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A Large Margin Algorithm for Speech-to-Phoneme
and Music-to-Score Alignment
Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, Dan Chazan

Abstract— We describe and analyze a discriminative algorithm
for learning to align an audio signal with a given sequence
of events that tag the signal. We demonstrate the applicability
of our method for the tasks of speech-to-phoneme alignment
(“forced alignment”) and music-to-score alignment. In the first
alignment task, the events that tag the speech signal are phonemes
while in the music alignment task, the events are musical notes.
Our goal is to learn an alignment function whose input is an
audio signal along with its accompanying event sequence and its
output is a timing sequence representing the actual start time
of each event in the audio signal. Generalizing the notion of
separation with a margin used in support vector machines (SVM)
for binary classification, we cast the learning task as the problem
of finding a vector in an abstract inner-product space. To do so,
we devise a mapping of the input signal and the event sequence
along with any possible timing sequence into an abstract vector
space. Each possible timing sequence therefore corresponds to
an instance vector and the predicted timing sequence is the one
whose projection onto the learned prediction vector is maximal.
We set the prediction vector to be the solution of a minimization
problem with a large set of constraints. Each constraint enforces
a gap between the projection of the correct target timing sequence
and the projection of an alternative, incorrect, timing sequence
onto the vector. Though the number of constraints is very large,
we describe a simple iterative algorithm for efficiently learning
the vector and analyze the formal properties of the resulting
learning algorithm. We report experimental results comparing
the proposed algorithm to previous studies on speech-to-phoneme
and music-to-score alignment, which use hidden Markov models
(HMM). The results obtained in our experiments using the
discriminative alignment algorithm are comparable to results of
state-of-the-art systems.

EDICS Category: SPE-GASR, AUD-SYST

I. I NTRODUCTION

In this paper we describe a new approach for learning
to align an audio signal with a given sequence of events
associated with the signal. We focus on two applications of
the above task: speech-to-phoneme alignment and music-to-
score alignment. In speech-to-phoneme alignment (“forced
alignment”) task the events are phonemes and the goal is to
predict the start time of each phoneme in the spoken utterance.
In music-to-score alignment we are given a sequence of
musical notes (extracted from a musical score) along with a
recording of the musical piece and the goal is to predict the
start time of each note in the recorded audio signal.

Most of the previous work on speech-to-phoneme and
music-to-score alignment focused on a generative model of
the audio signal using Hidden Markov Models (HMM). See
for example [1]–[5] and the references therein. Despite their
popularity, HMM-based approaches have several drawbacks
such as convergence of the EM procedure to local maxima

and overfitting effects due to the large number of parame-
ters. In this paper we propose an alternative approach for
learning alignment functions that builds upon recent work
on discriminative supervised learning. The advantage of dis-
criminative learning algorithms stems from the fact that the
objective function used during the learning phase is tightly
coupled with the decision task one needs to perform. In
addition, there is both theoretical and empirical evidencethat
discriminative learning algorithms are likely to outperform
generative models for the same task (cf. [6], [7]). One of the
best known discriminative learning algorithms is the support
vector machine (SVM), which has been successfully applied
in speech processing applications [8]–[10]. The classicalSVM
algorithm is designed for simple decision tasks such as binary
classification and regression. Hence, its exploitation in signal
processing systems so far has also been restricted to simple
decision tasks such as phoneme classification and music genre
classification. The alignment problem is more involved, since
we need to predict a sequence of event timings rather than a
single number. The main challenge of this paper is to extend
the notion of discriminative learning to the complex task of
alignment.

Our proposed method is based on recent advances in kernel
machines and large margin classifiers for sequences [11]–
[13], which in turn build on the pioneering work of Vapnik
and colleagues [6], [7]. The alignment function we devise
is based on mapping the audio signal and the sequence of
events along with the target event timing sequence into an
abstract vector-space. Building on techniques used for learning
SVMs, our alignment function distills to a classifier in this
vector-space which is aimed at separating correct timing
sequences from incorrect ones. We describe a simple iterative
algorithm for learning the alignment function and discuss its
formal properties. The specific form of the iterative algorithm
stems from recent work on online algorithms [14] and our
analysis is based on a recent framework for analyzing online
algorithms [15].

This paper is organized as follows. In Sec. II we formally
introduce the general alignment problem and our two appli-
cations, namely, speech-to-phoneme alignment and music-to-
score alignment. In Sec. III we describe a discriminative su-
pervised learning approach for learning an alignment function
from a training set of examples and specifically, in Sec. IV we
describe a large margin approach for the alignment problem.
Our specific learning algorithm is described and analyzed in
Sec. V. The evaluation of the alignment function and the learn-
ing algorithm are both based on an optimization problem for
which we give an efficient dynamic programming procedure
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in Sec. VI. Next, in Sec. VII and Sec. VIII we describe the
applicability of our method to speech-to-phoneme alignment
and to music-to-score alignment. We present experimental
results in which we compare our method to alternative state-
of-the-art approaches. Finally, concluding remarks and future
directions are discussed in Sec. IX.

II. T HE ALIGNMENT PROBLEM

In the alignment problem, we are provided with a signal
which is accompanied with a discrete sequence of symbols
or events and the goal is to align each of the events in
the tagging sequence with its corresponding position in the
signal. In speech-to-phoneme alignment, the events designate
the phoneme uttered in the signal. In music-to-score alignment,
the events are the notes in the score accompanying the signal.
The alignment problem is the task of finding the start time of
each tagged event in the input signal.

We represent a signal as a sequence of acoustic feature
vectorsx̄ = (x1, . . . ,xT ), wherext is ad-dimensional vector.
For brevity we denote the domain of the feature vectors by
X ⊂ R

d. Naturally, the length of the acoustic signal varies
from one signal to another and thusT is not fixed. We denote
by X ∗ the set of all finite-length sequences overX . The
sequence of events is denoted byē = (e1, . . . , eK), where
ek ∈ E for all 1 ≤ k ≤ K andE is the domain of the events.
We assume thatE is a finite set and we denote byE∗ the set
of all finite-length sequences overE. In summary, each input
is a pair(x̄, ē) wherex̄ is a sequence representing the acoustic
signal andē is a sequence of events that occur in the signal.
The alignment of the signal̄x with the events̄e is a sequence
of start-timesȳ = (y1, . . . , yK) whereyk ∈ {1, . . . , T} is the
start-time of the eventek in the acoustic signal. Our goal is to
learn analignment function, denotedf , which takes as input
the pair(x̄, ē) and returns an event timing sequenceȳ. That
is, f is a function fromX ∗ × E∗ to the set of finite-length
sequences over the integers,N

∗.
In this paper we focus on two applications of the above

general setting: speech-to-phoneme alignment and music-to-
score alignment. In both problems, the acoustic representation
x̄ is produced by dividing the acoustic signal into frames of
several milliseconds, and extracting ad dimensional feature
vector from each frame. In the speech-to-phoneme alignment
problem the feature vector extracted from each frame is the
Mel-frequency cepstrum coefficients (MFCC) along with their
first and second derivatives. The sequence of events is a
sequence of phoneme symbols fromE, whereE is the set of
48 American English phoneme symbols as proposed by [16].
We assume that the acoustic signal is an utterance of the
phoneme sequencēe = (e1, . . . , eK) and our goal is to find
the start time of each phoneme in the utterance.

In the music-to-score alignment problem, each acoustic
feature vectorxt in the sequencēx is produced by calculating
the short time Fourier transform of thetth frame of the signal.
E is a set of “note-on” events. Formally, each “note-on”
event is a pairek = (pk, sk). The first element of the pair,
pk ∈ P = {0, 1, . . . , 127} is the note’s pitch value (coded
using the MIDI standard). The second element,s, is assumed

to be a positive integer (sk ∈ N) as it measures the (theoretical)
start time of the note according to the musical score. Clearly,
there are different ways to perform the same musical score.
Therefore, the actual (or observed) start times of the notes
in the perceived audio signal are very likely to be different
from the symbolic start times. Our goal in the music score
alignment task is to find the actual start time of each note in
the acoustic signal.

III. D ISCRIMINATIVE SUPERVISEDLEARNING

In this section we describe a discriminative supervised
learning approach for learning an alignment functionf from
a training set of examples. Each example in the training set
is composed of an acoustic signal,x̄, a sequence of events,ē,
and the true event timing sequence,ȳ. Our goal is to find an
alignment function,f , which performs well on the training set
as well as on unseen examples. First, we define a quantitative
assessment of alignment functions. Let(x̄, ē, ȳ) be an input
example and letf be an alignment function. We denote by
γ(ȳ, f(x̄, ē)) the cost of predicting the timing sequencef(x̄, ē)
where the true timing sequence isȳ. Formally,γ : N

∗×N
∗ →

R is a function that gets two timing sequences (of the same
length) and returns a scalar which is the cost of predicting
the second timing sequence where the true timing sequence
is the first. We assume thatγ(ȳ, ȳ′) ≥ 0 for any two timing
sequences̄y, ȳ′ and thatγ(ȳ, ȳ) = 0. An example for a cost
function is

γ(ȳ, ȳ′) =
1

|ȳ| |{i : |yi − y′i| > ǫ}| . (1)

In words, the above cost is the average number of times the
absolute difference between the predicted timing sequenceand
the true timing sequence is greater thanǫ. Recall that our
goal is to find an alignment functionf that attains small
cost on unseen examples. Formally, letQ be any (unknown)
distribution over the domain of the examples,X ∗ ×E∗ ×N

⋆.
The goal of the learning process is to minimize the risk of
using the alignment function, defined as the expected cost of
f on the examples, where the expectation is taken with respect
to the distributionQ,

risk(f) = E(x̄,ē,ȳ)∼Q [γ(ȳ, f(x̄, ē))] .

To do so, we assume that the examples of our training set
are identically and independently distributed (i.i.d.) according
to the distributionQ. Note that we only observe the training
examples but we do not know the distributionQ. The training
set of examples is used as a restricted window through which
we estimate the quality of alignment functions according to
the distribution of unseen examples in the real world,Q. In
the next sections we show how to use the training set in order
to find an alignment function,f , which achieves a small cost
on the training set, and which achieves a small cost on unseen
examples with high probability as well.

IV. A L ARGE MARGIN APPROACH FORALIGNMENT

In this section we describe a large margin approach for
learning an alignment function. Recall that a supervised learn-
ing algorithm for alignment receives as input a training set
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′)

φ(x̄, ē, ȳ
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Fig. 1. An illustration of the constraints in Eq. (3). Left: aprojection which attains large margin. Middle: a projectionwhich attains a smaller margin. Right:
an incorrect projection.

S = {(x̄1, ē1, ȳ1), . . . , (x̄m, ēm, ȳm)} and returns an align-
ment functionf . To facilitate an efficient algorithm we confine
ourselves to a restricted class of alignment functions. Specif-
ically, we assume the existence of a predefined set of base
alignment feature functions,{φj}n

j=1. Each base alignment
feature is a function of the formφj : X ∗×E∗×N

∗ → R . That
is, each base alignment feature gets the acoustic representation,
x̄, and the sequence of events,ē, together with a candidate
timing sequence,̄y, and returns a scalar which, intuitively,
represents the confidence in the suggested timing sequence
ȳ. The construction of those base alignment features is task
dependent. As an example, let us shortly describe a single
base alignment feature for the speech-to-phoneme alignment
task. This base alignment feature sums a cepstral distance
between the framesxyi+1 and xyi−1 over i = 1, 2, . . . , |ȳ|.
For eachi, if yi is indeed the correct start time of phonemei,
we expect the distance betweenxyi+1 andxyi−1 to be large.
On the other hand, ifyi does not reflect a true alignment point
then the distance is likely to be small. Naturally, it is naive
to assume that the above base alignment feature can be used
alone for finding the correct timing sequence. However, as our
experiments show, an appropriate combination of a few base
alignment features enables us to accurately predict the correct
timing sequence.

We denote byφ(x̄, ē, ȳ) the vector inRn whosejth element
is φj(x̄, ē, ȳ). The alignment functions we use are of the form

f(x̄, ē) = argmax
ȳ

w · φ(x̄, ē, ȳ) , (2)

where w ∈ R
n is a vector of importance weights that we

need to learn. In words,f returns a suggestion for a timing
sequence by maximizing a weighted sum of the confidence
scores returned by each base alignment functionφj . Sincef
is parameterized byw we use the notationfw for an alignment
function f , which is defined as in Eq. (2). Note that the
number of possible timing sequences,ȳ, is exponentially large.
Nevertheless, as we show later, under mild conditions on the
form of the base alignment functions,{φj}, the optimization
problem in Eq. (2) can be efficiently calculated using a
dynamic programming procedure.

We now describe a large margin approach for learn-
ing the weight vectorw, which defines an alignment
function as in Eq. (2), from a training setS =
{(x̄1, ē1, ȳ1), . . . , (x̄m, ēm, ȳm)} of examples. Similar to the

SVM algorithm for binary classification, our approach for
choosing the weight vectorw is based on the idea of large-
margin separation. However, in our case, timing sequences
are not merely correct or incorrect. Instead, the cost function
γ(ȳ, ȳ′) is used for assessing the quality of sequences. There-
fore, we do not aim at separating correct timing sequences
from incorrect ones but rather try to rank the sequences
according to their quality. Theoretically, our approach can be
described as a two-step procedure: first, we construct a vector
φ(x̄i, ēi, ȳ

′) in the vector spaceRn based on each instance
(x̄i, ēi) in the training setS and each possible timing sequence
ȳ′. Second, we find a vectorw ∈ R

n, such that the projection
of vectors ontow ranks the vectors constructed in the first
step above according to their quality. In Fig. 1 we illustrate
three possible timing sequences for the same input(x̄, ē) and
their projection ontow. Ideally, for each instance(x̄i, ēi) and
for each possible suggested timing sequenceȳ′, we would like
the following constraint to hold

w · φ(x̄i, ēi, ȳi)−w · φ(x̄i, ēi, ȳ
′) ≥ γ(ȳi, ȳ

′) . (3)

That is,w should rank the correct timing sequenceȳi above
any other possible timing sequenceȳ′ by at leastγ(ȳi, ȳ

′). We
refer to the differencew · φ(x̄i, ēi, ȳi) − w · φ(x̄i, ēi, ȳ

′) as
the margin of w with respect to the sequencēy′. Note that if
the prediction ofw is incorrect then the margin is negative.
The constraints in Eq. (3) imply that the margin ofw with
respect to any possible timing sequenceȳ′ should be at least
the cost of predictinḡy′ instead of the true timing sequence
ȳi. An illustration of a vectorw with sufficient margin (i.e.,
satisfies the constraints in Eq. (3)) is given on the left sideof
Fig. 1. The plot on the middle of Fig. 1 illustrates a vector
w, which ranks the different timing sequences correctly, but
without the required margin. The plot on the right side of
Fig. 1 illustrates a vectorw which does not rank the different
timing sequences correctly. Naturally, ifw ranks the different
possible timing sequences correctly, the margin requirements
given in Eq. (3) can be satisfied by simply multiplyingw by
a large scalar. The SVM algorithm solves this problem by
minimizing 1

2‖w‖2 subject to the constraints given in Eq. (3).
In practice, it might be the case that the constraints given

in Eq. (3) can not be satisfied. To overcome this obstacle,
we follow the soft SVM approach and define the following
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hinge-loss function for alignment,

ℓ(w; (x̄i, ēi, ȳi)) =

max
ȳ′

[γ(ȳi, ȳ
′) − w · (φ(x̄i, ēi, ȳi)−φ(x̄i, ēi, ȳ

′))]+ ,

(4)

where [a]+ = max{0, a}. The hinge loss measures the
maximal violation of any of the constraints given in Eq. (3).
The soft SVM approach for alignment is to choose the vector
w

⋆, which minimizes the following optimization problem

w
⋆ = argmin

w

1

2
‖w‖2 + C

m
∑

i=1

ℓ(w; (x̄i, ēi, ȳi)) , (5)

where the parameterC serves as a complexity-accuracy trade-
off parameter (see [7]). It is easy to verify that the optimization
problem in Eq. (5) is equivalent to the following quadratic
optimization problem,

min
w,ξ≥0

1

2
‖w‖2 + C

m
∑

i=1

ξi s.t.

∀i, ȳ′, w · (φ(x̄i, ēi, ȳi)−φ(x̄i, ēi, ȳ
′)) ≥ γ(ȳi, ȳ

′)−ξi ,
(6)

where eachξi is a non-negative slack variable that indicates
the loss of theith example.

Solving the quadratic optimization problem given in Eq. (6)
is complicated since the number of constraints is exponentially
large. Several authors suggested specific algorithms for ma-
nipulating the exponential number of constraints [11], [13].
However, these methods are problematic when the size of
the dataset is very large since several passes over the data
are required. In the next section, we propose an alternative
method, which visits each example only once.

V. A N ITERATIVE ALGORITHM

In this section we describe an iterative algorithm for
learning an alignment function, parameterized byw. Our
iterative algorithm first constructs a sequence of weight vectors
w1, . . . ,wm,wm+1. The first weight vector is set to be the
zero vector,w1 = 0. On iterationi of the algorithm, we utilize
the ith example of the training set along with the previous
weight vectorwi, for defining the next weight vectorwi+1

as follows. Letȳ′i be the timing sequence, which corresponds
to the highest violated margin constraint of theith example
according towi, that is,

ȳ′i = argmax
ȳ

γ(ȳ, ȳi)−w·(φ(x̄i, ēi, ȳi)−φ(x̄i, ēi, ȳ)) . (7)

In Sec. VI we provide an algorithm that efficiently calculates
the above optimization problem using dynamic programming.
We set the next weight vectorwi+1 to be the minimizer of
the following optimization problem

min
w∈Rn,ξ≥0

1

2
‖w − wi‖2 + Cξ s.t.

w · φ(x̄i, ēi, ȳi) − w · φ(x̄i, ēi, ȳ
′
i) ≥ γ(ȳi, ȳ

′
i) − ξ .

(8)

This optimization problem can be thought of as a relaxed
version of the SVM optimization problem with two major

INPUT: training setS = {(x̄i, ēi, ȳi)}m
i=1 ;

validation setSv ; parameterC

INITIALIZE : w1 = 0

FOR i = 1, . . . ,m

Set: ȳ′i = argmax
ȳ

γ(ȳi, ȳ)−
w · (φ(x̄i, ēi, ȳi)−φ(x̄i, ēi, ȳ))

Set: ∆φi = φ(x̄i, ēi, ȳi) − φ(x̄i, ēi, ȳ
′
i)

Set: ℓi = max{γ(ȳi, ȳ
′
i) − w · ∆φi, 0}

Update: wi+1 = wi + min{ℓi/‖∆φi‖2, C}∆φi

OUTPUT: The weight vector which achieves the
lowest average cost on the validation setSv

Fig. 2. The alignment algorithm.

differences. First, we replace the exponential number of con-
straints from Eq. (6) with a single constraint. This constraint
is based on the timing sequenceȳ′i defined in Eq. (7). Second,
we replaced the term‖w‖2 in the objective function of the
SVM with the term‖w − wi‖2. Intuitively, we would like
to minimize the loss ofw on the current example, i.e., the
slack variableξ, while remaining as close as possible to our
previous weight vectorwi. It can be shown (see [14]) that the
solution to the above optimization problem is

wi+1 = wi + min

{

ℓ(wi; (xi, ēi, ȳi))

‖∆φi‖2
, C

}

· ∆φi ,

where∆φi = φ(x̄i, ēi, ȳi) − φ(x̄i, ēi, ȳ
′
i).

The above iterative procedure gives us a sequence ofm+1
weight vectors,w1, . . . ,wm+1. In the sequel we prove that the
average performance of this sequence of vectors is comparable
to the performance of the SVM solution. Formally, letw

⋆ be
the optimum of the SVM problem given in Eq. (6). Then, we
show in the sequel that settingC = 1/

√
m gives,

1

m

m
∑

i=1

ℓ(wi; (x̄i, ēi, ȳi)) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi))

+
1√
m

(

‖w⋆‖2 +
1

2

)

.

(9)

That is, the average loss of our iterative procedure is upper
bounded by the average loss of the SVM solution plus a
factor that decays to zero. However, while each prediction of
our iterative procedure is calculated using a different weight
vector, our learning algorithm is required to output asingle
weight vector, which defines the output alignment function.
To overcome this obstacle, we calculate the average cost of
each of the weight vectorw1, . . . ,wm+1 on a validation set,
denotedSv, and choose the one achieving the lowest average
cost. We show in the sequel that with high probability, the
weight vector which achieves the lowest cost on the validation
set also generalizes well. A pseudo-code of our algorithm is
given in Fig. 2.
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Analysis

We now analyze our alignment algorithm from Fig. 2. Our
first theorem shows that the average loss of our alignment
algorithm is comparable to the average loss of the SVM
solution for the alignment problem defined in Eq. (6).

Theorem 1: Let S = {(x̄1, ē1, ȳ1), . . . , (x̄m, ēm, ȳm)} be a
set of training examples and assume that for alli and ȳ′ we
have that‖φ(x̄i, ēi, ȳ

′)‖ ≤ 1/2. Let w
⋆ be the optimum of

the SVM problem given in Eq. (6). Letw1, . . . ,wm be the
sequence of weight vectors obtained by the algorithm in Fig.2
given the training setS. Then,

1

m

m
∑

i=1

ℓ(wi; (x̄i, ēi, ȳi)) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi))

+
1

Cm
‖w⋆‖2 +

1

2
C .

(10)

In particular, ifC = 1/
√
m then,

1

m

m
∑

i=1

ℓ(wi; (x̄i, ēi, ȳi)) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi))

+
1√
m

(

‖w⋆‖2 +
1

2

)

.

(11)

The proof of this theorem is based on Thm. 2 in [15] and is
given in the appendix.

The next theorem tells us that the output alignment function
of our algorithm is likely to have good generalization proper-
ties.

Theorem 2: Under the same conditions of Thm. 1. Assume
that the training setS and the validation setSv are both
sampled i.i.d. from a distributionQ. Denote bymv the size of
the validation set. Assume in addition thatγ(ȳ, ȳ′) ≤ 1 for all
ȳ and ȳ′. Let w be the output weight vector of the algorithm
in Fig. 2 and letfw be the corresponding alignment function.
Then, with probability of at least1 − δ we have that,

risk(fw) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi)) +

‖w⋆‖2+ 1
2 +

√

2 ln(2/δ)√
m

+

√

2 ln(2m/δ)√
mv

.

(12)
The proof of this theorem is based on Proposition 1 in [17]
and is also given in the appendix.

As mentioned before, the learning algorithm we present
in this paper share similarities with the SVM method for
structured output prediction [11], [13]. Yet, the weight vector
resulted by our method is not identical to the one obtained by
directly solving the SVM optimization problem. We would like
to note in passing that our generalization bound from Thm. 2
is comparable to generalization bounds derived for the SVM
method (see for example [11]). The major advantage of our
method over directly solving the SVM problem is its simplicity
and efficiency.

To conclude this section, we would like to emphasize the
role of the functionγ in our model. Recall that the risk of
an alignment function is defined to be the expected value of
γ(ȳ, f(x̄, ē)). The constraints we imposed in Eq. (6) were
constructed so that the risk will be small. Naturally, the

specific choice of the functionγ is problem dependent. One
possible choice is to simply setγ(ȳ, ȳ′) to be 1 if ȳ 6= ȳ′

and 0 otherwise. This choice might lead to poor results in
the alignment setting since it is likely that any functionf
will not find the exact correct alignment. For example, the
above definition forγ will give the worst possible risk (1)
to an alignment function that predicts correctly 99% of the
alignment points, while such an alignment function is usually
considered to perform very well.

VI. EFFICIENT EVALUATION OF THE ALIGNMENT

FUNCTION

So far we have put aside the problem of evaluation time
of the functionf given in Eq. (2). Recall that calculatingf
requires solving the following optimization problem,

f(x̄, ē) = argmax
ȳ

w · φ(x̄, ē, ȳ) .

Similarly, we need to find an efficient way for solving the
maximization problem given in Eq. (7). A direct search for
the maximizer is not feasible since the number of possible
timing sequences,̄y, is exponential in the number of events.
Fortunately, as we show below, by imposing a few mild
conditions on the structure of the alignment feature functions
and on the cost function,γ, both problems can be solved in
polynomial time.

We start with the problem of calculating the prediction given
in Eq. (2). For simplicity, we assume that each base feature
function, φj , can be decomposed as follows. Letψj be any
function from X ∗ × E∗ × N

3 into the reals, which can be
computed in a constant time. That is,ψj receives as input
the signal,̄x, the sequence of events,ē, and three time points.
Additionally, we use the conventiony0 = 0 andy|ē|+1 = T+1.
Using the above notation, we assume that eachφj can be
decomposed to be

φj(x̄, ē, ȳ) =

|ȳ|
∑

i=1

ψj(x̄, ē, yi−1, yi, yi+1) . (13)

The base alignment functions we derive in later sections
for speech-to-phoneme and music-to-score alignment can be
decomposed as in Eq. (13).

We now describe an efficient algorithm for calculating the
best timing sequence assuming thatφj can be decomposed as
in Eq. (13). Similar algorithms can be constructed for any base
feature functions that can be described as a dynamic Bayesian
network ( [11], [18]). Giveni ∈ {1, . . . , |ē|} and two time
indices t, t′ ∈ {1, . . . , T}, denote byD(i, t, t′) the score for
the prefix of the events sequence1, . . . , i, assuming that their
actual start times arey1, . . . , yi, whereyi = t′ and assuming
that yi+1 = t. This variable can be computed efficiently in
a similar fashion to the forward variables calculated by the
Viterbi procedure in HMMs (see for instance [19]). The pseudo
code for computingD(i, t, t′) recursively is shown in Fig. 3.
The best sequence of actual start times,ȳ′, is obtained from
the algorithm by saving the intermediate values that maximize
each expression in the recursion step. The complexity of the
algorithm isO(|ē| |x̄|3). However, in practice, we can use the
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INPUT: audio signal̄x, sequence of events̄e ;

weight vectorw ; maximal length of an eventL

INITIALIZE : ∀(1 ≤ t ≤ L), D(0, t, 0) = 0

RECURSION:

For i = 1, . . . , |ē|
For t = 1, . . . , |x̄|

For t′ = t− L, . . . , t− 1

D(i, t, t′) = max
t′−L≤t′′<t′

D(i−1, t′, t′′) + w ·ψ(x̄, ē, t′′, t′, t)

TERMINATION : D⋆ = max
t′

D(|ē|, T, t′)

Fig. 3. An efficient procedure for evaluating the alignment function
given in Eq. (2).

assumption that the maximal length of an event is bounded,
t − t′ ≤ L. This assumption reduces the complexity of the
algorithm to beO(|ē| |x̄| L2).

Solving the maximization problem given in Eq. (7) can be
performed in a similar manner as we now briefly describe.
Assume thatγ(ȳ, ȳ′) can be decomposed as follows,

γ(ȳ, ȳ′) =

|ȳ|
∑

i=1

γ̂(yi, y
′
i) ,

where γ̂ is any computable function. For example, for the
definition ofγ given in Eq. (1) we can set̂γ(yi, y

′
i) to be zero

if |yi − y′i| ≤ ǫ and otherwisêγ(yi, y
′
i) = 1/|ȳ|. A dynamic

programming procedure for calculating Eq. (7) can be obtained
from Fig. 3 by replacing the recursion definition ofD(i, t, t′)
to

D(i, t, t′) = max
t′−L≤t′′<t′

D(i−1, t′, t′′)+

γ̂(yi+1, t) + w ·ψ(x̄, ē, t′′, t′, t) .
(14)

To conclude this section we discuss the global complexity of
our proposed method. In the training phase, our algorithm per-
formsm iterations, one iteration per each training example. At
each iteration the algorithm evaluates the alignment function
once, updates the alignment function, if needed, and evaluates
the new alignment function on a validation set of sizemv.
Each evaluation of the alignment function takes an order of
O(|ē| |x̄| L2) operations. Therefore the total complexity of our
method becomesO(m mv |ē| |x̄| L2). In practice, however,
we can evaluate the updated alignment function only for the
last 50 iterations or so, which reduces the global complexity
of the algorithm toO(m |ē| |x̄| L2). In all of our experiments,
evaluating the alignment function only for the last 50 iterations
was found empirically to give sufficient results. Finally, we
compare the complexity of our method to the complexity of
other algorithms which directly solve the SVM optimization
problem given in Eq. (6). The algorithm given in [11] is based
on the SMO algorithm for solving SVM problems. While there
is no direct complexity analysis for this algorithm, in practice it

usually required at leastm2 iterations which results in a total
complexity of the orderO(m2 |ē| |x̄| L2). The complexity
of the algorithm presented in [13] depends on the choice of
several parameters. For reasonable choice of these parameters
the total complexity is also of the orderO(m2 |ē| |x̄| L2).

VII. SPEECH-TO-PHONEME ALIGNMENT

In this section we present the implementation details of
our learning approach for the task of speech-to-phoneme
alignment. Recall that our construction is based on a set of
base alignment functions,{φj}n

j=1, which maps an acoustic-
phonetic representation of a speech utterance as well as a
suggested phoneme start time sequence into an abstract vector-
space. All of our base alignment functions are decomposable
as in Eq. (13) and therefore it suffices to describe the functions
{ψj}. We start the section by introducing a specific set of
base functions, which is highly adequate for the speech-to-
phoneme alignment problem. Next, we report experimental
results comparing our algorithm to alternative state-of-the-art
approaches.

A. Base alignment functions

We utilize seven different base alignment functions (n =
7). These base functions are used for defining our alignment
function f(x̄, ē) as in Eq. (2).

Our first four base functions aim at capturing transitions
between phonemes. These base functions are based on the
distance between frames of the acoustical signal at two sides
of phoneme boundaries as suggested by a phoneme start time
sequencēy. The distance measure we employ, denoted by
d, is the Euclidean distance between feature vectors. Our
underlying assumption is that if two frames,xt and xt′ , are
derived from the same phoneme then the distanced(xt,xt′)
should be smaller than if the two frames are derived from
different phonemes. Formally, our first4 base functions are
defined as

ψj(x̄, ē, yi−1, yi, yi+1) = d(xyi−j ,xyi+j), j ∈ {1, 2, 3, 4} .
(15)

If ȳ is the correct timing sequence then distances between
frames across the phoneme change points are likely to be
large. In contrast, an incorrect phoneme start time sequence
is likely to compare frames from the same phoneme, often
resulting small distances. Note that the first four base functions
described above only use the start time of theith phoneme and
does not use the values ofyi−1 andyi+1.

The fifth base function we use is based on the frame-
wise phoneme classifier described in [20]. Formally, for each
phoneme evente ∈ P and framex ∈ X , there is a confidence,
denotedge(x), that the phonemee is pronounced in the
framex. The resulting base function measures the cumulative
confidence of the complete speech signal given the phoneme
sequence and their start-times,

ψ5(x̄, ē, yi−1, yi, yi+1) =

yi+1−1
∑

t=yi

gei
(xt) . (16)
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The fifth base function use both the start time of theith
phoneme and the(i+ 1)th phoneme but ignoresyi−1.

Our next base function scores timing sequences based on
phoneme durations. Unlike the previous base functions, the
sixth base function is oblivious to the speech signal itself. It
merely examines the length of each phoneme, as suggested by
ȳ, compared to the typical length required to pronounce this
phoneme. Formally,

ψ6(x̄, ē, yi−1, yi, yi+1) = logN (yi+1 − yi; µ̂ei
, σ̂ei

) , (17)

whereN is a Normal probability density function with mean
µ̂e and standard deviation̂σe. In our experiments, we estimated
µ̂e and σ̂e from the entire TIMIT training set, excluding SA1
and SA2 utterances.

Our last base function exploits assumptions on the speaking
rate of a speaker. Intuitively, people usually speak in an almost
steady rate and therefore a timing sequence in which speech
rate is changed abruptly is probably incorrect. Formally, let µ̂e

be the average length required to pronounce theeth phoneme.
We denote byri the relative speech rate,ri = (yi+1 − yi)/µ̂e.
That is,ri is the ratio between the actual length of phonemeei

as suggested bȳy to its average length. The relative speech rate
presumably changes slowly over time. In practice the speaking
rate ratios often differ from speaker to speaker and within a
given utterance. We measure the local change in the speaking
rate as(ri − ri−1)

2 and we define the base functionψ7 as the
local change in the speaking rate,

ψ7(x̄, ē, yi−1, yi, yi+1) = (ri − ri−1)
2

. (18)

Note thatψ7 relies on all three start-times it receives as an
input, yi−1, yi, yi+1.

B. Experiments

To validate the effectiveness of the proposed approach
we performed experiments with the TIMIT corpus. We first
divided the training portion of TIMIT (excluding the SA1 and
SA2 utterances) into three disjoint parts containing 500, 100
and 3093 utterances, respectively. The first part of the training
set was used for learning the functionsgei

(Eq. (16)), which
defines the base functionψ5. Those functions were learned
by the algorithm described in [20] using the MFCC+∆+∆∆
acoustic features [21] and a Gaussian kernel (σ = 6.24 and
C = 5.0). The second set of 100 utterances formed the
validation set needed for our alignment algorithm as described
in Sec. V. Finally, we ran our iterative alignment algorithmon
the remaining utterances in the training set. The value ofǫ in
the definition ofγ was set to be 1 (i.e., 10 ms).

We evaluated the learned alignment functions on both
the core test set and the entire test set of TIMIT. We
compare our results to the results reported by Brugnaraet
al. [1] and the results obtained by Hosom [2]. The results
are summarized in Table I. For each tolerance valueτ ∈
{10 ms, 20 ms, 30 ms, 40 ms}, we counted the number of pre-
dictions whose distance to the true boundary,t = |yi − y′i|, is
less thanτ . As can be seen in the table our discriminative large
margin algorithm is comparable to the best results reportedon
TIMIT. Furthermore, we found out in our experiments that the

TABLE I

PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIES, GIVEN

A PREDEFINED TOLERANCE ON THETIMIT CORPUS.

t ≤ 10ms t ≤ 20ms t ≤ 30ms t ≤ 40ms

TIMIT core test-set

Discrim. Alignment 79.7 92.1 96.2 98.1

Brugnaraet al. [1] 75.3 88.9 94.4 97.1

Hosom [2] 92.57

TIMIT entire test-set

Discrim. Alignment 80.0 92.3 96.4 98.2

Brugnaraet al. [1] 74.6 88.8 94.1 96.8

same level of accuracy is obtained when using merely the first
50 utterances (rather than the entire 3093 utterances that are
available for training).

Our alignment function is based on the weight vectorw that
determines the linear combination of base alignment functions.
It is therefore interesting to observe the specific weightsw

gives to each of the base alignment functions after the training
phase. Since the training algorithm depends on the order of
examples in the training set, we ran the algorithm on several
random permutations of the same training set and average the
resulting weight vector. The resulting vector was found to be

w = (0.17788, 0.0093,−2.82 × 10−5,

0.0087, 0.9622, 1.41 × 10−5, 0.15815) .
(19)

We also calculated the standard deviation of each element
of w. The standard deviation was found to be almost0 for
all the elements of the weight vector, indicating that our
training algorithm is rather stable and the resulting weight
vector does not depend on the order of examples in the
training set. It is also apparent that the weight of the fifth
base alignment function is dominant. To remind the reader,
the fifth base alignment function corresponds to the frame-wise
phoneme classifier. The domination of this feature calls fora
comparison between the performance of each single feature
to the performance of our method that combined together
all the features. In Table II we report the performance of
each of the single base alignment features. We again see
that the fifth base alignment function is most effective. The
accuracy of this single feature is inferior to the accuracy of our
combined method roughly by 3%. When using an alternative
single base alignment function, we obtain rather poor results.
The advantage of our method is that it combines the features
together to obtain the best performing alignment function.

VIII. M USIC-TO-SCORE ALIGNMENT

In this section we present the implementation details of our
learning approach for the task of music-to-score alignment.
We start the section by introducing a specific set of base
alignment functions which is highly adequate for the music-to-
score alignment problem. Next, we report experimental results
comparing our algorithm to an alternative generative method
for score alignment.
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TABLE II

PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIES FOR

EACH ELEMENT OF THE VECTORw.

t ≤ 10ms t ≤ 20ms t ≤ 30ms t ≤ 40ms

w1 7.6 9.9 12.5 15.1

w2 8.3 11.8 15.2 18.7

w3 8.2 12.3 15.9 19.2

w4 6.7 9.4 12.0 14.9

w5 77.0 88.8 93.6 95.5

w6 12.6 19.2 26.2 33.1

w7 12.2 18.3 24.9 31.3

w 79.7 92.1 96.2 98.1

A. Base alignment functions

We utilize ten different base alignment functions (n = 10).
Recall that each note-on event in the music-to-score alignment
problem is a paire = (p, s), wherep is the pitch of the note
ands is the (theoretical) start time of the note. Our first nine
base alignment functions ignore the value ofs and thus, for
these features,ψj only depends on̄x, p̄, andȳ. Intuitively, the
first nine base alignment functions measure the confidence that
a pitch valuepi starts at time indexyi of the signal.

We now describe the specific form of each of the
above base functions, starting withψ1. The function
ψ1(x̄, ē, yi−1, yi, yi+1) measures the energy of the acoustic
signal at the framexyi

and the frequency corresponding to
the pitchpi. Formally, letFpi

denotes a band-pass filter with
a center frequency at the first harmony of the pitchpi and cut-
off frequencies of1/4 tone below and abovepi. Concretely,
the lower cut-off frequency ofFpi

is 440 · 2
pi−57−0.5

12 Hz

and the upper cut-off frequency is440 · 2 pi−57+0.5

12 Hz, where
pi ∈ P = {0, 1, . . . , 127} is the pitch value (coded using the
MIDI standard) and440 ·2 pi−57

12 is the frequency value inHz
associated with the codewordpi. Similarly, ψ2 and ψ3 are
the output energies of band-pass filters centered at the second
and third pitch harmonics, respectively. All the filters were
implemented using the fast Fourier transform.

The above three local templates{ψj}3
j=1 measure energy

values for each timeyi. Since we are interested in identifying
notes onset times, it is reasonable to compare energy values
at time yi with energy values at timeyi − 1. However,
the (discrete) first order derivative of the energy is highly
sensitive to noise. Instead, we calculate the derivatives of
a fitted second-order polynomial of each of the above local
features. (This method is also a common technique in speech
processing systems [19].) Therefore, the next six local tem-
plates,{ψj}9

j=4, measure the first and second derivatives of
the energy of the output signal of the three filters around the
first three harmonics ofpi.

While the first nine base alignment functions measure
confidence of timing sequences based on spectral properties
of the signal, the last alignment feature captures the similarity
betweens̄ and ȳ. Formally, let

ri =
yi+1 − yi

si+1 − si

(20)

TABLE III

SUMMARY OF THE LOO LOSS (IN MS) FOR DIFFERENT ALGORITHMS FOR

MUSIC-TO-SCORE ALIGNMENT.

GHMM-1 GHMM-3 GHMM-5 GHMM-7 Discrim.

1 10.0 188.9 49.2 69.7 8.9
2 15.3 159.7 31.2 20.7 9.1
3 22.5 48.1 29.4 37.4 17.1
4 12.7 29.9 15.2 17.0 10.0
5 54.5 82.2 55.9 53.3 41.8
6 12.8 46.9 26.7 23.5 14.0
7 336.4 75.8 30.4 43.3 9.9
8 11.9 24.2 15.8 17.1 11.4
9 11473 11206 51.6 12927 20.6
10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 12.4
12 13.4 14.5 13.8 28.1 9.6

mean 1000.1 998.1 30.3 1106.4 14.4
std 3159 3078.3 14.1 3564.1 9.0

median 15.8 54.2 28.5 25.8 10.7

be the ratio between theith interval, according tōy, to the
interval according tōs. We also refer tori as the relative
tempo. The sequence of relative tempo values is presumably
constant in time, sincēs and ȳ represent two performances of
the same musical piece. However, in practice the tempo ratios
often differ from performance to performance and within a
given performance. The local templateψ10 measures the local
change in the tempo,

ψ10(x̄, ē, yi−1, yi, yi+1) = (ri − ri−1)
2

.

The relative tempo of Eq. (20) is ill-defined wheneversi+1−si

is zero (or relatively small). Since we deal with polyphonic
musical pieces, very short intervals between notes are rather
relevant. Therefore, we define the tempori as in Eq. (20) but
confine ourselves to indicesi for which si+1 − si is greater
than a predefined valueτ (in our experiments we setτ = 60
ms). Thus, ifsi+1 − si ≤ τ or si − si−1 ≤ τ , then we setψ10

to be zero.

B. Experiments

We now describe experiments with our alignment algorithm
for the task of score alignment of polyphonic piano musical
pieces. Specifically, we compare our alignment algorithm to
a generative method which is based on Generalized Hidden
Markov Model (GHMM). The details of the GHMM approach
can be found in [22]. This GHMM method is closely re-
lated to graphical model approaches for score alignment, first
proposed by Raphael [23], [24]. We would like to note in
passing that more advanced algorithms for real-time score
alignment have been suggested (see for example [25] and
the references therein). In our experiments we focus on the
basic comparison between the discriminative and generative
approaches for score alignment. Recall that our alignment
algorithm uses a training set of examples for deducing an
alignment function. We downloaded12 musical pieces from
http://www.piano-midi.de/mp3.php where sound
and MIDI were both recorded. Here the sound serves as the
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acoustical signal̄x and the MIDI is the actual start times̄y. We
also downloaded other MIDI files of the same musical pieces
from a variety of other web-sites and used these MIDI files
for creating the sequence of eventsē. The complete dataset we
used is available fromhttp://www.cs.huji.ac.il/
∼shais/alignment.

In the score alignment problem we report the average
alignment error, that is, we set

γ(ȳ, ȳ′) =
1

|ȳ|

|ȳ|
∑

i=1

|yi − y′i| .

Since this dataset is rather small, we ran our iterative algorithm
given in Fig. 2 on the training set several times and choose
the alignment function which minimizes the error on the
training set. We used the leave-one-out (LOO) cross-validation
procedure for evaluating the test results. In the LOO setup the
algorithms are trained on all the training examples except one,
which is used as a test set. The error between the predicted and
true start times is computed for each of the algorithms. The
GHMM approach uses a Gaussian Mixture Model (GMM) for
modeling some of the probabilities. The number of Gaussians
used by the GMM needs to be determined. We used the values
of 1, 3, 5 and7 as the number of Gaussians and we denote by
GHMM-n the resulting generative model withn Gaussians. In
addition, we used the EM algorithm to train the GMMs. The
EM algorithm converges to a local maximum, rather than to
the global maximum. A common solution to this problem is to
use a random partition of the data to initialize the EM. In all
our experiments with the GMM we used 15 random partitions
of the data to initialize the EM and chose the one that leads
to the highest likelihood. The LOO results for each of the 12
musical pieces are summarized in Table III. As seen from the
table, our discriminative learning algorithm outperformsall
the variants of the GHMM method in all of the experiments.
Moreover, in all but two of the experiments the error of the
discriminative algorithm is less than20 ms, which is the length
of an acoustic frame in our experiments, thus it is the best
accuracy one can hope for this time resolution. It can be seen
that the variance of the LOO loss obtained by the generative
algorithms is rather high. This can be attributed to the fact
that the EM algorithm converges to a local maximum which
depends on initialization of the parameters.

IX. CONCLUSION

We presented a discriminative algorithm for learning an
alignment function from a training set of examples. The
proposed approach is based on recent advances in large margin
classifiers. The contribution of our algorithm is twofold. First,
we showed how the tasks of speech-to-phoneme alignment and
music-to-score alignment can be cast as large margin prob-
lems. Second, we presented a simple and effective algorithm
for solving the induced large margin problem. Our learning
algorithm is more efficient than similar algorithms for large
margin sequence prediction, such as [11], [13], and is thus
more adequate for speech and audio applications, in which
we typically have a large number of training examples. Our

learning algorithm is simple to implement and entertains con-
vergence guarantees. Moreover, we have shown both theoret-
ical and empirical evidence demonstrating the generalization
abilities of our method. Indeed, the experiments reported above
suggest that the discriminative training requires fewer training
examples than an HMM-based speech-to-phoneme alignment
procedure. We are currently investigating generalizations of
the framework to more demanding tasks in which a sequence
constituents should also be predicted, as is the case in phoneme
recognition and music transcription.

APPENDIX

Proof of Thm. 1 Our proof relies on Thm. 2 in [15]. We
first construct a sequence of binary classification examples,
(∆φ1,+1), . . . , (∆φm,+1). For all i and for all w ∈ R

n,
define the following classification hinge-loss,

ℓci (w) = max{γ(ȳi, ȳ
′
i) − w · ∆φi , 0} .

Thm. 2 in [15] implies that the following bound holds for all
w ∈ R

n,

m
∑

i=1

µ(ℓci (wi)) ≤ 1

C
‖w‖2 +

m
∑

i=1

ℓci (w) , (21)

where,

µ(a) =
1

C

(

min{a,C}
(

a− 1

2
min{a,C}

))

.

Let w
⋆ denote the optimum of the alignment problem given

by Eq. (6). The bound of Eq. (21) holds for anyw and
in particular for the optimal solutionw⋆. Furthermore, the
definition of ℓci implies thatℓci (w

⋆) ≤ ℓ(w⋆; (x̄i, ēi, ȳi)) and
ℓci (wi) = ℓ(wi; (x̄i, ēi, ȳi)) for all i. Using the latter two facts
in Eq. (21) gives that,

m
∑

i=1

µ(ℓ(wi; (x̄i, ēi, ȳi))) ≤

1

C
‖w⋆‖2 +

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi)) . (22)

By definition, the functionµ is bounded below by a linear
function, that is, for anya > 0,

µ(a) ≥ a− 1

2
C .

Using the lower bound with the argumentℓ(wi; (x̄i, ēi, ȳi))
and summing overi we obtain,

m
∑

i=1

ℓ(wi; (x̄i, ēi, ȳi)) −
1

2
Cm ≤

m
∑

i=1

µ(ℓ(wi; (x̄i, ēi, ȳi))) .

Combining the above inequality with Eq. (22) and rearranging
terms gives the bound stated in the theorem and concludes our
proof.
Proof of Thm. 2 Denote by f1, . . . , fm the alignment
prediction functions corresponding to the weight vectors
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w1, . . . ,wm that are found by the alignment algorithm. Propo-
sition 1 in [17] implies that with probability of at least1− δ1
the following bound holds,

1

m

m
∑

i=1

risk(fi) ≤ 1

m

m
∑

i=1

γ(ȳi, fi(x̄i, ēi)) +

√

2 ln(1/δ1)√
m

.

By definition, the hinge-lossℓ(wi; (x̄i, ēi, ȳi)) bounds from
above the lossγ(ȳi, fi(x̄i, ēi)). Combining this fact with
Thm. 1 we obtain that,

1

m

m
∑

i=1

risk(fi) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi))

+
‖w⋆‖2+ 1

2 +
√

2 ln (1/δ1)√
m

.

(23)

The left-hand side of the above inequality upper bounds
risk(fb), whereb = arg mini risk(fi). Therefore, among the
finite set of alignment functions,F = {f1, . . . , fm}, there
exists at least one alignment function (for instance the function
fb) whose true risk is bounded above by the right hand side
of Eq. (23). Recall that the output of our algorithm is the
alignment functionfw ∈ F , which minimizes the average
cost over the validation setSv. Applying Hoeffding inequality
together with the union bound overF we conclude that with
probability of at least1 − δ2,

risk(fw) ≤ risk(fb) +

√

2 ln (m/δ2)

mv

,

where to remind the readermv = |Sv|. We have therefore
shown that with probability of at least1−δ1−δ2 the following
inequality holds,

risk(fw) ≤ 1

m

m
∑

i=1

ℓ(w⋆; (x̄i, ēi, ȳi)) +

‖w⋆‖2+ 1
2 +

√

2 ln(1/δ1)√
m

+

√

2 ln(m/δ2)√
mv

.

Settingδ1 = δ2 = δ/2 concludes our proof.
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