O( ln(m/δ)√

m
).

Theorem 1. Let S be a set of m examples sampled i.i.d. according to the probability
measure Pr[X,Y ]. Let hGini

S be the Gini hypothesis given in Eq. (5) and let `(hGini
S ) be



the generalization error of hGini
S , where ` is as defined in Eq. (4). Let ˆ̀be the estimation

of `(hGini
S ) as given in Eq. (9). Then,

∣

∣

∣E[`(hGini
S )] − E[ˆ̀]

∣

∣

∣ ≤ 1
2m , where expectation is

taken over all sets S of m examples.

The next theorem shows that for most training sets, our estimator is close to the true
generalization error of hGini

S .

Theorem 2. Under the same assumptions as in Thm. 1, let δ be an arbitrary scalar in
(0, 1). Then, with probability of at least 1 − δ over the choice of S, we have

∣

∣

∣
`(hGini

S ) − ˆ̀
∣

∣

∣
≤ O

(

ln(m/δ)
√

ln(1/δ)√
m

)

.

Based on the above theorem, ˆ̀ can be used as a filter criterion. The convergence rate
shown can be used to establish confidence intervals on the true Gini generalization error.
The proofs of Thm. 1 and Thm. 2 are given in the next section.

So far we have derived an estimator for the generalization error of the Gini hy-
pothesis and shown that it is close to the true Gini error. The Gini hypothesis has the
advantage of being highly concentrated around its mean. This is important especially
when the sample size is fairly small. However, the Gini hypothesis does not produce
the lowest generalization error in expectation. We now turn to show that the hypothesis
hBayes

S defined in Eq. (7) is optimal in this respect, but that its concentration is weaker.
These two facts are characteristic of the well known bias-variance tradeoff commonly
found in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have used the
Bayes optimal hypothesis, hBayes

∞ , that achieves the smallest possible generalization er-
ror. When the underlying distribution is unknown, the training set is used to construct
the hypothesis. Thm. 3 below shows that among all hypotheses that can be learned
from a finite training set, hBayes

S achieves the smallest generalization error in expec-
tation. More precisely, hBayes

S is optimal among all the hypotheses that are symmetric
with respect to both |V | and the label values. This symmetry requirement limits the
examined hypotheses to those that do not exploit prior knowledge on the underlying
distribution Pr[X,Y ]. Formally, let HS be the set of all hypotheses that can be writ-
ten as h(v) = fh(cv(S), c+

v (S)) where fh : N × N → [0, 1] is a function such that
fh(n1, n2) = 1 − fh(n1, n1 − n2) for all n1, n2 ∈ N. The following theorem estab-
lishes the optimality of hBayes

S and bounds the difference between the Bayes optimal error
and the error achieved by hBayes

S .

Theorem 3. Let S be a set of m examples sampled i.i.d. according to the probabil-
ity measure Pr[X,Y ]. For any hypothesis h, let `(h) be the generalization error of
h, as defined in Eq. (4). Let hBayes

S be the hypothesis given in Eq. (7) and let hBayes
∞

be the Bayes optimal hypothesis. Let HS be the set of symmetric hypotheses. Then
E[`(hBayes

S )] = minh∈HS
E[`(h)], and

E[`(hBayes

S )] − `(hBayes
∞ ) ≤ 1

2 E[M0] + 1
8 E[M1] +

1
8 E[M2] +

∑m
k=3

1√
ek

E[Mk],

where Mk is as defined in Eq. (8).



Note that the first term in the difference between E[`(hBayes

S )] and `(hBayes
∞ ) is exactly

half the expectation of the missing mass. This is expected, because we cannot improve
our prediction over the baseline error of 1

2 for values not seen in the training set, as
exemplified in the SSN example described in the previous section. Subsequent terms in
the bound can be attributed to the fact that even for values observed in the training set,
a wrong prediction might be generated if there is a small number of examples.

We have shown that hBayes

S has the smallest generalization error in expectation, but
this does not guarantee a small generalization error on a given sample. Thm. 4 below
bounds the concentration of `(hBayes

S ). This concentration along with Thm. 3 provides us
with a bound on the difference between hBayes

S and the Bayes optimal error that is true
for most samples.

Theorem 4. Under the same assumptions of Thm. 3, assume that m ≥ 8 and let δ be
an arbitrary scalar in (0, 1). Then, with probability of at least 1 − δ over the choice of
S, we have

|`(hBayes

S ) − E[`(hBayes

S )]| ≤ O

(

ln (m/δ)
√

ln(1/δ)

m1/6

)

.

The concentration bound for `(hBayes

S ) is worse than the concentration bound for
`(hGini

S ), suggesting that indeed the choice between hGini
S and hBayes

S is not trivial. To use
`(hBayes

S ) as a filter criterion, an estimator for this quantity is needed. However, at this
point we cannot provide such an estimator. We conjecture that based on Thm. 4 an es-
timator with a small bias but a weak concentration can be constructed. We leave this
task to further work. Finally, we would like to note that Antos et al. [1] have shown that
the Bayes optimal error cannot be estimated based on a finite training set. Finding an
estimator for `(hBayes

S ) would allow us to approximate the Bayes optimal error up to the
bias term quantified in Thm. 3.

4 Proofs of Main Results

In this section the results presented in the previous section are proved. Due to the lack
of space, some of the proofs are omitted and can be found in [13].

In the previous section, an estimator for the generalization error of the Gini hypoth-
esis was presented. We stated that for most training sets this estimation is reliable. In
this section, we first derive the estimator ˆ̀ given in Eq. (9) using a conditional cross-
validation technique, and then utilize this interpretation of ˆ̀to prove Thm. 1 and Thm. 2.

To derive the estimator given in Eq. (9), let us first rewrite `(hGini
S ) as the sum

∑

v `v(hGini
S ), where `v(hGini

S ) is the amount of error due to value v and is formally de-
fined as

`v(h)
∆
= Pr[X = v] Pr[h(X) 6= Y | X = v] = pv (qv (1 − h(v)) + (1 − qv)h(v)) .

We now estimate the two factors Pr[X = v] and Pr[hGini
S (X) 6= Y | X = v] indepen-

dently. Later on we multiply the two estimations. The resulting local estimator of `v(h)

is denoted ˆ̀
v and our global estimator is ˆ̀ ∆

=
∑

v
ˆ̀
v .



To estimate Pr[X = v], we use the straightforward estimator p̂v . Turning to the
estimation of Pr[hGini

S (X) 6= Y | X = v], recall that hGini
S , defined in Eq. (5), is a

probabilistic hypothesis where q̂v is the probability to return the label 1 given that the
value of X is v. Equivalently, we can think of the label that hGini

S (v) returns as being
generated based on the following process: Let S(v) be the set of those indices in the
training set in which the feature takes the value v, namely, S(v) = {i : xi = v}. Then,
to set the label hGini

S (v) we randomly choose an index i ∈ S(v) and return the label yi.
Based on this interpretation, a natural path for estimating Pr[hGini

S (X) 6= Y | X = v]
is through cross-validation: Select an i ∈ S(v) to determine hGini

S (v), and estimate the
generalization error to be the fraction of the examples whose label is different from
the label of the selected example. That is, the estimation is 1

cv−1

∑

j∈S(v):j 6=i 1yi 6=yj
.

Obviously, this procedure cannot be used if cv = 1. We handle this case separately later
on. To reduce the variance of this estimation, this process can be repeated, selecting
each single example from S(v) in turn and validating each time using the rest of the
examples in S(v). It is then possible to average over all the choices of the examples.
The resulting estimation therefore becomes

∑

i∈S(v)

1

cv





1

cv − 1

∑

j∈S(v):j 6=i

1yi 6=yj



 =
1

cv(cv − 1)

∑

i,j∈S(v):i6=j

1yi 6=yj
.

Thus, we estimate Pr[hGini
S (X) 6= Y | X = v] based on the fraction of differently-

labeled pairs of examples in S(v). Multiplying this estimator by p̂v we obtain the fol-
lowing estimator for `v(hGini

S ),

ˆ̀
v = p̂v

1

cv(cv − 1)

∑

i,j∈S(v),i6=j

1yi 6=yj
(10)

= p̂v
2c+

v (cv − c+
v )

cv(cv − 1)
= p̂v

2c2
v q̂v(1 − q̂v)

cv(cv − 1)
= p̂v · 2cv

cv − 1
q̂v(1 − q̂v).

Finally, for values v that appear only once in the training set, the above cross-validation
procedure cannot be applied, and we therefore estimate their generalization error to be
1
2 , the highest possible error. The full definition of ˆ̀v is thus:

ˆ̀
v =

{

p̂v · 1
2 cv ≤ 1

p̂v · 2cv

cv−1 q̂v(1 − q̂v) cv ≥ 2
(11)

The resulting estimator ˆ̀defined in Eq. (9) is exactly the sum
∑

v
ˆ̀
v .

Based on the above derivation of ˆ̀
v , we now turn to prove Thm. 1, in which it

is shown that the expectations of our estimator and of the true generalization error of
the Gini hypothesis are close. To do so, we first inspect each of these expectations
separately, starting with E[ ˆ̀v]. The following lemma calculates the expectation of ˆ̀

v

over those training sets with exactly k appearances of the value v.

Lemma 1. For k such that 1 < k ≤ m, E[ ˆ̀v | cv(S) = k] = k
m · 2qv(1 − qv).



Proof. If cv = k, then p̂v = k
m . Therefore, based on Eq. (10), we have

E[ˆ̀v | cv(S) = k] =
k

m

1

k(k − 1)
E
[

∑

i,j∈S(v),i6=j

1yi 6=yj
| cv(S) = k

]

. (12)

Let Z1, . . . , Zk be independent binary random variables with Pr[Zi = 1] = qv for all
i ∈ [k]. The conditional expectation on the right-hand side of Eq. (12) equals to

E[
∑

i6=j

1Zi 6=Zj
] =

∑

i6=j

E[1Zi 6=Zj
] =

∑

i6=j

2 qv (1− qv) = k(k− 1) · 2 qv (1− qv) .

Combining the above with Eq. (12) concludes the proof. ut

Based on the above lemma, we are now ready to calculate E[ ˆ̀v]. We have

E[ˆ̀v] =
∑

S

Pr[S] E[ˆ̀v] =

m
∑

k=0

∑

S:cv(S)=k

Pr[S] · E[ˆ̀v | cv(S) = k]. (13)

From the definition of ˆ̀, we have E[ˆ̀v | cv(S) = 1] = 1
2m and E[ˆ̀v | cv(S)=0] = 0.

Combining this with Lemma 1 and Eq. (13), we get

E[ˆ̀v] = Pr[cv = 1] · 1

2m
+

m
∑

k=2

Pr[cv = k] · k

m
· 2qv(1 − qv)

=
1

m
(
1

2
− 2qv(1 − qv)) Pr[cv = 1] + 2qv(1 − qv)

m
∑

k=0

Pr[cv = k] · k

m

=
1

m
(
1

2
− 2qv(1 − qv)) Pr[cv = 1] + pv · 2qv(1 − qv) , (14)

where the last equality follows from the fact that
∑m

k=0 Pr[cv = k] k
m = E[p̂v] = pv.

Having calculated the expectation of ˆ̀
v we now calculate the expectation of `v(hGini

S ).
The proof of the following lemma can be found in [13].

Lemma 2. E[`v(hGini
S )] = pv( 1

2 − 2qv(1 − qv)) Pr[cv = 0] + pv · 2qv(1 − qv).

Equipped with the expectation of ˆ̀
v given in Eq. (14) and the expectation of `v(hGini

S )
given in Lemma 2, we are now ready to prove Thm. 1.

Proof (of Thm. 1). Using the definitions of `(hGini
S ) and ˆ̀we have that

E[ˆ̀]−E[`(hGini
S )] = E[

∑

v

ˆ̀
v]−E[

∑

v

`v(hGini
S )] =

∑

v

(E[ˆ̀v]−E[`v(hGini
S )]) . (15)

Fix some v ∈ V . From Eq. (14) and Lemma 2 we have

E[ˆ̀v] − E[`v(hGini
S )] = (

1

2
− 2qv(1 − qv))(

1

m
Pr[cv = 1] − pv Pr[cv = 0]) . (16)



Also, it is easy to see that 1
m Pr[cv = 1] − pv Pr[cv = 0] = pv

m Pr[cv = 1]. Plugging

this into Eq. (16) we obtain: E[ ˆ̀v] − E[`v(hGini
S )] = ( 1

2 − 2qv(1 − qv)) 1
mpv Pr[cv = 1].

For any qv we have that 0 ≤ 2qv(1 − qv) ≤ 1
2 , which implies the following inequality:

0 ≤ E[ˆ̀v] − E[`v(hGini
S )] ≤ 1

2m pv Pr[cv = 1] ≤ pv

2m . Summing this over v and using

Eq. (15) we conclude that 0 ≤ E[ ˆ̀] − E[`(hGini
S )] ≤

∑

v
pv

2m = 1
2m . ut

We now turn to prove Thm. 2 in which we argue that with high confidence on the
choice of S, the value of our estimator is close to the actual generalization error of hGini

S .
To do this, we show that both our estimator and the true generalization error of hGini

S are
concentrated around their mean. Then, based on Thm. 1, we can easily prove Thm. 2.

We start by showing that our estimator ˆ̀is concentrated around its expectation. The
concentration of ˆ̀follows relatively easily by application of McDiarmid’s Theorem [9].
To simplify our notation, we will henceforth use the shorthand ∀δS π[S, δ] to indicate
that the predicate π[S, δ] holds with probability of at least 1 − δ over the choice of S.

Lemma 3. Let δ ∈ (0, 1). Then, ∀δS
∣

∣

∣

ˆ̀− E[ˆ̀]
∣

∣

∣
≤ 12

√

ln( 2
δ )

2m .

The proof of this lemma can be found in [13]. We now turn to show a concentration
bound on the true generalization error `(hGini

S ). Here we cannot directly use McDiarmid’s
Theorem since the bounded differences property does not hold for `(hGini

S ). To see this,
suppose that V = {0, 1}, p0 = p1 = 1

2 , q0 = 0.99 and q1 = 1. Assume in addition
that |S(0)| = 1; namely, there is only a single example in S for which the feature takes
the value 0, an unlikely but possible scenario. In this case, if the single example in S(0)
is labeled 1, then `(hGini

S ) = 0.01, but if this example is labeled 0, then `(hGini
S ) = 0.99.

That is, a change of a single example might have a dramatic effect on `(hGini
S ). This

problem can intuitively be attributed to the fact that S is an atypical sample of the
underlying distribution {pv}. To circumvent this obstacle, we define a new hypothesis
hδ

S that depends both on the sample S and on the desired confidence parameter δ. This
hypothesis would ‘compensate’ for atypical samples. For hδ

S we show that the following
properties hold:

∀δS `(hδ
S) = `(hGini

S ) (17)
∣

∣E[`(hδ
S)] − E[`(hGini

S )]
∣

∣ ≤ 1/m (18)

∀δS
∣

∣`(hδ
S) − E[`(hδ

S)]
∣

∣ ≤ O
(

ln(m/δ)/
√

m
)

. (19)

Eq. (17) states that with high confidence, the generalization error of the new hypothesis
hδ

S is exactly equal to the error of hGini
S . Eq. (18) states that the expectations of the gener-

alization errors of the two hypotheses are close. Finally, Eq. (19) states that the general-
ization error of hδ

S is concentrated around its expectation. Combining these three prop-
erties and using the triangle inequality, we will be able to bound |`(hGini

S ) − E[`(hGini
S )]|

with high confidence.
We construct a hypothesis hδ

S that satisfies the three requirements given in Eqs. (17-
19) based on Lemma 4 below. This lemma states that except for values with small
probabilities, we can assure that with high confidence, cv(S) grows with pv. This means
that as long as pv is not too small, a change of a single example in cv(S) does not change



hδ
S(v) too much. On the other hand, if pv is small then the value v has little effect on the

error to begin with. Therefore, regardless of the probability pv , the error `(hδ
S) cannot

be changed too much by a single change of example in S. This would allow us to prove
a concentration bound on `(hδ

S) using McDiardmid’s theorem. Let us first introduce
a new notation. Given a confidence parameter δ > 0, a probability p ∈ [0, 1], and a
sample size m, we define

ρ(δ, p,m)
∆
= mp −

√

mp · 3 ln(2/δ). (20)

Lemma 4 below states that cv(S) is likely to be at least ρ(δ/m, pv,m) for all values
with non-negligible probabilities.

Lemma 4. Let δ ∈ (0, 1) be a confidence parameter. Then,

∀δS ∀v ∈ V : pv ≥ 6 ln( 2m
δ )

m ⇒ cv(S) ≥ ρ(δ/m, pv,m) > 1.

The proof is based on lemma 44 from [4] and can be found in [13]. Based on the bound
given in the above lemma, we define hδ

S to be

hδ
S(v)

∆
=







hGini
S (v) pv <

6 ln( 2m
δ )

m or cv ≥ ρ( δ
m , pv,m)

c+
v +qv(dρ( δ

m ,pv,m)e−cv)

dρ( δ
m ,pv,m)e otherwise

That is, hδ
S(v) is equal to hGini

S (v) if either pv is negligible or if there are enough repre-
sentatives of v in the sample. If this is not the case, then S is not a typical sample and
thus we “force” it to be typical by adding dρ( δ

m , pv,m)e − cv ‘pseudo-examples’ to S
with the value v and with labels that are distributed according to qv . Therefore, except
for values with negligible probability pv , the hypothesis hδ

S(v) is determined by at least
dρ( δ

m , pv,m)e ‘examples’. As a direct result of this construction we obtain that a single
example from S has a small effect on the value of `(hδ

S).
We can now show that each of the properties in (17-19) hold. From the definition of

hδ
S and Lemma 4 it is clear that Eq. (17) holds. Lemma 5 and Lemma 6 below state that

Eq. (18) and Eq. (19) hold. Lemma 7 that follows bounds the concentration of `(hGini
S )

using the three properties. The proofs of these three lemmas can be found in [13].

Lemma 5.
∣

∣E[`(hGini
S )] − E[`(hδ

S)]
∣

∣ ≤ 1
m .

Lemma 6. ∀δ > 0 ∀δS
∣

∣`(hδ
S) − E[`(hδ

S)]
∣

∣ ≤ 12 ln( 2m
δ )

√

ln( 2
δ )

√
2m

.

Lemma 7. For all δ > 0 we have ∀δS |`(hGini
S ) − E[`(hGini

S )]| ≤ 1
m+

12 ln( 4m
δ )

√

ln( 4
δ )

√
2m

.

Thm. 2 states that with high confidence, the estimator ˆ̀is close to the true generalization
error of the Gini hypothesis, `(hGini

S ). We conclude the analysis of the Gini estimator by
proving this theorem.



Proof (of Thm. 2). Substituting δ
2 for δ and applying a union bound, we have that all

three properties stated in Lemma 7, Thm. 1 and Lemma 3 hold with probability of at
least 1 − δ. We therefore conclude that with probability of at least 1 − δ,
∣

∣

∣`(hGini
S ) − ˆ̀

∣

∣

∣ ≤ |`(hGini
S ) − E[`(hGini

S )]| +
∣

∣

∣E[`(hGini
S )] − E[ˆ̀]

∣

∣

∣+
∣

∣

∣E[ˆ̀] − ˆ̀
∣

∣

∣

≤ 2

m
+

12 ln
(

8m
δ

)

√

ln
(

8
δ

)

√
2m

+ 12

√

ln( 4
δ )

2m
= O





ln(m
δ )
√

ln( 1
δ )

√
m



 .

ut
Due to lack of space, we omit the proof of Thm. 3 and refer the reader to [13].

To prove Thm. 4, we first introduce some additional notation. Let δ ∈ (0, 1) be a
confidence parameter. Let Vδ

1 , V δ
2 , and V δ

3 be three sets that partition V according
to the values of the probabilities pv:

V δ
1 = {v | pv ≤ 6 ln (2m/δ) m− 2

3 }
V δ

2 = {v | 6 ln (2m/δ) m− 2
3 < pv ≤ 6 ln (2m/δ) m− 1

2 }
V δ

3 = {v | 6 ln (2m/δ) m− 1
2 < pv}

We denote the contribution of each set to `(hBayes

S ) by `δ
i (S)

∆
=
∑

v∈V δ
i

`v(hBayes

S ). Addi-
tionally, given two samples S and S ′, let κ(S, S′) be the predicate that gets the value
“true” if for all v ∈ V we have cv(S) = cv(S′).

Using the above definitions and the triangle inequality, we can bound
|`(hBayes

S ) − E[`(hBayes

S )]| as follows:

|`(hBayes

S ) − E[`(hBayes

S )]| = |
3
∑

i=1

(

`δ
i (S) − E[`δ

i ]
)

| ≤ A1 + A2 + A3 + A4 , where

A1 =
∣

∣ `δ
1(S) − E[`δ

1]
∣

∣

A2 =
∣

∣ `δ
2(S) − E[`δ

2(S
′) | κ(S, S′)]

∣

∣ (21)

A3 =
∣

∣ `δ
3(S) − E[`δ

3(S
′) | κ(S, S′)]

∣

∣

A4 =
∣

∣ E[`δ
2(S

′) + `δ
3(S

′) | κ(S, S′)] − E[`δ
2 + `δ

3]
∣

∣ .

To prove Thm. 4 we bound each of the above terms as follows: First, to bound A1

(Lemma 8 below), we use the fact that for each v ∈ V δ
1 the probability pv is small.

Thus, a single change of an example in S has a moderate effect on the error and we can
use McDiarmid’s theorem. To bound A2 (Lemma 9 below) we note that the expectation
is taken with respect to those samples S ′ in which cv(S′) = cv(S) for all v. Therefore,
the variables `v(hBayes

S ) are independent. We show in addition that each of these variables
is bounded in [0, pv] and thus we can apply Hoeffding’s bound. Next, to bound A3

(Lemma 12 below), we use the fact that in a typical sample, cv(S) is large for all v ∈
V δ

3 . Thus, we bound the difference between `v(hBayes

S ) and E[`v(S′) | κ(S, S′)] for each
value in V δ

3 separately. Then, we apply a union bound to show that for all of these
values the above difference is small. Finally, we use the same technique to bound A4

(Lemma 13 below). The proof of the first lemma, stated below, is omitted.



Lemma 8. ∀δ > 0 ∀δS |`δ
1(S) − E[`δ

1]| ≤
12 ln( 2m

δ )
m1/6

√

1
2 ln

(

2
δ

)

.

Lemma 9. ∀δ > 0 ∀δS |`δ
2(S) − E[`δ

2(S
′) | κ(S, S′)]| ≤

√
3 ln(2m/δ) ln(2/δ)

m1/4 .

Proof. Since the expectation is taken over samples S ′ for which cv(S′) = cv(S), for
each v ∈ V we get that `δ

2(S) =
∑

v∈V δ
2

`v(hBayes

S ) is a sum of independent random

variables and the expectation of this sum is E[`δ
2(S

′) | κ(S, S′)]. In addition, it is trivial
to show that `v(hBayes

S ) ∈ [0, pv] for all v. Thus, by Hoeffding’s inequality,

Pr[|`δ
2(S) − E[`δ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e

−2t2/
∑

v∈V δ
2

p2
v . (22)

Using the fact that for v in V δ
2 , pv ≤ 6 ln (2m/δ) /

√
m we obtain that

∑

v∈V δ
2

p2
v ≤ max

v∈V δ
2

{pv} ·
∑

v∈V δ
2

pv ≤ 6 ln (2m/δ) /
√

m .

Plugging the above into Eq. (22) we get that

Pr[|`δ
2(S) − E[`δ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e−2t2

√
m/(6 ln(2m/δ)) .

Setting the right-hand side to δ and solving for t, we conclude our proof. ut

So far, we have bounded the terms A1 and A2. In both of these cases, we utilized
the fact that pv is small for all v ∈ V δ

1 ∪ V δ
2 . We now turn to bound the term A3. In

this case, the probabilities pv are no longer negligible. Therefore, we use a different
technique whereby we analyze the probability of hBayes

S (v) to be ‘wrong’, i.e. to return
the less probable label. Since pv is no longer small, we expect cv to be relatively large.
The following key lemma bounds the probability of hBayes

S (v) to be wrong given that cv is
large. The resulting bound depends on the difference between qv and 1/2 and becomes
vacuous whenever qv is close to 1/2. On the other hand, if qv is close to 1/2, the price
we pay for a wrong prediction is small. In the second part of this lemma, we balance
these two terms and end up with a bound that does not depend on qv .

Lemma 10. Let Z̄ = (Z1, . . . , Zk) be a sequence of i.i.d. binary random variables
where Pr[Zi = 1] = q for all i, and assume that q ≥ 1

2 . Then,

Pr[
∑

i

Zi ≤ k/2] ≤ e−2(q− 1
2
)2 k and (2q − 1) Pr[

∑

i

Zi ≤ k/2] ≤ 1√
e k

.

Proof. The first inequality is a direct application of Hoeffding’s inequality. Multiply-
ing both sides by 2q − 1 we get that the left-hand side of the second inequality is
bounded above by (2q−1)e−2(q− 1

2
)2k. We now let x = q− 1

2 and utilize the inequality

2xe−2x2k ≤ 1/
√

e k, which holds for all x ≥ 0 and k > 0. ut

Based on the above lemma, we now bound A3. First, we show that if cv(S) is large then
`v(S) is likely to be close to the expectation of `v over samples S′ in which cv(S) =
cv(S′). This is equivalent to the claim of the following lemma.



Lemma 11. Under the same assumptions of Lemma 10. Let f(Z̄) be the function

f(Z̄) =











(1 − q) if
∑

i Zi > k/2

q if
∑

i Zi < k/2
1
2 if

∑

i Zi = k/2

.

Then, for all δ ∈ (0, e−1/2] we have ∀δZ̄ |f(Z̄) − E[f ]| ≤
√

2 ln(1/δ)
ek .

Proof. To simplify our notation, denote α = Pr[
∑

i Zi > k/2], β = Pr[
∑

i Zi < k/2],
and γ = Pr[

∑

i Zi = k/2]. A straightforward calculation shows that

|f(Z̄) − E[f(Z̄)]| =











(2q − 1) (β + γ/2) with probability α

(2q − 1) (α + γ/2) with probability β

(2q − 1) (α − β) with probability γ

.

Using the fact that (α, β, γ) is in the probability simplex we immediately obtain that
|f(z̄)−E[f(Z̄)]| ≤ (2 q−1). If 2 q−1 ≤

√

2 ln (1/δ) /k then the bound in the lemma
clearly holds. Therefore, from now on we assume that 2 q−1 >

√

2 ln (1/δ) /k. In this
case, using the first inequality of Lemma 10 we have that β + γ ≤ e−2(q− 1

2
)2k ≤ δ.

Therefore, 1 − δ < α, and so with probability of at least 1 − δ we have that

|f(Z̄) − E[f(Z̄)]| = (2q − 1) (β + γ/2) ≤ (2q − 1) (β + γ) .

Applying the second inequality of Lemma 10 on the right-hand side of the above in-
equality we get that |f(Z̄) − E[f(Z̄)]| ≤

√

1/ek ≤
√

2 ln(1/δ)/ek, where the last
inequality holds since we assume that δ ≤ e−1/2. ut
Equipped with the above lemma we are now ready to bound A3.

Lemma 12. If m ≥ 4 then ∀(2δ)S |`δ
3(S) − E[`δ

3(S
′) | κ(S, S′)]| ≤ 1/m

1
4 .

Proof. Recall that `δ
3(S) =

∑

v∈V δ
3

`v(S). m ≥ 4, hence δ/m ≤ 1/m ≤ e−1/2.

Choose v ∈ V δ
3 and without loss of generality assume that qv ≥ 1/2. Thus, from

Lemma 11 and the definition of v̀(S) we get that with probability of at least 1 − δ/m

over the choice of the labels in S(v): |`v(S) − E[`v(S′)|κ(S, S′)]| ≤ pv

√

2 ln(m/δ)
e·cv(S) .

By the definition of Vδ
3 and Lemma 4, ∀δS, ∀v ∈ V δ

3 , cv(S) ≥ ρ(δ/m, pv,m). Us-
ing the fact that ρ is monotonically increasing with respect to pv it is possible to show
(see [13]) that ρ(δ/m, pv,m) ≥ 2 ln (m/δ) m1/2 for all v ∈ V δ

3 for m ≥ 4. There-
fore, |`v(S) − E[`v(S′)|κ(S, S′)]| ≤ pv m−1/4. Using a union bound, we obtain
that ∀(2δ)S ∀v ∈ V δ

3 |`v(S) − E[`v(S′)|κ(S, S′)]| ≤ pv m−1/4 . Summing over
v ∈ V δ

3 , using the triangle inequality, and using the fact that
∑

v pv = 1 we conclude
the proof. ut

Lastly, we bound A4 in the next lemma. See [13] for the proof.

Lemma 13. For m ≥ 8,

∀δS |E[`δ
2(S

′) + `δ
3(S

′) | κ(S, S′)] − E[`δ
2(S

′) + `δ
3(S

′)]| ≤ 1
m + 1

m1/6 .



5 Discussion

In this paper, a new approach for feature ranking is proposed, based on a direct esti-
mation of the true generalization error of predictors that are deduced from the training
set. We focused on two specific predictors, namely hGini

S and hBayes

S . An estimator for the
generalization error of hGini

S was proposed and its convergence was analyzed. We showed
that the expected error of hBayes

S is optimal and that its concentration is weaker than that
of hGini

S . Constructing an estimator for hBayes

S is left for future work.
There are various extensions for this work that we did not pursue. First, it is interest-

ing to analyze the number of categorical features one can rank while avoiding overfit-
ting. This is especially important when ranking groups of categorical features. Second,
our view of a ranking criterion as an estimator for the generalization error of a predictor
can be used for constructing new ranking criteria by defining other predictors. Finally,
understanding the relationship between this view and information theoretic measures is
also an interesting future direction.
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