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Abstract— We describe and analyze a discriminative algorithm and overfitting effects due to the large number of parame-
for learning to align an audio signal with a given sequence ters. In this paper we propose an alternative approach for
of events that tag the signal. We demonstrate the applicability learning alignment functions that builds upon recent work

of our method for the tasks of speech-to-phoneme alignment discriminati ised | . The advant of di
(“forced alignment”) and music-to-score alignment. In the first on discriminativeé supervised learning. The advaniage '

alignment task, the events that tag the speech signal are phones  Criminative learning algorithms stems from the fact that th
while in the music alignment task, the events are musical notes. objective function used during the learning phase is tightl
Our goal is to learn an alignment function whose input is an coupled with the decision task one needs to perform. In
audio signal along with its accompanying event sequence and its addition, there is both theoretical and empirical evidetha

output is a timing sequence representing the actual start time discriminative | . 1qorith likelv t toarfo
of each event in the audio signal. Generalizing the notion of YISCriMINative learning aigorthms are likely 10 outpe

separation with a margin used in support vector machines (SVM) generative models for the same task (cf. [6], [7]). One of the
for binary classification, we cast the learning task as the problem best known discriminative learning algorithms is the suppo
of finding a vector in an abstract inner-product space. To do so, vector machine (SVM), which has been successfully applied
we devise a mapping of the input signal and the event sequence;, speech processing applications [8]-[10]. The clasSsavt

along with any possible timing sequence into an abstract vector . . ) . . .
space. Each possible timing sequence therefore corresponds toalgorlthm is designed for simple decision tasks such aspina

an instance vector and the predicted timing sequence is the one Classification and regression. Hence, its exploitationigma
whose projection onto the learned prediction vector is maximal. processing systems so far has also been restricted to simple
We set the prediction vector to be the solution of a minimization decision tasks such as phoneme classification and musie genr
problem with a large set of constraints. Each constraint enforces classification. The alignment problem is more involvedcein

a gap between the projection of the correct target timing sequece dt dict f t timi ther th
and the projection of an alternative, incorrect, timing sequence We need 1o predict a sequence of event imings rather than a

onto the vector. Though the number of constraints is very large, Single number. The main challenge of this paper is to extend
we describe a simple iterative algorithm for efficiently learning the notion of discriminative learning to the complex task of
the vector and analyze the formal properties of the resulting alignment.

learning algorithm. We report experimental results comparing Our proposed method is based on recent advances in kernel

the proposed algorithm to previous studies on speech-to-phonem hi d i . |assifi f 11
and music-to-score alignment, which use hidden Markov models machines and large margin classifiers for sequences [11]-

(HMM). The results obtained in our experiments using the [13], which in turn build on the pioneering work of Vapnik
discriminative alignment algorithm are comparable to results of and colleagues [6], [7]. The alignment function we devise

state-of-the-art systems. is based on mapping the audio signal and the sequence of
events along with the target event timing sequence into an
EDICS Category: SPE-GASR, AUD-SYST abstract vector-space. Building on techniques used fonileg
SVMs, our alignment function distills to a classifier in this
|. INTRODUCTION vector-space which is aimed at separating correct timing

In this paper we describe a new approach for learnirsgquences from incorrect ones. We describe a simple iterati
to align an audio signal with a given sequence of evenadgorithm for learning the alignment function and discuss i
associated with the signal. We focus on two applications fdrmal properties. The specific form of the iterative altfom
the above task: speech-to-phoneme alignment and musicdtems from recent work on online algorithms [14] and our
score alignment. In speech-to-phoneme alignment (“forcedalysis is based on a recent framework for analyzing online
alignment”) task the events are phonemes and the goal isatgorithms [15].
predict the start time of each phoneme in the spoken utteranc This paper is organized as follows. In Sec. Il we formally
In music-to-score alignment we are given a sequence iofroduce the general alignment problem and our two appli-
musical notes (extracted from a musical score) along withcations, namely, speech-to-phoneme alignment and masic-t
recording of the musical piece and the goal is to predict tlseore alignment. In Sec. Ill we describe a discriminative su
start time of each note in the recorded audio signal. pervised learning approach for learning an alignment fonct

Most of the previous work on speech-to-phoneme aritbm a training set of examples and specifically, in Sec. IV we
music-to-score alignment focused on a generative model agscribe a large margin approach for the alignment problem.
the audio signal using Hidden Markov Models (HMM). Se®ur specific learning algorithm is described and analyzed in
for example [1]-[5] and the references therein. Despitér th&Sec. V. The evaluation of the alignment function and therlear
popularity, HMM-based approaches have several drawbadkg algorithm are both based on an optimization problem for
such as convergence of the EM procedure to local maximédnich we give an efficient dynamic programming procedure



in Sec. VI. Next, in Sec. VIl and Sec. VIII we describe thdo be a positive integer(, € N) as it measures the (theoretical)
applicability of our method to speech-to-phoneme alignmestart time of the note according to the musical score. Gtearl
and to music-to-score alignment. We present experimenthére are different ways to perform the same musical score.
results in which we compare our method to alternative stafEherefore, the actual (or observed) start times of the notes
of-the-art approaches. Finally, concluding remarks ardréu in the perceived audio signal are very likely to be different
directions are discussed in Sec. IX. from the symbolic start times. Our goal in the music score
alignment task is to find the actual start time of each note in
Il. THE ALIGNMENT PROBLEM the acoustic signal.

In the alignment problem, we are provided with a signal I1l. DISCRIMINATIVE SUPERVISEDLEARNING
which is accompanied with a discrete sequence of symbols, this section we describe a discriminative supervised

or events and the goal is to align each of the events @ ing approach for learning an alignment functjbrirom
the tagging sequence with its corresponding position in theyaining set of examples. Each example in the training set
signal. In speech-to-phoneme alignment, the events datsign composed of an acoustic signal, a sequence of events,

the phoneme uttered in the signal. In music-to-score al&nMm .4 the true event timing sequenge,Our goal is to find an

the events are the notes in the score accompanying the siggglnment function,f, which performs well on the training set
The alignment problem is the task of finding the start time fs el as on unseen examples. First, we define a quantitative
each tagged event in the input signal. . assessment of alignment functions. L&t ¢,7) be an input

We represent a signal as a sequence of acoustic featgf@mple and letf be an alignment function. We denote by
vectorsx = (x1,...,x7), Wwherex; is ad-dimensional vector. (7, f(%, €)) the cost of predicting the timing sequenti, )
For brevity we denote the domain of the feature vectors yhere the true timing sequencegisFormally, : N* x N* —
X C R?. Naturally, the length of the acoustic signal varieg is 4 function that gets two timing sequences (of the same
from one signal to another and thisis not fixed. We denote |ength) and returns a scalar which is the cost of predicting
by A* the set of all finite-length sequences ow&t The he second timing sequence where the true timing sequence

sequence of events is denOteq by= (e1,. - yex), Where s the first. We assume that(y, ') > 0 for any two timing
e, € Eforalll< _k < I_(_andE is the domain of the events-sequence@‘,y’ and thaty(7,5) = 0. An example for a cost
We assume thak is a finite set and we denote @y the set ¢,nction is

of all finite-length sequences ovér. In summary, each input 1
is a pair(x, &) wherex is a sequence representing the acoustic Y, y)=— [{i:|yi —vi| > €} - Q)
signal ande is a sequence of events that occur in the signal. 191

The alignment of the signat with the events is a sequence In words, the above cost is the average number of times the
of start-timesy = (y1,...,yx) Wherey, € {1,...,T} is the absolute difference between the predicted timing sequande
start-time of the event; in the acoustic signal. Our goal is tothe true timing sequence is greater thanRecall that our
learn analignment function, denotedf, which takes as input goal is to find an alignment functiorf that attains small

the pair(%,¢) and returns an event timing sequeniceThat COSt on unseen examples. Formally, dgtoe any (unknown)
is, f is a function fromX* x E* to the set of finite-length distribution over the domain of the examples; x E* x N*.

sequences over the integek:,. The goal of the learning process is to minimize the risk of

In this paper we focus on two applications of the abovésing the alignment function, defined as the expected cost of
general setting: speech-to-phoneme alignment and masic-f on the examples, where the expectation is taken with respect
score alignment. In both problems, the acoustic repreienta t0 the distribution?,

X is produ_c_ed by dividing the aC(_)ustic _signal_into frames of risk(f) = Eg.e.p~e V(0 f(X,€))]

several milliseconds, and extractingdadimensional feature

vector from each frame. In the speech-to-phoneme alignmd@ do so, we assume that the examples of our training set
problem the feature vector extracted from each frame is thke identically and independently distributed (i.i.d.y@maling
Me|_frequency Cepstrum coefficients (MFCC) a|0ng with [heﬁo the distributionQ. Note that we Only observe the training
first and second derivatives. The sequence of events i@mples but we do not know the distributioh The training
sequence of phoneme symbols frdipwhereE is the set of Set of examples is used as a restricted window through which
48 American English phoneme symbols as proposed by [18]€ estimate the quality of alignment functions according to

We assume that the acoustic signal is an utterance of the distribution of unseen examples in the real wotld,In
phoneme sequenee= (ey,...,ex) and our goal is to find the next sections we show how to use the training set in order

the start time of each phoneme in the utterance. to find an alignment functionf, which achieves a small cost

In the music-to-score alignment problem, each acousf® the training set, and which achieves a small cost on unseen
feature vector, in the sequence is produced by calculating €xamples with high probability as well.
the short time Fourier transform of thith frame of the signal.
E is a set of “note-on” events. Formally, each “note-on” V. A LARGEMARGIN APPROACH FORALIGNMENT
event is a paire, = (pk, sg). The first element of the pair, In this section we describe a large margin approach for
pr € P ={0,1,...,127} is the note’s pitch value (codedlearning an alignment function. Recall that a supervisadle
using the MIDI standard). The second elementis assumed ing algorithm for alignment receives as input a training set
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Fig. 1. Anillustration of the constraints in Eq. (3). Leftpaojection which attains large margin. Middle: a projectishich attains a smaller margin. Right:
an incorrect projection.

S = {(X1,€1,71);---,(Xm,&m,Tm)} and returns an align- SVM algorithm for binary classification, our approach for
ment functionf. To facilitate an efficient algorithm we confinechoosing the weight vectow is based on the idea of large-
ourselves to a restricted class of alignment functionscitpe margin separation. However, in our case, timing sequences
ically, we assume the existence of a predefined set of base not merely correct or incorrect. Instead, the cost fanct
alignment feature functions¢,}7_,. Each base alignment~(y,y’) is used for assessing the quality of sequences. There-
feature is a function of the form; : X* x E* xN* — R . That fore, we do not aim at separating correct timing sequences
is, each base alignment feature gets the acoustic repa¢isent from incorrect ones but rather try to rank the sequences
%, and the sequence of events,together with a candidate according to their quality. Theoretically, our approacin te
timing sequencey, and returns a scalar which, intuitively,described as a two-step procedure: first, we construct awect
represents the confidence in the suggested timing sequei¢g;, e;,7') in the vector spac®™ based on each instance
y. The construction of those base alignment features is task, &;) in the training sefS and each possible timing sequence
dependent. As an example, let us shortly describe a single Second, we find a vectar € R™, such that the projection
base alignment feature for the speech-to-phoneme alignmehvectors ontow ranks the vectors constructed in the first
task. This base alignment feature sums a cepstral distastep above according to their quality. In Fig. 1 we illustrat
between the frames,,;, andx,,_, overi = 1,2,...,|y]. three possible timing sequences for the same ifiRut) and
For eachi, if y; is indeed the correct start time of phoneine their projection ontow. Ideally, for each instancex;, e;) and
we expect the distance betweep, ., andx,,_; to be large. for each possible suggested timing sequeyiceve would like
On the other hand, if; does not reflect a true alignment pointhe following constraint to hold
then the distance is likely to be small. Naturally, it is raiv
to assume that the above base alignment feature can be used w - ¢(x;,e:,%;)—w - d(xi,e,75) > (U, 7) . (3)
alone for finding the correct timing sequence. However, as ou
experiments show, an appropriate combination of a few bapgat is, w should rank the correct timing sequengeabove
a}Iignment features enables us to accurately predict theaor any other possible timing sequengeby at leasty(7;, 7). We
timing sequence. refer to the differencew - ¢(x;,€;,7;) — w - d(X;,€;,7) as
We denote byp(x, €, y) the vector inR™ whosejth element  the margin of w with respect to the sequengé Note that if
is ¢;(x, €,y). The alignment functions we use are of the fornthe prediction ofw is incorrect then the margin is negative.
f(%,€) = argmax w - ¢(X,&,7) @) The constraints in Eq. (3_’) ?mply that the margin wf with
g respect to any possible timing sequengeshould be at least
wherew € R” is a vector of importance weights that wethe cost of predicting/’ instead of the true timing sequence
need to learn. In wordsf returns a suggestion for a timing¥:- An illustration of a vectorw with sufficient margin (i.e.,
sequence by maximizing a weighted sum of the confidengatisfies the constraints in Eq. (3)) is given on the left sifle
scores returned by each base alignment functipnSince f Fig. 1. The plot on the middle of Fig. 1 illustrates a vector
is parameterized by we use the notatioffi, for an alignment w, which ranks the different timing sequences correctly, but
function f, which is defined as in Eq. (2). Note that thevithout the required margin. The plot on the right side of
number of possible timing sequencgsis exponentially large. Fig. 1 illustrates a vectow which does not rank the different
Nevertheless, as we show later, under mild conditions on th@ing sequences correctly. Naturally,vf ranks the different
form of the base alignment function§p; }, the optimization possible timing sequences correctly, the margin requingsne
problem in Eq. (2) can be efficiently calculated using @iven in Eq. (3) can be satisfied by simply multiplying by
dynamic programming procedure. a large scalar. The SVM algorithm solves this problem by
We now describe a large margin approach for learfinimizing ||w||?> subject to the constraints given in Eq. (3).
ing the weight vectorw, which defines an alignment In practice, it might be the case that the constraints given
function as in Eq. (2), from a training setS = in EqQ. (3) can not be satisfied. To overcome this obstacle,
{(X1,€1,91)s- -+, (Xm, Em,Tm)} Of examples. Similar to the we follow the soft SVM approach and define the following



hinge-loss function for alignment, o
o INPUT: training setS = {(X;, &, 9i)}"™ ;
Uows (R, 8,50)) = validation setS, ; parameteiC'
H%Q/,X [’Y(g’ugl) —-—w- (d)(ihézugl)_¢(il7éwg/))]+ ) v

INITIALIZE: w1 =0

(4)
, Fori=1,...
where [a], = max{0,a}. The hinge loss measures the T
maximal violation of any of the constraints given in Eq. (3). Set: g} = argmax (Y, )~
The soft SVM approach for alignment is to choose the vector YW (d(Xi. &, 7)) —D(Xs, 8, 7))

w*, which minimizes the following optimization problem

1 m
w' = argmin S|l + C Y wi (%i.65)) . (9) Set: ¢; = max{1(7. 7)) - w - A, 0}

= _ Update: w iy = w; +min{l;/||Ag,|2, C} A,
where the parameté&r serves as a complexity-accuracy trade- . ] .
off parameter (see [7]). It is easy to verify that the optiatian OuTpPUT. The weight vector which achieves the
problem in Eq. (5) is equivalent to the following quadratic lowest average cost on the validation sgt

optimization problem, _ _ _
Fig. 2. The alignment algorithm.

m

1
min  —||lw[?+C» & st _ ) )
w,£>0 2 ; ’ differences. First, we replace the exponential number of co

o ) 2. 5 G (% & i) > (T )£ straints from Eq. (6) with a single constraint. This conistra
VLT, W (9 & 5) ~ (X8, §) 278 7) 4 ’(6) is based on the timing sequengedefined in Eq. (7). Second,
we replaced the ternjw||? in the objective function of the
where eacty; is a non-negative slack variable that indicateg\ym with the term lw — w; 2. Intuitively, we would like
the loss of theith example. to minimize the loss ofw on the current example, i.e., the
Solving the quadratic optimization problem given in Eq. (63ack variable¢, while remaining as close as possible to our
is complicated since the number of constraints is expoakinti previous weight vectow;. It can be shown (see [14]) that the

large. Several authors suggested specific algorithms for na@|ution to the above optimization problem is
nipulating the exponential number of constraints [11],]{13

However, these methods are problematic when the size of . Uwis (%0, €, 5i) A
the dataset is very large since several passes over the data” ‘™'~ ¢ |Ag,||? ’ i
are required. In the next section, we propose an alternative

method, which visits each example only once. whereAe; = ¢(Xi, e, 9i) — d(Xi, €, 7;).-
The above iterative procedure gives us a sequence-ofl
V. AN ITERATIVE ALGORITHM weight vectorswy, ..., w,,41. In the sequel we prove that the

. . . . . . average performance of this sequence of vectors is comparab
In this section we describe an iterative algorithm foy, o performance of the SVM solution. Formally, tet be

!earn!ng Tm z_alrllgng]ent function, parameterlz?d waur the optimum of the SVM problem given in Eq. (6). Then, we
iterative algorithm first constructs a sequence of weightars o o\ i 1he sequel that setting = 1/./m gives,
Wi,..., Wy, Wyp1. The first weight vector is set to be the

zero vectorw; = 0. On iteration; of the algorithm, we utilize 13 1
the ith example of the training set along with the previous Zé(wi; (Xi, €, 7)) < - ;3(“’*; (Xi,€i,9i))

weight vectorw;, for defining the next weight vectow; i=1 9)
as follows. Lety; be the timing sequence, which corresponds n 1 [w*[|2 + =
to the highest violated margin constraint of tite example Vm 2

according tow;, that is, ) ) ) )
That is, the average loss of our iterative procedure is upper
/!

y; = argmax (¥, ¥;)—w-(Q(Xi, €, 7:) —P(Xi, €, 7)) - (7) bounded by the average loss of the SVM solution plus a
Y factor that decays to zero. However, while each prediction o

In Sec. VI we provide an algorithm that efficiently calcukateour iterative procedure is calculated using a differentglvei

the above optimization problem using dynamic programmingector, our learning algorithm is required to outpusiagle

We set the next weight vectox;; to be the minimizer of weight vector, which defines the output alignment function.

the following optimization problem To overcome this obstacle, we calculate the average cost of
1 ) each of the weight vectow, ..., w,,+1 on a validation set,
min Slw — w7+ C¢ S.t. denotedsS,,, and choose the one achieving the lowest average
weR? >0 2 (8) . . . -
(%, ) — W (e T > V(T — € cost. We show in the sequel that with high probability, the
w €Y o li) = VWi Ys ’ weight vector which achieves the lowest cost on the valbdati

This optimization problem can be thought of as a relaxeskt also generalizes well. A pseudo-code of our algorithm is
version of the SVM optimization problem with two majorgiven in Fig. 2.



Analysis specific choice of the functiony is problem dependent. One

We now analyze our alignment algorithm from Fig. 2. OuP0SSible choice is to simply sef(y,y’) to belif y # 5"
first theorem shows that the average loss of our alignmétd 0 otherwise. This choice might lead to poor results in
algorithm is comparable to the average loss of the SVA#e alignment setting since it is likely that any functign
solution for the alignment problem defined in Eq. (6). will not fIer. Fhe exact correct alignment. For.example, the

Theorem 1: Let S = {(X1,€1,71),- - -, (Xm, m,Jm)} be @ above d'eflnltlon fory ywll give the worst possible risk1
set of training examples and assume that foriahd 3’ we 0 a@n allgnm_ent fun(_:tlon that pre_dlcts correctly_ 99% of the
have that||é(x;, ;. 7)|| < 1/2. Let w* be the optimum of alignment points, while such an alignment function is ulyual

the SVM problem given in Eq. (6). Let, ..., w,, be the considered to perform very well.
sequence of weight vectors obtained by the algorithm in Fig.
given the training seb. Then, VI. EFFICIENT EVALUATION OF THE ALIGNMENT
1 m 1 m FUNCTION
Ezf(wi; (xi €, 9i) < — D W (%i, 86, 3i)) So far we have put aside the problem of evaluation time
i=1 i=1 (10)  of the functionf given in Eq. (2). Recall that calculating
+ 1 [w* || + 1 C . requires solving the following optimization problem,
Cm 2
In particular, ifC' = 1/,/m then, fx.e) = arggnaxw (% €9)
1 & o 1 & . Similarly, we need to find an efficient way for solving the
EZE(W“(X“%%)) = o ZE(W (%4, €1, 31) maximization problem given in Eq. (7). A direct search for
=t 1 = 1 (11)  the maximizer is not feasible since the number of possible
+ — <||W*||2 + 3) timing sequenceyy, is exponential in the number of events.

The proof of this theorem is g;sed on Thm. 2 in [15] and gort(l;.?ately, atsh Wet shtow b?'ng' ?y |mp0t3|fngta f?w ”."'d
given in the appendix. conditions on the structure of the alignment feature fumsti

The next theorem tells us that the output alignment functicﬁ"‘nnOI on the cost functiony, both problems can be solved in

. . L lynomial time.
of our algorithm is likely to have good generalization pre epo . . . .
ties 9 y 9 9 prop We start with the problem of calculating the prediction give

Theorem 2: Under the same conditions of Thm. 1. Assum| Eq. (2). For simplicity, we assume that each base feature
that the training setS and the validation sef5, are both unction, ¢;, can be decomposed as follows. Lgf be any

H * * 3 H
sampled i.i.d. from a distributio. Denote bym,, the size of function from & x E* x N° into the reals, which can be

the validation set. Assume in addition thgty, 7') < 1 for all computed in a constant time. That ig; receives as input

y andy’. Let w be the output weight vector of the algorithmthe signalx, the sequence of events,and three time points.

in Fig. 2 and letf,, be the corresponding alignment functionﬁdfj't'otnha”y’ L’)"e use t:‘et,convem'% =0 a?r?ytléHl}r:cTT
Then, with probability of at least — 6 we have that, sing the above notation, we assume that eaghcan be
decomposed to be

risk(fw) < — > UW*(%i,€,9:)) + ]
m ; ¢j(ivéa g) = ng(iv év yiflvyiay’H*l) . (13)
i=1

[w*|2+4++/2In(2/0)  /2In(2m/5)
vm + N ) The base alignment functions we derive in later sections
(12) for speech-to-phoneme and music-to-score alignment can be
The proof of this theorem is based on Proposition 1 in [1tlecomposed as in Eq. (13).
and is also given in the appendix. We now describe an efficient algorithm for calculating the
As mentioned before, the learning algorithm we presehest timing sequence assuming tiiatcan be decomposed as
in this paper share similarities with the SVM method fom Eq. (13). Similar algorithms can be constructed for angeba
structured output prediction [11], [13]. Yet, the weighttt@ feature functions that can be described as a dynamic Bayesia
resulted by our method is not identical to the one obtained bgtwork ( [11], [18]). Given:i € {1,...,|e|} and two time
directly solving the SVM optimization problem. We wouldéik indicest, ¢’ € {1,...,T}, denote byD(i,t,t") the score for
to note in passing that our generalization bound from Thm.tBe prefix of the events sequente . ., i, assuming that their
is comparable to generalization bounds derived for the SVattual start times arg,, . .., y;, wherey; = ¢’ and assuming
method (see for example [11]). The major advantage of otlmat y;,; = ¢. This variable can be computed efficiently in
method over directly solving the SVM problem is its simglici a similar fashion to the forward variables calculated by the
and efficiency. Viterbi procedure in HMMs (see for instance [19]). The pseud
To conclude this section, we would like to emphasize theode for computingD (i, t,t') recursively is shown in Fig. 3.
role of the functiony in our model. Recall that the risk of The best sequence of actual start timgs,is obtained from
an alignment function is defined to be the expected value thie algorithm by saving the intermediate values that mazemi
(g, f(x,€)). The constraints we imposed in Eq. (6) wereach expression in the recursion step. The complexity of the
constructed so that the risk will be small. Naturally, thalgorithm isO(|e| |x|®). However, in practice, we can use the



o usually required at least? iterations which results in a total
INPUT:  audio signalx, sequence of events ; complexity of the orderO(m? |e| |x| L?). The complexity
weight vectorw ; maximal length of an event of the algorithm presented in [13] depends on the choice of
several parameters. For reasonable choice of these paramet
INTIALIZE:: V(1 < ¢ < L), D(0,£,0) =0 the total complexity is also of the ord€(m? |e| |x| L?).
RECURSION
Fori=1,...,]e| VIl. SPEECHTO-PHONEME ALIGNMENT
Fort=1,...,|x| In this section we present the implementation details of
, our learning approach for the task of speech-to-phoneme
Fort'=t—1L,....t—1 alignment. Recall that our construction is based on a set of
D(i,t,t') = max D(i—1,t t")+w- (X, et" ¢t base alignment function:{gbj}y:l, which maps an acoustic-
YoLsti<t phonetic representation of a speech utterance as well as a
TERMINATION: D* = max D(|e|,T,t') suggested phoneme start time sequence into an abstramt-vect
¢ space. All of our base alignment functions are decomposable

as in Eq. (13) and therefore it suffices to describe the fansti

r{z/zj}. We start the section by introducing a specific set of
base functions, which is highly adequate for the speech-to-
phoneme alignment problem. Next, we report experimental

assumption that the maximal length of an event is boundé@sults comparing our algorithm to alternative statehef-art
t —t' < L. This assumption reduces the complexity of th@pproaches.
algorithm to beO(Je| |x| L?).
Solving the maximization problem given in Eg. @) can.bg‘. Base alignment functions
performed in a similar manner as we now briefly describe.

Assume thaty(7,7’) can be decomposed as follows, We utilize seven different base alignment functioms =
7). These base functions are used for defining our alignment

o, ) , function f(x,e) as in Eq. (2).
1@.7) = ZV(yi’yi) ’ Our first four base functions aim at capturing transitions

) =l . between phonemes. These base functions are based on the
where 5 is any computable function. For example, for th@jstance between frames of the acoustical signal at twes side
definition of y given in Eq. (1) we can sef(y;, y;) 10 be zero 4 phoneme boundaries as suggested by a phoneme start time
if |y; — yi| < e and otherwisey(yi,y;) = 1/]y|- A dynamic  sequencej. The distance measure we employ, denoted by
programming procedure for calculating Eq. (7) can be oBtéin; i5 the Euclidean distance between feature vectors. Our
from Fig. 3 by replacing the recursion definition bX(i, ¢, t') underlying assumption is that if two frames, andx,, are

Fig. 3. An efficient procedure for evaluating the alignment functio
given in Eqg. (2).

17|

to derived from the same phoneme then the distaf{cg, x;)
D(i,t,t') = max D(i—1,t t")+ should be smaller than if the two frames are derived from
tlfLSt”<tl . . .
A o different phonemes. Formally, our firdt base functions are
Y(Wiv1,t) + w-p(x, 6,171, t) (~14) defined as

To conclude this section we discuss the global complexity 8 (% € Yi15 Yis Yir) = d(Xyi—j5 Xy, 45), J € {1,2,3,45

our proposed method. In the training phase, our algorithm pe (15)

formsm iterations, one iteration per each training example. At ¥ 1S the correct timing sequence then distances between
each iteration the algorithm evaluates the alignment fanct fames across the phoneme change points are likely to be

once, updates the alignment function, if needed, and elmiua{,arg_e' In contrast, an incorrect phoneme start time se@guenc
the new alignment function on a validation set of size. 1S likely to compare frames from the same phoneme, often

Each evaluation of the alignment function takes an order Eﬁsult?ng small distances. Note that 'Fhe first four basetfans
O(é| x| L?) operations. Therefore the total complexity of c,upescrlbed above only use the start time offiephoneme and
method become®(m m, |¢ [%| L?). In practice, however, d0€s not use the values gf_; andy;1.

we can evaluate the updated alignment function only for the The fifth base function we use is based on the frame-
last 50 iterations or so, which reduces the global compjexifVisé phoneme classifier described in [20]. Formally, forheac
of the algorithm to®(m |e| || L?). In all of our experiments, phoneme everd € P and framex € X, there is a confidence,

evaluating the alignment function only for the last 50 itemas  d€noted g.(x), that the phoneme: is pronounced in the
was found empirically to give sufficient results. Finallyewframex- The resulting base function measures the cumulative

compare the complexity of our method to the complexity gonfidence of the complete speech signal given the phoneme
other algorithms which directly solve the SVM optimizatiors€duence and their start-times,

problem given in Eq. (6). The algorithm given in [11] is based yit1—1

on the_SMO algorith_m for solying SVM probl_ems._WhiIe t_here Vs (X, 8, Yio1, Yir Yig1) = Z e, (x¢) - (16)

is no direct complexity analysis for this algorithm, in ptiae it Py



TABLE |
PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIESIVEN
A PREDEFINED TOLERANCE ON THETIMIT CORPUS

The fifth base function use both the start time of the
phoneme and thé + 1)th phoneme but ignoreg;_.

Our next base function scores timing sequences based on
phoneme durations. Unlike the previous base functions, the
sixth base function is oblivious to the speech signal itdelf
merely examines the length of each phoneme, as suggested
7, compared to the typical length required to pronounce this
phoneme. Formally,

t<10ms ¢t<20ms t<30ms t<40ms

IMIT core test-set
I:Xscrim. Alignment 79.7 92.1 96.2 98.1
Brugnaraet al. [1] 75.3 88.9 94.4 97.1

Hosom [2] 92.57
'(/)6 (ia e, Yi—1,Yi, yi-‘rl) = IOgN(yi+1 — Yis ﬂei 76%) ) (17) TIMIT entire test-set
) . ) . ) Discrim. Alignment 80.0 92.3 96.4 98.2
where V' is a Normal probability density function with mean  gygnaraet al. 1] 746 88.8 94.1 96.8

1. and standard deviatioh.. In our experiments, we estimated

i1 and g, from the entire TIMIT training set, excluding SAl

and SA2 utterances. . . . ,
Our last base function exploits assumptions on the speaki e level of accuracy is obtamed_when using merely the first

rate of a speaker. Intuitively, people usually speak in amat 5] l_Jtterances (r_ther than the entire 3093 utterances that are

steady rate and therefore a timing sequence in which spe@gﬁ”ablg for tramlng).' . )

rate is changed abruptly is probably incorrect. Formadiyjil. Our alignment function is based on the weight vestothat

be the average length required to pronouncecthephoneme. de_termines the_linear c_ombination of base alignr_n_ent fqnsti
We denote by, the relative speech rate; = (yi.1 — i) /jic. It is therefore interesting to observe the specific weights

That is,; is the ratio between the actual length of phoneme 91Ves to each of the base alignment functions after theitrgin

as suggested byto its average length. The relative speech raf1ase- Since the training algorithm depends on the order of
presumably changes slowly over time. In practice the spgakiexamples in the t_ra|n|ng set, we ran _th_e algorithm on several

rate ratios often differ from speaker to speaker and within'g"dom permutations of the same training set and average the
given utterance. We measure the local change in the speaKifigHting weight vector. The resulting vector was found éo b

A, 2 1 1 =
rate as(r; — r;—1)” and we define the base functign as the w = (0.17788,0.0093, —2.82 x 10,

local change in the speaking rate, 5 (19)
) 0.0087,0.9622,1.41 x 107°,0.15815)
Vr(X,8,Yi-1,Yi, Yiv1) = (s —ric1)” . (18) o
We also calculated the standard deviation of each element

Note thaty; relies on all three start-times it receives as agf w. The standard deviation was found to be almodor

iNpUt, yi—1, Yi, Yit1- all the elements of the weight vector, indicating that our
training algorithm is rather stable and the resulting weigh
B. Experiments vector does not depend on the order of examples in the

To validate the effectiveness of the proposed approa[{ﬁi”i”g,set' It is alsq ap_parent.that the weight of the fifth
we performed experiments with the TIMIT corpus. We ﬁrsﬁase: ahgnmem function is (_jomlnant. To remind the .reader,
divided the training portion of TIMIT (excluding the SA1 andN€ fifth base aI|'g.nment functhn cprresponds to the frarrsew
SA2 utterances) into three disjoint parts containing 5 1phoneme classifier. The domination of this featurt_a callsafor
and 3093 utterances, respectively. The first part of thaitrgi comparison between the performance of each_smgle feature
set was used for learning the functions (Eq. (16)), which to the performance of our method that combined together
defines the base functions. Those functions were Iearneda” the features. In Table Il we report the performance of

by the algorithm described in [20] using the MFCS+AA each of the single base alignment features. We again see
acoustic features [21] and a Gaussian kerael( 6.24 and that the fifth base alignment function is most effective. The

C = 5.0). The second set of 100 utterances formed tpecuracy of this single feature is inferior to the accuraogur
validation set needed for our alignment algorithm as dbedri c0MPined method roughly by 3%. When using an alternative

in Sec. V. Finally, we ran our iterative alignment algoritom Sngle base alignment function, we obtain rather poor tesul
the remaining utterances in the training set. The value iaf The advantage of our method is that it combines the features

the definition ofy was set to be 1 (i.e., 10 ms). together to obtain the best performing alignment function.

We evaluated the learned alignment functions on both
the core test set and the entire test set of TIMIT. We VIII.
compare our results to the results reported by Brugrmara
al. [1] and the results obtained by Hosom [2]. The results In this section we present the implementation details of our
are summarized in Table I. For each tolerance vatue learning approach for the task of music-to-score alignment
{10 ms, 20 ms 30 ms 40 ms}, we counted the number of pre-We start the section by introducing a specific set of base
dictions whose distance to the true boundary |y; — vi|, is alignment functions which is highly adequate for the museic-
less tharr. As can be seen in the table our discriminative largecore alignment problem. Next, we report experimentalltgsu
margin algorithm is comparable to the best results reparted comparing our algorithm to an alternative generative metho
TIMIT. Furthermore, we found out in our experiments that thior score alignment.

M USIC-TO-SCORE ALIGNMENT



TABLE I TABLE IlI
PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIES FOR  SUMMARY OF THE LOO LOSS(IN MS) FOR DIFFERENT ALGORITHMS FOR

EACH ELEMENT OF THE VECTORW. MUSIC-TO-SCORE ALIGNMENT.
t<10ms ¢<20ms t<30ms t<40ms GHMM-1 GHMM-3 GHMM-5 GHMM-7  Discrim.

w1 7.6 9.9 12.5 15.1 1 10.0 188.9 49.2 69.7 8.9

wa 8.3 11.8 15.2 18.7 2 15.3 159.7 31.2 20.7 9.1
ws 8.2 123 159 192 3 225 48.1 29.4 37.4 17.1
w61 s om0 s S T A

77.0 88.8 93.6 95.5 : ‘ ‘ : '
s 126 102 6.2 331 6 12.8 46.9 26.7 235 14.0

we ' ' ' ' 7 336.4 75.8 30.4 43.3 9.9
wr 12.2 18.3 24.9 31.3 8 11.9 24.9 15.8 171 114
w 79.7 92.1 96.2 98.1 9 11473 11206 51.6 12927  20.6

10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 12.4

A. Base alignment functions 12 13.4 14.5 13.8 28.1 9.6
mean 1000.1 998.1 30.3 1106.4 14.4

We utilize ten different base alignment functions=€ 10). std 3159 3078.3 14.1 3564.1 9.0
Recall that each note-on event in the music-to-score akgnm median 15.8 54.2 28.5 25.8 10.7

problem is a paie = (p, s), wherep is the pitch of the note

and s is the (theoretical) start time of the note. Our first nine

base alignment functions ignore the valuesoénd thus, for be the ratio between thih interval, according tgj, to the

these features); only depends ox, p, andy. Intuitively, the interval according tos. We also refer tor; as the relative

first nine base alignment functions measure the confiderate ttempo. The sequence of relative tempo values is presumably

a pitch valuep; starts at time indey; of the signal. constant in time, since andj represent two performances of
We now describe the specific form of each of théhesame musical piece. However, in practice the tempo ratios

above base functions, starting withy;. The function often differ from performance to performance and within a

1 (X, € ¥i-1,¥:,Yi+1) Measures the energy of the acoustigiven performance. The local template, measures the local

signal at the framex,, and the frequency corresponding tahange in the tempo,

the pitchp;. Formally, letF,,, denotes a band-pass filter with - 9

a center frequency at the first harmony of the pitgtand cut- ¥10(X: € Yi-1,Yi, Yir1) = (ri = 1ri-1)

off frequencies ofl /4 tone below and above;. Concretely, The relative tempo of Eq. (20) is ill-defined whenever, —s;
the lower cut-off frequency offy, is 440”'3#112 is zero (or relatively small). Since we deal with polyphonic
and the upper cut-off frequency isl0 - 2"~ Hz, where musical pieces, very short intervals between notes arerrath
p; € P=1{0,1,...,127} is the pitch value (coded using therelevant. Therefore, we define the tempaas in Eq. (20) but
MIDI standard) and440-2p"'17257 is the frequency value ifif =  confine ourselves to indicesfor which s;,; — s; is greater
associated with the codewond. Similarly, 1, and ¢ are than a predefined value (in our experiments we set = 60
the output energies of band-pass filters centered at thegec®s). Thus, ifs;;1 —s; <7 0rs; —s;—; < 7, then we set)1g
and third pitch harmonics, respectively. All the filters werto be zero.

implemented using the fast Fourier transform.

The above three local templatéﬂ;j};?:l measure energy B, Experiments

values for each timeg;. Since we are interested in identifying We now describe experiments with our alignment algorithm

notgs onset qmes, it is reasonable t.o compare energy Val!I‘Jc()arsthe task of score alignment of polyphonic piano musical
at time y; with energy values at timg; — 1. However,

. . N L ieces. Specifically, we compare our alignment algorithm to
the (_d_|screte) f|_rst order derivative of the energy 1 _h|gh|§ generative method which is based on Generalized Hidden
sensitive to noise. Instead, we calculate the derivativies

: : arkov Model (GHMM). The details of the GHMM approach
a fitted second-order polynomial of each of the above Iocg n be found in [22]. This GHMM method is closely re-

features. (This method is also a common technique in speg . . .
: k raphical model roaches for re alignm fir
processing systems [19].) Therefore, the next six local terﬁg d to graphical model approaches for score alignmest,

plates, {¢;}}_,, measure the first and second derivatives g{oposed by Raphael [23], [24]. We would like to note in

the energy of the output signal of the three filters around t assing that more advanced algorithms for real-time score
. gy outp 9 ﬁgnment have been suggested (see for example [25] and
first three harmonics of;.

. . . . . the references therein). In our experiments we focus on the
While the first nine base alignment functions measUigasic comparison between the discriminative and generativ
Hﬁf&roaohes for score alignment. Recall that our alignment
algorithm uses a training set of examples for deducing an
alignment function. We downloadet2 musical pieces from
http://ww. pi ano- m di . de/ np3. php where sound
and MIDI were both recorded. Here the sound serves as the

of the signal, the last alignment feature captures the aiityl
betweens and . Formally, let

i = Yivr1 — Yi (20)
Si+1 — 54



acoustical signak and the MIDI is the actual start timgsWe learning algorithm is simple to implement and entertains-co
also downloaded other MIDI files of the same musical piecegrgence guarantees. Moreover, we have shown both theoret-
from a variety of other web-sites and used these MIDI fildsal and empirical evidence demonstrating the generadizat

for creating the sequence of eveatsThe complete dataset weabilities of our method. Indeed, the experiments reporbeva
used is available fromhttp://ww. cs. huji.ac.il/ suggest that the discriminative training requires fewaintng

~shai s/ al i gnment . examples than an HMM-based speech-to-phoneme alignment
In the score alignment problem we report the averagwocedure. We are currently investigating generalizatioh
alignment error, that is, we set the framework to more demanding tasks in which a sequence

B constituents should also be predicted, as is the case irept®n

., 1 , recognition and music transcription.

Y@, 7) = 1 D v — il
9] =
Since this dataset is rather small, we ran our iterativerélgn APPENDIX
given in Fig. 2 on the training set several times and choopgoof of Thm. 1  Our proof relies on Thm. 2 in [15]. We
the alignment function which minimizes the error on théirst construct a sequence of binary classification examples
training set. We used the leave-one-out (LOO) cross-vitida (Ag¢,,+1),...,(A¢,,,+1). For all i and for allw € R”,
procedure for evaluating the test results. In the LOO sédiep tdefine the following classification hinge-loss,
algorithms are trained on all the training examples except o
which is used as a test set. The error between the predicted an t(w) = max{y(y;,y;) —w-Ag¢;, 0} .
true start times is computed for each of the algorithms. Th(?1
GHMM approach uses a Gaussian Mixture Model (GMM) fol
modeling some of the probabilities. The number of Gaussialis© ™
used by the GMM needs to be determined. We used the values m 1 m
of 1, 3, 5 and7 as the number of Gaussians and we denote by > ul(wi) < 5|IWH2 +Y w) . (2D)
GHMM-n the resulting generative model withGaussians. In i=1 i=1
addition, we used the EM algorithm to train the GMMs. Th?vhere,
EM algorithm converges to a local maximum, rather than to
the global maximum. A common solution to this problem is to (a) = 1 ( . ( R ))
o S a) = min{a,C} ( a min{a, C}

use a random partition of the data to initialize the EM. In all C 2

our experiments with the GMM we used 15 random partitio set + denote the optimum of the alianment problem aiven
of the data to initialize the EM and chose the one that Iearé\? EV (6). The boSnd of Eq. (21) %olds fo? a angd
to the highest likelihood. The LOO results for each of the 1. d- ' 9 W

. ) .
musical pieces are summarized in Table lll. As seen from tf&ne particular for the optimal solutiorw”. Furthermore, the

e c i H c * *. (. 5. 7.
table, our discriminative learning algorithm outperforrmi finition of £7 implies thatfi(w*) < £(w™; (;, &, 7)) and
X . . 6(w;) = l(wy; (x4, €;,7;)) for all i. Using the latter two facts
the variants of the GHMM method in all of the experlmentsli% Eq. (21) gives that
Moreover, in all but two of the experiments the error of the q: 9 '

discriminative algorithm is less th&@ ms, which is the length
of an acoustic frame in our experiments, thus it is the best " u(¢(wi: (%i, &, 7)) <
accuracy one can hope for this time resolution. It can be seen—=;

m. 2 in [15] implies that the following bound holds for all

that the variance of the LOO loss obtained by the generative 1 s m L

algorithms is rather high. This can be attributed to the fact o=+ D> oUW (%i6,5:) - (22)
that the EM algorithm converges to a local maximum which =1

depends on initialization of the parameters. By definition, the functiony is bounded below by a linear

function, that is, for any: > 0,

IX. CONCLUSION 1
o . _ pla) za—5C .
We presented a discriminative algorithm for learning an 2

alignment function 'from a training set of examples. Th@Js_ing the lower bound with the argumefiw;; (%;,é;, 7))
proposed approach is based on recent advances in largenmaggiy summing over we obtain,

classifiers. The contribution of our algorithm is twofoldrsg,

we showed how the tasks of speech-to-phoneme alignment & I
music-to-score alignment can be cast as large margin prgawi; (%3, €, 51))
lems. Second, we presented a simple and effective aIgoritﬁ?n1

for solving the induced large margin problem. Our learninGombining the above inequality with Eq. (22) and rearraggin
algorithm is more efficient than similar algorithms for larg terms gives the bound stated in the theorem and concludes our
margin sequence prediction, such as [11], [13], and is thpgoof. m

more adequate for speech and audio applications, in whieloof of Thm. 2  Denote by fi,..., f, the alignment

we typically have a large number of training examples. Ourediction functions corresponding to the weight vectors

m

1 _ -
— §Cm < Z;L(ﬁ(wi; (Xi, €, 9i))) -
i=1
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wy, ..., w,, that are found by the alignment algorithm. Propo-[9]
sition 1 in [17] implies that with probability of at least— §;
the following bound holds,

% Z risk(fi) < %Zv(ﬂu fi(Xi,€)) +
i—1 i=1

[10]
2Tn(1/5,)
Jm

(11]

[12]
By definition, the hinge-los€(w;; (x;, é;,9;)) bounds from
above the lossy(y;, fi(Xi,é;)). Combining this fact with [13
Thm. 1 we obtain that,

m

1 o . 1 e
EZnsk(f,») < EZE(W ; (Xi,€i,791)) [14]
=1 i=1 L (23)
[w*[*+3+v2In (1/61) [15]

vm
The left-hand side of the above inequality upper boundgss
risk(f,), whereb = arg min; risk(f;). Therefore, among the
finite set of alignment functionsF = {fi,..., fm}, there [17]
exists at least one alignment function (for instance thetion
f») whose true risk is bounded above by the right hand side
of Eqg. (23). Recall that the output of our algorithm is th&'®
alignment functionf,, € F, which minimizes the average
cost over the validation set,. Applying Hoeffding inequality [1°]
together with the union bound ovéf we conclude that with 5,
probability of at leastl — 0-,

risk(fw) < risk(fs) + M 7

m?)

[21]
[22]
where to remind the readen, = |S,|. We have therefore
shown that with probability of at lea$t- 6, —d- the following
inequality holds,

(23]

m

() S DU ) +

[w*[?+34+/2In(1/41) N V2In(m/5y)
vm Vi

Settingd; = 02 = §/2 concludes our prool

[24]

[25]
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