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Abstract

We show that a function is strongly convex with
respect to some norm if and only if its conjugate
function is strongly smooth with respect to the
dual norm. This result has already been found
to be a key component in deriving and analyz-
ing several learning algorithms. Utilizing this du-
ality, we isolate a single inequality which seam-
lessly implies both generalization bounds and on-
line regret bounds; and we show how to construct
strongly convex functions over matrices based on
strongly convex functions over vectors. The newly
constructed functions (over matrices) inherit the
strong convexity properties of the underlying vec-
tor functions. We demonstrate the potential of
this framework by analyzing several learning algo-
rithms including group Lasso, kernel learning, and
online control with adversarial quadratic costs.

1 Introduction
As we tackle more challenging learning problems, there is
an increasing need for algorithms which efficiently impose
more sophisticated forms of prior knowledge. Examples in-
clude: the group Lasso problem (for “shared” feature selec-
tion across problems), kernel learning, multi-class predic-
tion, and multi-task learning. A central question here is to
understand the generalization ability of such algorithms in
terms of the attendant complexity restrictions imposed by
the algorithm (such analyses often illuminate the nature in
which our prior knowledge is being imposed).

There is growing body of work suggesting that the no-
tion of strong convexity is a fundamental tool in designing
and analyzing (the regret or generalization ability of) a wide
range of learning algorithms (which we discuss in the next
Subsection). The underlying intuition for this is as follows:
Most of our efficient algorithms (both in the batch and on-
line settings) impose some complexity control via the use of
some strictly convex penalty function (either explicitly via
a regularizer or implicitly in the design of an online update
rule). Central to understanding these algorithms is the man-
ner in which these penalty functions are strictly convex, i.e.
the behavior of the “gap” by which these convex functions
lie above their tangent planes (which is strictly positive for

strictly convex functions). Here, the notion of strong con-
vexity provides one means to characterize this gap in terms
of some general norm (rather than just Euclidean).

This work examines the notion of strong convexity from
a duality perspective. We show a function is strongly convex
with respect to some norm if and only if its (Fenchel) con-
jugate function is strongly smooth with respect to its dual
norm. Roughly speaking, this notion of smoothness (defined
precisely later) provides a second order upper bound of the
conjugate function, which has already been found to be a key
component in deriving and analyzing several learning algo-
rithms. Using this relationship, we are able to characterize
a number of matrix based penalty functions, of recent in-
terest, as being strongly convex functions, which allows us
to immediately derive online algorithms and generalization
bounds when using such functions.

We now briefly discuss related work and our contribu-
tions.

1.1 Related work
The notion of strong convexity takes its roots in optimiza-
tion based on ideas in Nemirovski and Yudin [1978] (where
it was defined with respect to the Euclidean norm) — the
generalization to arbitrary norms was by Nesterov [2005].
Relatively recently, its use in machine learning has been two
fold: in deriving regret bounds for online algorithm and gen-
eralization bounds in batch settings.

The duality of strong convexity and strong smoothness
was first used by Shalev-Shwartz and Singer [2006], Shalev-
Shwartz [2007] in the context of deriving low regret online
algorithms. Here, once we choose a particular strongly con-
vex penalty function, we immediately have a family of algo-
rithms along with a regret bound for these algorithms that is
in terms of a certain strong convexity parameter. A variety of
algorithms (and regret bounds) can be seen as special cases.

A similar technique, in which the Hessian is directly
bounded, is described by Grove et al. [2001], Shalev-Shwartz
and Singer [2007]. Another related approach involved
bounding a Bregman divergence [Kivinen and Warmuth,
1997, 2001, Gentile, 2002] (see Cesa-Bianchi and Lugosi
[2006] for a detailed survey). Another interesting applica-
tion of the very same duality is for deriving and analyzing
boosting algorithms [Shalev-Shwartz and Singer, 2008].

More recently, Kakade et al. [2008] showed how to use
the very same duality for bounding the Rademacher com-
plexity of classes of linear predictors. That the Rademacher



complexity is closely related to Fenchel duality was shown in
Meir and Zhang [2003], and the work in Kakade et al. [2008]
made the further connection to strong convexity. Again,
under this characterization, a number of generalization and
margin bounds (for methods which use linear prediction)
are immediate corollaries, as one only needs to specify the
strong convexity parameter from which these bounds easily
follow (see Kakade et al. [2008] for details).

The concept of strong smoothness (essentially a second
order upper bound on a function) has also been in play in a
different literature, for the analysis of the concentration of
martingales in smooth Banach spaces [Pinelis, 1994, Pisier,
1975]. This body of work seeks to understand the concen-
tration properties of a random variable ||Xt||, where Xt is a
(vector valued) martingale and || · || is a smooth norm, say an
Lp-norm.

Recently, Juditsky and Nemirovski [2008] proved that
a norm is strongly convex if and only if its conjugate is
strongly smooth. This duality was useful in deriving con-
centration properties of a random variable ||M ||, where now
M is a random matrix. The norms considered here were the
(Schatten) Lp-matrix norms (where ||M ||p is the Lp norm
of the singular values of M ) and certain “block” composed
norms (such as the || · ||2,q norm).

1.2 Our Contributions
The first contribution of this paper is to further distill this
theory of strong convexity. While Shalev-Shwartz [2007]
have shown that strong convexity (of general functions) im-
plies strong smoothness, here we show that the other di-
rection also holds and thus the two notions are equivalent.
This result generalizes the recent results of Juditsky and Ne-
mirovski [2008] to functions rather than norms. This gen-
eralization has a number of consequences which this work
explores. For example, in Corollary 7, we isolate an impor-
tant inequality that follows from the strong-convexity/strong-
smoothness duality and show that this inequality alone seam-
lessly yields regret bounds and Rademacher bounds.

The second contribution of this paper is in deriving new
families of strongly convex (smooth) functions. To do so, we
rely and further generalize the recent results of Juditsky and
Nemirovski [2008]. In particular, we obtain a strongly con-
vex function over matrices based on strongly convex vector
functions, which leads to a number of corollaries relevant to
problems of recent interest.

Furthermore, this characterization allows us to place a
wider class of online algorithms (along with regret bounds)
as special cases of the general primal-dual framework de-
veloped in Shalev-Shwartz [2007]. Examples which are
now immediate corollaries include: online PCA [Warmuth
and Kuzmin, 2006], the perceptron algorithm derived with a
Schatten norm complexity function [Cavallanti et al., 2008],
and the multi-task algorithm of Agarwal et al. [2008]. These
corollaries follow once we characterize a certain strong con-
vexity parameter (along with the derivative of the conjugate
function) — here, a family of online algorithms all enjoy the
same regret bound, with no further analysis required.

Finally, we use the generality of our results for obtaining
new (and sharper) generalization bounds for various applica-
tions, including the group Lasso and kernel learning. In the

former, we are able to show how the ||·||2,1 “group” norm en-
joys certain (shared) feature selection properties (with only
logarithmic dependence on the number of features). In the
latter, we show how kernel learning (learning a kernel as a
convex combination of base kernels) has only a mild depen-
dence on the number of base kernels used (only logarithmic).

2 The duality of strong convexity and strong
smoothness

2.1 Preliminaries
Here, we briefly recall some key definitions from convex
analysis that are useful throughout the paper (for details, see
any of the several excellent references on the subject, e.g.
Borwein and Lewis [2006], Rockafellar [1970]).

We consider convex functions f : X → R∪{∞}, where
X is a Euclidean vector space equipped with an inner product
〈·, ·〉. We denote R∗ = R ∪ {∞}.

Definition 1 Given a convex function f : X → R∗, its sub-
differential at x ∈ X , denoted by ∂f(x), is defined as,

∂f(x) := {y ∈ X : ∀z, f(x+ z) ≥ f(x) + 〈y, z〉}

Definition 2 Given a convex function f : X → R∗, the
Fenchel conjugate f? : X → R∗ is defined as

f?(y) := sup
x∈X
〈x, y〉 − f(x)

We also deal with a variety of norms in this paper. Recall
the definition of the dual norm.

Definition 3 Given a norm ‖ · ‖ on X , its dual ‖ · ‖? is the
norm (also on X ) defined as,

‖y‖? := sup{〈x, y〉 : ‖x‖ ≤ 1}

An important property of the dual norm is that the
Fenchel conjugate of the function 1

2‖x‖
2 is 1

2‖y‖
2
?.

The definition of Fenchel conjugate implies

∀x, y, f(x) + f?(y) ≥ 〈x, y〉 ,
which is known as the Fenchel-Young inequality. An equiv-
alent and useful definition of the subdifferential can be given
in terms of the Fenchel conjugate,

∂f(x) = {y ∈ X : f(x) + f∗(y) = 〈x, y〉}

2.2 Main result
Recall that the domain of a function f : X → R∗ is the set
of x such that f(x) < ∞ (allowing f to take infinite values
is the effective way to restrict its domain to a proper subset
of X ). We first define strong convexity.

Definition 4 A function f : X → R∗ is β-strongly convex
w.r.t. a norm ‖ · ‖ if for all x, y in the relative interior of the
domain of f and α ∈ (0, 1) we have

f(αx+ (1− α)y) ≤αf(x) + (1− α)f(y)

− 1
2βα(1− α)‖x− y‖2

We now define strong smoothness. Note that a strongly
smooth function f is always finite.



Definition 5 A function f : X → R is β-strongly smooth
w.r.t. a norm ‖ · ‖ if f is everywhere differentiable and if for
all x, y we have

f(x+ y) ≤ f(x) + 〈∇f(x), y〉+
1
2
β‖y‖2

The following central theorem shows that strong convex-
ity and strong smoothness are dual properties. Recall that
the biconjugate f?? equals f if and only if f is closed and
convex.

Theorem 6 (Strong/Smooth Duality) Assume that f is a
closed and convex function. Then f is β-strongly convex
w.r.t. a norm ‖ · ‖ if and only if f? is 1

β -strongly smooth
w.r.t. the dual norm ‖ · ‖?.

Subtly, note that while the domain of a strongly convex
function f may be a proper subset ofX (important for a num-
ber of settings), its conjugate f? always has a domain which
is X (since f? is strongly smooth then it is finite and every-
where differentiable).

The proof is provided in the appendix.

2.3 Machine learning implications of the
strong-convexity / strong-smoothness duality

The following direct corollary of Thm. 6 is central in proving
both regret and generalization bounds.

Corollary 7 If f is β strongly convex w.r.t. ‖·‖ and f?(0) =
0, then, for any sequence v1, . . . , vn and for any u we have

n∑
i=1

〈vi, u〉 − f(u) ≤ f?(v1:n)

≤
n∑
i=1

〈∇f?(v1:i−1), vi〉+
1

2β

n∑
i=1

‖vi‖2?

where v1:i denotes the sum
∑i
j=1 vj .

Proof: The first inequality is Fenchel-Young and the second
is from the definition of smoothness by induction.

From this we can easily obtain regret bounds and
Rademacher bounds.

2.3.1 Regret Bound
Algorithm 1 provides one common algorithm (Follow the
Regularized Leader) which achieves the following regret
bound. It is one of a family of algorithms which enjoys the
same regret bound (see Shalev-Shwartz [2007]).

Theorem 8 (Regret) Suppose Algorithm 1 is used with a
function f that is β-strongly convex w.r.t. a norm ‖ · ‖ on
S and has f?(0) = 0. Suppose the loss functions lt are con-
vex and V -Lipschitz w.r.t. the dual norm ‖ · ‖?. Then, the
algorithm run with any positive η enjoys the regret bound,

T∑
t=1

lt(wt)−min
u∈S

T∑
t=1

lt(u) ≤ maxu∈S f(u)
η

+
ηV 2T

2β

Algorithm 1 Follow the Regularized Leader
w1 ← ∇f?(0)

for t = 1 to T do
Play wt ∈ S
Receive lt and pick vt ∈ ∂lt(wt)
wt+1 ← ∇f?

(
−η
∑t
s=1 vt

)
end for

Proof: Apply Corollary 7 to the sequence −ηv1, . . . ,−ηvT
to get, for all u,

−η
T∑
t=1

〈vt, u〉 − f(u) ≤ −η
T∑
t=1

〈vt, wt〉+
1

2β

T∑
t=1

‖ηvt‖2? .

Using the that lt is V -Lipschitz, we get ‖vt‖? ≤ V . Plugging
this into the inequality above and rearranging gives,

T∑
t=1

〈vt, wt − u〉 ≤
f(u)
η

+
ηV 2T

2β
.

By convexity of lt, lt(wt)− lt(u) ≤ 〈vt, wt − u〉. Therefore,

T∑
t=1

lt(wt)−
T∑
t=1

lt(u) ≤ f(u)
η

+
ηV 2T

2β
.

Take the max over u ∈ S on both sides to finish the proof.

2.3.2 Rademacher Bound
LetX be an input space. Let T = (X1, . . . , Xn) be a dataset
consisting of i.i.d. samples from some fixed distribution on
X . For a class of real valued functions F ⊆ RX , define its
Rademacher complexity on T to be

RT (F) := E

[
sup
f∈F

1
n

n∑
i=1

εif(Xi)

]
.

Here, the expectation is over εi’s, which are i.i.d.
Rademacher random variables, i.e. P(εi = −1) = P(ε1 =
+1) = 1

2 . Since T is random, this is a random variable. We
can also take expectation over the choice of T and define,

Rn(F) := E [RT (F)]

which gives us a number that is a function of the input space,
the function class and the sample size n. It is well known that
bounds on Rademacher complexity of a class immediately
yield generalization bounds for classifiers picked from that
class. Recently, Kakade et al. [2008] proved Rademacher
complexity bounds for classes consisting of linear predic-
tors using strong convexity arguments. We now give a quick
proof of their main result using Corollary 7. This proof is
essentially the same as their original proof but highlights the
importance of Corollary 7.

Theorem 9 (Generalization) Let f be a β-strongly convex
function w.r.t. a norm ‖ · ‖ on S such that f?(0) = 0. Let



X = {x : ‖x‖? ≤ X} and W = {w : f(w) ≤ fmax}.
Consider the class of linear functions,

F = {x 7→ 〈w, x〉 : w ∈ W} .
Then, for any dataset T ∈ Xn, we have

RT (F) ≤ X

√
2fmax

βn
.

Therefore, the same bound holds forRn(F).

Proof: Let λ > 0. Apply Corollary 7 with u = w and
vi = λεiXi to get,

sup
w∈W

n∑
i=1

〈w, λεiXi〉 ≤
λ2

2β

n∑
i=1

‖εiXi‖2? + sup
w∈W

f(w)

+
n∑
i=1

〈∇f?(v1:i−1), εiXi〉

≤ λ2X2n

2β
+ fmax

+
n∑
i=1

〈∇f?(v1:i−1), εiXi〉 .

Now take expectation on both sides. The left hand side is
nλRT (F) and the last term above becomes zero. Dividing
throughout by nλ, we get,

RT (F) ≤ λX2

2β
+
fmax

nλ
.

Optimizing over λ gives us the result.

3 Examples of strongly convex matrix
functions

We now provide examples of strongly convex functions over
matrices, which have a number of algorithmic implications.
We begin by understanding the strong convexity properties
of functions which only depend on the singular values of the
matrix — this class includes the Schatten norms. We then
turn to understanding norms of matrices which constructed
in a certain “group” manner, where a norm is first applied
to each column of the matrix (to obtain a vector) and then a
norm is applied to this resultant vector. This class for norms
include the || · ||2,1 norm of recent interest (e.g. for the group
Lasso).

We start by presenting tools useful for analyzing matri-
ces, borrowing heavily from Lewis [1995] and Juditsky and
Nemirovski [2008]. In fact, Juditsky and Nemirovski [2008]
already proved the strong smoothness for Schatten p-norms.
We provide additional results for the entropy based matrix
functions. Also, our results on the group norms are more
general that those in Juditsky and Nemirovski [2008].

3.1 Convex analysis of matrix functions
We consider the vector space X = Rm×n of real matrices
of size m × n and the vector space X = Sn of symmetric
matrices of size n×n, both equipped with the inner product,

〈X,Y 〉 := Tr(X>Y ) .

Recall that any matrix X ∈ Rm×n can be decomposed as,

X = UDiag(σ(X))V

where σ(X) denotes the vector (σ1, σ2, . . . σl) (l =
min{m,n}), where σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0 are the
singular values of X arranged in non-increasing order, and
U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices. Also, any
matrix X ∈ Sn can be decomposed as,

X = UDiag(λ(X))U>

where λ(X) = (λ1, λ2, . . . λn), where λ1 ≥ λ2 ≥ . . . ≥ λn
are the eigenvalues of X arranged in non-increasing order,
and U is an orthogonal matrix. Two important results re-
late matrix inner products to inner products between singular
(and eigen-) values

Theorem 10 (von Neumann) Any two matrices X,Y ∈
Rm×n satisfy the inequality

〈X,Y 〉 ≤ 〈σ(X), σ(Y )〉 .

Equality holds above, if and only if, there exist orthogonal
U, V such that

X = UDiag(σ(X))V Y = UDiag(σ(Y ))V .

Theorem 11 (Fan) Any two matrices X,Y ∈ Sn satisfy the
inequality

〈X,Y 〉 ≤ 〈λ(X), λ(Y )〉 .
Equality holds above, if and only if, there exists orthogonal
U such that

X = UDiag(λ(X))U> Y = UDiag(λ(Y ))U> .

We say that a function g : Rn → R∗ is symmetric if g(x)
is invariant under arbitrary permutations of the components
of x. We say g is absolutely symmetric if g(x) is invariant
under arbitrary permutations and sign changes of the compo-
nents of x.

Given a function f : Rl → R∗, we can define a function
f ◦ σ : Rm×n → R∗ as,

(f ◦ σ)(X) := f(σ(X)) .

Similarly, given a function g : Rn → R∗, we can define a
function g ◦ λ : Sn → R∗ as,

(g ◦ λ)(X) := g(λ(X)) .

This allows us to define functions over matrices starting from
functions over vectors. Note that when we use f ◦ σ we are
assuming that X = Rm×n and for g ◦ λ we have X = Sn.
The following result allows us to immediately compute the
conjugate of f ◦ σ and g ◦ λ in terms of the conjugates of f
and g respectively.

Theorem 12 (Lewis [1995]) Let f : Rl → R∗ be an abso-
lutely symmetric function. Then,

(f ◦ σ)? = f? ◦ σ .

Let g : Rn → R∗ be a symmetric function. Then,

(g ◦ λ)? = g? ◦ λ .



Proof: Lewis [1995] proves the case for singular values. For
the eigenvalue case, the proof is entirely analogous to that in
Lewis [1995], except that Fan’s inequality is used instead of
von Neumann’s inequality.

Using this general result, we are able to define certain
matrix norms.

Corollary 13 (Matrix norms) Let f : Rl → R∗ be abso-
lutely symmetric. Then if f = ‖ · ‖ is a norm on Rl then
f ◦ σ = ‖σ(·)‖ is a norm on Rm×n. Further, the dual of this
norm is ‖σ(·)‖?.

Let g : Rn → R∗ be symmetric. Then if g = ‖ · ‖ is a
norm on Rn then g ◦ λ = ‖λ(·)‖ is a norm on Sn. Further,
the dual of this norm is ‖λ(·)‖?.

Another nice result allows us to compute subdifferentials
of f ◦ σ and g ◦ λ (note that elements in the subdifferential
of f ◦ σ and g ◦ λ are matrices) from the subdifferentials of
f and g respectively.

Theorem 14 (Lewis [1995]) Let f : Rl → R∗ be absolutely
symmetric and X ∈ Rm×n. Then,

∂(f ◦ σ)(X) = {UDiag(µ)V > : µ ∈ ∂f(σ(X))

U, V orthogonal, X = UDiag(σ(X))V >}

Let g : Rn → R∗ be symmetric and X ∈ Sn. Then,

∂(g ◦ λ)(X) = {UDiag(µ)U> : µ ∈ ∂g(λ(X))

U orthogonal, X = UDiag(λ(X))U>}

Proof: Again, Lewis [1995] proves the case for singular val-
ues. For the eigenvalue case, again, the proof is identical
to that in Lewis [1995], except that Fan’s inequality is used
instead of von Neumann’s inequality.

Our final tool is a technical result from Juditsky and Ne-
mirovski [2008].

Lemma 15 (Juditsky and Nemirovski [2008]) Let ∆ be an
open interval. Suppose φ : ∆ → R∗ is a twice differen-
tiable convex function such that φ′′ is monotonically non-
decreasing. Let Sn(∆) be the set of all symmetric n × n
matrices with eigenvalues in ∆. Define the function F :
Sn(∆)→ R∗

F (X) =
n∑
i=1

φ(λi(X))

and let
f(t) = F (X + tH)

for some X ∈ Sn(∆), H ∈ Sn. Then, we have,

f ′′(0) ≤ 2
n∑
i=1

φ′′(λi(X))λi(H)2 .

Proof: This follows directly from Proposition 3.1 in Juditsky
and Nemirovski [2008].

3.2 Strongly convex matrix functions
We first provide results on functions which only depend on
the singular values of a matrix and then provide results on
group norms.

Unitarily invariant matrix functions. Our first result is
on the p-Schatten norm ‖X‖S(p) := ‖σ(X)‖p (which fol-
lows from results in Juditsky and Nemirovski [2008]) and
on an entropy-based matrix function.

Theorem 16 (Schatten and entropic matrix functions)

• Define F (X) =
∑
i λi(X) log(λi(X)) on its domain:

{X ∈ Sn : X � 0, Tr(X) = 1},
i.e. the set of symmetric positive semidefinite matrices
with trace 1, and F (X) = ∞ elsewhere (on Sn). We
have that F (X) is 1/2-strongly convex w.r.t. the trace
norm ‖λ(X)‖1.

• For p ∈ [1, 2], the function F (X) = 1
2‖σ(X)‖2p is

min{ 1
2 , p − 1}-strongly convex w.r.t. the p-Schatten

norm ‖X‖S(p) := ‖σ(X)‖p.

Proof: For the first part, we prove that the function (g ◦
λ)(X) is 2-smooth on Sn w.r.t. ‖λ(X)‖∞ where

g(x) = log

(
n∑
i=1

exp(xi)

)
.

Since g is symmetric, by Thm. 12, (g ◦ λ)? is g? ◦ λ, where
g? can be shown to be the function

g?(x) =
n∑
i=1

xi log xi

with domain {x ≥ 0 :
∑
i xi = 1} and g?(x) = ∞

elsewhere. Note that by Thm. 6, 2-smoothness of (g ◦ λ)
implies 1/2-strong convexity of (g ◦ λ)?.

Let us now prove 2-smoothness of g ◦ λ. Fix arbitrary
X,H ∈ Sn, and define

f(t) =
n∑
i=1

exp(λi(X + tH))

and let h(t) = log(f(t)). Note that h(t) = (g ◦λ)(X+ tH).
To prove 2-smoothness of g ◦ λ, it suffices to prove

h′′(0) ≤ 2‖λ(H)‖2∞ .

By the chain rule,

h′′(t) = − (f ′(t))2

f(t)2
+
f ′′(t)
f(t)

.

The first term in non-positive and therefore h′′(0) ≤
f ′′(0)/f(0). By Lemma 15 (with φ(x) = exp(x)),

f ′′(0) ≤ 2
n∑
i=1

exp(λi(X))λi(H)2

≤ 2‖λ(H)‖2∞
n∑
i=1

exp(λi(X))

= 2‖λ(H)‖2∞f(0) ,



whence h′′(0) ≤ f ′′(0)/f(0) ≤ 2‖λ(H)‖2∞.
For the second part, let q be the dual exponent of p, i.e.

1/q + 1/p = 1. Note that ‖σ(X)‖p and ‖σ(X)‖q are dual
norms by Corollary 13. Now we use the result [Juditsky and
Nemirovski, 2008, Example 3.3] which says that 1

2‖σ(X)‖2q
is max{2, q−1}-smooth w.r.t. ‖σ(X)‖q . Hence, by Thm. 6,
1
2‖σ(X)‖2p is min{ 1

2 , p−1}-strongly convex w.r.t. ‖σ(X)‖p.

Group Norms. Let X = (X1X2 . . . Xn) be a m × n real
matrix with columns Xi ∈ Rm. Given norms Ψ and Φ on
Rm and Rn, we define the norm ‖X‖Ψ,Φ as

‖X‖Ψ,Φ := Φ(Ψ(X1), . . . ,Ψ(Xn)) .

That is, we apply Ψ to each column ofX to get a vector in Rn
to which we apply the norm Φ to get the value of ‖X‖Ψ,Φ.
It is easy to check that this is indeed a norm.

An important special case is when Φ = ‖ · ‖r and Ψ =
‖ · ‖p for r, p ≥ 1. In this case, we denote the norm ‖ · ‖Ψ,Φ
by ‖ · ‖p,r.

The dual of ‖ · ‖Ψ,Φ is also easily calculated from the
duals Ψ? and Φ? of Ψ and Φ under a mild condition on Φ.

Lemma 17 Let Φ be an absolutely symmetric norm on Rn.
Then

(‖ · ‖Ψ,Φ)? = ‖ · ‖Ψ?,Φ?

Proof: See Sec. A.2 in the Appendix.

We now state our main theorem for group norms. A spe-
cial case of this theorem (when Φ = ‖ · ‖s, s ≥ 2) appeared
in Juditsky and Nemirovski [2008]. We not only generalize
their result but also provide a simpler proof.

Theorem 18 (Group Norms) Let Ψ,Φ be absolutely sym-
metric norms on Rm,Rn. Let Φ2 ◦ √ : Rn → R∗ denote
the following function,

(Φ2 ◦ √)(x) := Φ2(
√
x1, . . . ,

√
xn) .

Suppose, (Φ2◦√) is a norm on Rn. Further, let the functions
Ψ2 and Φ2 be σ1- and σ2-smooth w.r.t. Ψ and Φ respectively.
Then, ‖ · ‖2Ψ,Φ is (σ1 + σ2)-smooth w.r.t. ‖ · ‖Ψ,Φ.

Proof: See Sec. A.2 in the Appendix.

Lemma 17 implies that (‖ · ‖p,r)? is ‖ · ‖q,s where 1/p+
1/q = 1 and 1/r+1/s = 1. Moreover, when s ≥ 2, ‖·‖2s◦

√

is simply ‖ · ‖ s
2

which is a norm. Thm. 18 now gives us the
following corollary.

Corollary 19 Let q, s ≥ 2. The function 1
2‖ · ‖

2
q,s is (q+s−

2)-smooth w.r.t. ‖ · ‖q,s on Rm×n.

4 Applications
The potential of this framework is that once we characterize
the β-strong convexity of our penalty function F (e.g over
matrices or other abstract convex sets), then we often im-
mediately obtain both a family of online algorithms (along
with their regret bounds) and generalization bounds. In fact,
for matrix based penalty functions, a number of dedicated

previous algorithms/regret bounds are now special cases of
the results herein (using the family of algorithms described
in Shalev-Shwartz [2007]), including online PCA [Warmuth
and Kuzmin, 2006], the perceptron algorithm derived with a
Schatten norm [Cavallanti et al., 2008], and the multi-task
algorithm (using the || · ||2,1 group norm) of Agarwal et al.
[2008]. Note that in order to derive an online algorithm with
penalty F (e.g. as in Algorithm 1), we must specify ∇F ?,
which is often straightforward to compute using the calculus
of certain matrix functions discussed in Subsection 3.1.

We now demonstrate how to obtain a few generalization
and regret bounds for problems of recent interest.

4.1 Group Lasso
Consider the setting of k-multivariate regression or classi-
fication problems, where the dataset consists of i.i.d. pairs
(xi,yi) where xi ∈ Rd is an example vector and yi ∈ Rk
are the responses for k different problems. To predict the k
responses, we learn a matrix W ∈ Rk×d such that Wx is a
good predictor of y. The rowsWi,· (1 ≤ i ≤ k) are the linear
predictors for the individual problems. If the same features
are going to be relevant across the k problems, then natural
block regularization schemes have been already proposed in
the literature [Yuan and Lin, 2006]. With the squared loss
these schemes try to solve an optimization problem of the
form,

min
W

1
n

n∑
i=1

‖yi −Wxi‖22 + λ‖W‖p,r (1)

for some p, r ∈ [1, 2] and λ > 0. For some choices of
(p, r) there is no coupling across problems. For example,
the choices (2, 2) and (1, 1) exactly correspond to solving k
independent L2- and L1-regularized problems respectively.
However, for other choices, we get more interesting coupling
of the k problems. For example, the group Lasso choice sets
p = 2 and r = 1. That is, we take the L2-norm of the k
columns of W and add them up.

Let us focus on the constrained form of the group Lasso
problem Eq. (1),

min
W

1
n

n∑
i=1

‖yi −Wxi‖22 s.t. ‖W‖2,1 ≤ W̄2,1

for some W̄2,1 > 0.
In order to obtain generalization bounds for the solution

of this problem, we need to control the Rademacher com-
plexity of the function class,

F = {(x,y) 7→ ‖y −Wx‖22 : ‖W‖2,1 ≤ W̄2,1} . (2)

Theorem 20 (Group Lasso) Let the distribution of x,y be
such that ‖x‖∞ ≤ X∞ and ‖y‖2 ≤ Y2 a.s. Then, for the
class defined above in Eq. (2), we have

Rn(F) ≤
(
Y2 + eW̄2,1X∞

√
log d

)2
√
n

Note that this bound shows feature selection properties
of the group Lasso, in the following sense: if there are q rel-
evant (shared) features across all problems (whose weights
are bounded), then the above bound scales as O( q

2 log d√
n

).
The above bound directly leads to a generalization bound.



Proof: We have

‖y −Wx‖22 = y>y − 2y>Wx + x>W>Wx

= y>y − 2Tr
(
y>Wx

)
+ Tr

(
x>W>Wx

)
= y>y − 2Tr

(
xy>W

)
+ Tr

(
W>Wxx>

)
= y>y − 2

〈
yx>,W

〉
+
〈
W>W,xx>

〉
where the inner products appearing in the last line are matrix
inner products. Now consider the classes:

F1 = {(x,y) 7→ 2
〈
W,yx>

〉
: ‖W‖2,1 ≤ W̄2,1} ,

F2 = {(x,y) 7→
〈
W>W,xx>

〉
: ‖W‖2,1 ≤ W̄2,1} .

It is straightforward to show:

Rn(F) ≤ Rn(F1) +Rn(F2) . (3)

For F1, we use Thm. 9 with ‖ · ‖ = ‖ · ‖2,r for r ∈
(1, 2] and f(W ) = 1

2‖W‖
2
2,r. Let 1/r + 1/s = 1, so that

s ∈ [2,∞). By Corollary 19, 1
2‖ · ‖

2
2,s is s-smooth. Hence,

by Thm. 6, its conjugate 1
2‖ · ‖

2
2,r is 1/s-strongly convex.

Moreover ‖yx>‖2,s ≤ d1/sY2X∞. Now, Thm. 9 gives us,

Rn(F1) ≤ 2d1/sY2X∞W̄2,1

√
s

n
.

Setting s = log d gives,

Rn(F1) ≤ 2eY2X∞W̄2,1

√
log d
n

. (4)

For F2, note that

‖W>W‖1,1 =
∑
i,j

| 〈W·,i,W·,j〉 |

≤
∑
i,j

‖W·,i‖2 · ‖W·,j‖2

=
∑
i

‖W·,i‖2 ·
∑
j

‖W·,j‖2

= ‖W‖22,1 .

Also, ‖xx>‖∞,∞ ≤ X2
∞. Now, using the L∞/L1 result

from Sec. 3.1 in Kakade et al. [2008], we get

Rn(F2) ≤ X2
∞W̄

2
2,1

√
2 log d
n

. (5)

The result follows from Eq. (3), with Eq. (4) and Eq. (5).

4.2 Kernel Learning
We briefly review the kernel learning setting first explored
in Lanckriet et al. [2004]. Let X be an input space and let
T = (x1, . . . ,xn) ∈ Xn be the training dataset. Kernel
algorithms work with the space of linear functions,{

x 7→
n∑
i=1

αiK(xi,x) : αi ∈ R

}
.

In kernel learning, we consider a kernel family K and con-
sider the class,{

x 7→
n∑
i=1

αiK(xi,x) : K ∈ K, αi ∈ R

}
.

In particular, we can choose a finite set {K1, . . . ,Kk} of
base kernels and consider the convex combinations,

K+
c =


k∑
j=1

µjKj : µj ≥ 0,
k∑
j=1

µj = 1

 .

This is the unconstrained function class. In applications, one
constrains the function class in some way. The class consid-
ered in Lanckriet et al. [2004] is

FK+
c

=

x 7→
n∑
i=1

αiK(xi, ·) : K =
k∑
j=1

µjKj , µj ≥ 0,

k∑
j=1

µj = 1, α>K(T )α ≤ 1/γ2

 (6)

where γ > 0 is a margin parameter and K(T )i,j =
K(xi,xj) is the n × n Gram matrix of the kernel K on the
dataset T .

Theorem 21 (Kernel learning) Consider the class FK+
c

de-
fined in Eq. (6). Let Kj(x,x) ≤ B for 1 ≤ j ≤ k and
x ∈ X . Then,

RT (FK+
c

) ≤ e

√
B log k
γ2n

.

Before we present the proof, first note that the depen-
dence on the number of features, k, is rather mild (only loga-
rithmic) — implying that we can learn a kernel as a (convex)
combination of a rather large number of base kernels.

Also, let us discuss how the above improves upon the
prior bounds provided by Lanckriet et al. [2004] and Sre-
bro and Ben-David [2006] (neither of which had logarithmic
k dependence). The former proves a bound of O

(√
Bk
γ2n

)
which is quite inferior to our bound. We cannot compare
our bound directly to the bound in Srebro and Ben-David
[2006] as they do not work with Rademacher complexities.
However, if one compares the resulting generalization error
bounds, then their bound is

O


√
k log n3B

γ2k + B
γ2 log γn√

B
log nB

γ2

n


and ours is

O

(√
B log k
γ2n

)
.

If k ≥ n, their bound is vacuous (while ours is still meaning-
ful). If k ≤ n, our bound is better.
Proof: LetHj be the RKHS of Kj ,

Hj =

{
l∑
i=1

αiKj(x̃i, ·) : l > 0, x̃i ∈ X , α ∈ Rl
}
.

equipped with the inner product〈
l∑
i=1

αiKj(x̃i, ·),
m∑
j=1

α′iKj(x̃′j , ·)

〉
Hj

=
∑
i,j

αiα
′
jKj(x̃i, x̃′j)



Consider the space H = H1 × . . . × Hk equipped with the
inner product,

〈~u,~v〉 :=
k∑
i=1

〈ui, vi〉Hi
.

Let r, s be dual exponents with r ∈ (1, 2], s ∈ [2,∞). For
~w ∈ H, let ‖ · ‖2,r be the norm defined by

‖~w‖2,r =

(
k∑
i=1

‖wi‖rHi

) 1
r

.

We now claim that
FK+

c
⊆ Fr (7)

where

Fr := {x 7→
〈
~w, ~φ(x)

〉
: ~w ∈ H, ‖~w‖2,r ≤ 1/γ} ,

and
~φ(x) = (K1(x, ·), . . . ,Kk(x, ·)) ∈ H .

To see this, pick arbitrary an arbitrary f in FK+
c

. Thus, for
some αi’s and µj’s, we have,

f(x) =
n∑
i=1

αi

 K∑
j=1

µjKj(xi,x)


=

k∑
j=1

n∑
i=1

µjαiKj(xi,x)

=
〈
~w, ~φ(x)

〉
where ~w ∈ H is such that

wj =
n∑
i=1

µjαiKj(xi, ·) ∈ Hj .

Moreover,

‖~w‖22,r ≤ ‖~w‖22,1

=

 k∑
j=1

∥∥∥∥∥
n∑
i=1

µjαiKj(xi, ·)

∥∥∥∥∥
Hj

2

=

 k∑
j=1

µj

∥∥∥∥∥
n∑
i=1

αiKj(xi, ·)

∥∥∥∥∥
Hj

2

≤
k∑
j=1

µj

∥∥∥∥∥
n∑
i=1

αiKj(xi, ·)

∥∥∥∥∥
2

Hj

=
k∑
j=1

µjα
>Kj(T )α

= α>

 k∑
j=1

µjKj(T )

α

≤ 1/γ2 ,

where the second inequality is by Cauchy-Schwarz. Hence,
Eq. (7) holds.

Since ‖Kj(x, ·)‖Hj
≤
√
B, we also have ‖~φ(x)‖2,s ≤

k1/s
√
B for any x ∈ X . By Corollary 19, 1

2‖ · ‖2,s is s-
smooth. Hence, by Thm. 6, its conjugate 1

2‖ · ‖
2
2,r is 1/s-

strongly convex. Now, we use Thm. 9 with X = k1/s
√
B,

fmax = 1
2γ

2 and β = 1/s, to get

Rn(FK+
c

) ≤ Rn(Fr) ≤ k1/s

√
Bs

γ2n
.

Setting s = log k finishes the proof.

4.3 Online Control with Quadratic Costs
Consider a finite horizon control problem where at each time
step t, the learner (or controller in this context) has to choose
a “control” direction ut ∈ Rn, ‖ut‖2 = 1. However, instead
of a fixed quadratic cost function, as is assumed in Linear-
Quadratic control, the cost function is chosen adversarially.
More specifically, at each time step t, the adversary chooses
a positive semidefinite matrix Ct ∈ Sn and the learner incurs
the cost u>t Ctut. As is usual, we define the learner’s regret
after T time steps to be

T∑
t=1

u>t Ctut − inf
u : ‖u‖2=1

T∑
t=1

u>Ctu .

Note that this is similar to the online variance minimization
problem described in Warmuth and Kuzmin [2006]. Suppose
Algorithm 2 is run with

F (X) =
n∑
i=1

λi(X) log(nλi(X)) . (8)

Since F = f ◦ λ for f(x) =
∑
i xi log(nxi), we have, by

Thm. 12, F ? = f?◦λwhere f?(y) = log ((
∑
i exp(yi))/n).

Also, by Thm. 14,if X = UDiag(λ(X))U> then

∇F ?(X) = UDiag(∇f?(λ(X)))U>

= UDiag
(

exp(λ1(X))
Z

, . . . ,
exp(λn(X))

Z

)
U>

where Z =
∑n
i=1 exp(λi(X)).

Theorem 22 (Control) Suppose Algorithm 2 is run with the
choice of F given in Eq. (8) and the sequence Ct is such that
Ct ∈ Sn, ‖λ(Ct)‖∞ ≤ K. Then, we have, for any η > 0,

E

[
T∑
t=1

u>t Ctut − inf
u : ‖u‖2=1

T∑
t=1

u>Ctu

]
≤ log n

η
+ ηK2T .

Proof: Note that

E
[
u>t Ctut

]
= E

[
n∑
i=1

λt,iv>t,iCtvt,i

]

= E

[
n∑
i=1

λt,i
〈
Ct,vt,iv>t,i

〉]

= E

[〈
Ct,

n∑
i=1

λt,ivt,iv>t,i

〉]
= E [〈Ct,Wt〉]



Algorithm 2 Online Control with Quadratic Costs
S1 ← 0
W1 ← Diag(1/n, 1/n, . . . , 1/n)

for t = 1 to T do
Compute the eigen-decomposition

Wt =
n∑
i=1

λt,ivt,iv>t,i

Choose it such that P(it = j) = λt,j
Apply “control” ut = vt,it
Receive cost matrix Ct ∈ Sn
Incur cost u>t Ctut
St+1 ← St + Ct
Wt+1 ← ∇F ?(−ηSt+1)

end for

Note that F ?(0) = 0. Now, Thm. 8 along with Thm. 16
gives us,

T∑
t=1

〈Ct,Wt〉 − min
W∈S

T∑
t=1

〈Ct,W 〉 ≤
log n
η

+
ηK2T

2 · 1
2

,

where S is the set of symmetric positive semidefinite matri-
ces with trace 1. Note that if ‖u‖2 = 1, then uu> ∈ S and〈
Ct,uu>

〉
= u>Ctu. Therefore,

T∑
t=1

〈Ct,Wt〉 − min
‖u‖2=1

T∑
t=1

u>Ctu ≤
log n
η

+ ηK2T .

Taking expectation now proves the result.
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A Technical Lemmas and Proofs
A.1 The duality of strong convexity and strong

smoothness
Proof:[of Thm. 6] First, [Shalev-Shwartz, 2007, Lemma
15] yields the claim 1 ⇒ 2. It is left to prove that f is
strongly convex assuming that f? is strongly smooth. For
simplicity assume that β = 1. Denote g(y) = f?(x +
y)−(f?(x)+〈∇f?(x), y〉). By the smoothness assumption,
g(y) ≤ 1

2‖y‖
2
?. This implies that g?(a) ≥ 1

2‖a‖
2 because of

[Shalev-Shwartz and Singer, 2008, Lemma 19] and that the
conjugate of half squared norm is half squared of the dual
norm. Using the definition of g we have

g?(a) = sup
y
〈y, a〉 − g(y)

= sup
y
〈y, a〉 − (f?(x+ y)− (f?(x) + 〈∇f?(x), y〉))

= sup
y
〈y, a+∇f?(x)〉 − f?(x+ y) + f?(x)

= sup
z
〈z − x, a+∇f?(x)〉 − f?(z) + f?(x)

= f(a+∇f?(x)) + f?(x)− 〈x, a+∇f?(x)〉

where we have used that f?? = f , in the last step. De-
note u = ∇f?(x). From the equality in Fenchel-Young (e.g.
[Shalev-Shwartz and Singer, 2008, Lemma 17]) we obtain
that 〈x, u〉 = f?(x) + f(u) and thus

g?(a) = f(a+ u)− f(u)− 〈x, a〉 .

Combining with g?(a) ≥ 1
2‖a‖

2, we have

f(a+ u)− f(u)− 〈x, a〉 ≥ 1
2
‖a‖2 , (9)

which holds for all a, x, with u = ∇f?(x).
Now let us prove that for any point u′ in the relative inte-

rior of the domain of f that if x ∈ ∂f(u′) then u′ = ∇f?(x).
Let u := ∇f?(x) and we must show that u′ = u. By
Fenchel-Young, we have that 〈x, u′〉 = f?(x) + f(u′), and,
again by Fenchel-Young (and f?? = f ), we have 〈x, u〉 =



f?(x)+f(u). We can now apply Equation Eq. (9), to obtain:
0 = 〈x, u〉 − f(u)− (〈x, u′〉 − f(u′))

= f(u′)− f(u)− 〈x, u′ − u〉 ≥ 1
2
‖u′ − u‖2 ,

which implies that u′ = ∇f?(x).
Next, let u1, u2 be two points in the relative interior of

the domain of f , let α ∈ (0, 1), and let u = αu1 + (1 −
α)u2. Let x ∈ ∂f(u) (which is non-empty 1). We have that
u = ∇f?(x), by the previous argument. Now we are able
to apply Equation Eq. (9) twice, once with a = u1 − u and
once with a = u2 − u (and both with x) to obtain

f(u1)− f(u)− 〈x, u1 − u〉 ≥
1
2
‖u1 − u‖2

f(u2)− f(u)− 〈x, u2 − u〉 ≥
1
2
‖u2 − u‖2

Finally, summing up the above two equations with coeffi-
cients α and 1− α we obtain that f is strongly convex.

A.2 Group Norms
Proof:[of Lemma 17] Recall that, by definition,

(‖Y ‖Ψ,Φ)? = sup{〈X,Y 〉 : ‖X‖Ψ,Φ ≤ 1}

= sup{
n∑
i=1

〈Xi, Yi〉 : ‖X‖Ψ,Φ ≤ 1} (10)

We first prove (‖Y ‖Ψ,Φ)? ≤ ‖Y ‖Ψ?,Φ?
. Let ~Ψ(X) be a

shorthand for (Ψ(X1), . . . ,Ψ(Xn)). Now, we have,
n∑
i=1

〈Xi, Yi〉 ≤
n∑
i=1

Ψ(Xi)Ψ?(Yi)

=
〈
~Ψ(X), ~Ψ?(Y )

〉
≤ Φ(~Ψ(X)) · Φ?( ~Ψ?(Y ))
= ‖X‖Ψ,Φ · ‖Y ‖Ψ?,Φ?

.

Thus, the sup in Eq. (10) is no more than ‖Y ‖Ψ?,Φ? .
To prove (‖Y ‖Ψ,Φ)? ≥ ‖Y ‖Ψ?,Φ? , let θ ∈ Rn be such

that Φ(θ) = 1 and〈
θ, ~Ψ?(Y )

〉
= Φ?( ~Ψ?(Y )) = ‖Y ‖Ψ?,Φ?

.

Further, for each i, let Zi ∈ Rm be such that Ψ(Zi) = 1 and
〈Zi, Yi〉 = Ψ?(Yi). Now, let X be the matrix with columns
Xi = θiZi. Then, we have

n∑
i=1

〈Xi, Yi〉 =
n∑
i=1

θi 〈Zi, Yi〉

=
n∑
i=1

θiΨ?(Yi)

=
〈
θ, ~Ψ?(Y )

〉
= ‖Y ‖Ψ?,Φ?

.

1The set ∂f(u) is not empty for all u in the relative interior of
the domain of f . See the relative max formula in [Borwein and
Lewis, 2006, page 42] or [Rockafellar, 1970, page 253]. If u is not
in the interior of f , then ∂f(u) is empty. But, a function is defined
to be essentially strictly convex if it is strictly convex on any subset
of {u : ∂f(u) 6= ∅}. The last set is called the domain of ∂f and it
contains the relative interior of the domain of f , so we’re ok here.

Furthermore, since Ψ(Xi) = |θi|Ψ(Zi) = |θi| and Φ is ab-
solutely symmetric, we have ‖X‖Ψ,Φ = Φ(|θ|) = Φ(θ) =
1. Thus, the sup in Eq. (10) is at least ‖Y ‖Ψ?,Φ?

.

Proof:[of Thm. 18] Note that an equivalent definition of σ-
smoothness of a function f w.r.t. a norm ‖ · ‖ is that, for all
x, y and α ∈ [0, 1], we have

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y)

− 1
2
σα(1− α)‖x− y‖2 .

Let X,Y ∈ Rm×n be arbitrary matrices with columns Xi

and Yi respectively. We need to prove

‖(1− α)X + αY ‖2Ψ,Φ ≥ α‖X‖2Ψ,Φ + (1− α)‖Y ‖2Ψ,Φ

− 1
2

(σ1 + σ2)α(1− α)‖X − Y ‖2Ψ,Φ . (11)

We have,

‖(1− α)X + αY ‖2Ψ,Φ
= Φ2(. . . ,Ψ(αXi + (1− α)Yi), . . .)

= (Φ2 ◦ √)(. . . ,Ψ2(αXi + (1− α)Yi), . . .)

≥ (Φ2 ◦ √)(. . . , αΨ2(Xi) + (1− α)Ψ2(Yi)

− 1
2
σ1α(1− α)Ψ2(Xi − Yi), . . .)

≥ (Φ2 ◦ √)(. . . , αΨ2(Xi) + (1− α)Ψ2(Yi), . . .)

− 1
2
σ1α(1− α)(Φ2 ◦ √)(. . . ,Ψ2(Xi − Yi), . . .)

= Φ2(. . . ,
√
αΨ2(Xi) + (1− α)Ψ2(Yi), . . .)

− 1
2
σ1α(1− α)‖X − Y ‖2Ψ,Φ . (12)

Now, we use that, for any x, y ≥ 0 and α ∈ [0, 1], we have√
αx2 + (1− α)y2 ≥ αx+ (1− α)y .

Thus, we have

Φ2(. . . ,
√
αΨ2(Xi) + (1− α)Ψ2(Yi), . . .)

≥ Φ2(. . . , αΨ(Xi) + (1− α)Ψ(Yi), . . .)

≥ αΦ2(. . . ,Ψ(Xi), . . .) + (1− α)Φ2(. . . ,Ψ(Yi), . . .)

− 1
2
σ2α(1− α)Φ2(. . . ,Ψ(Xi)−Ψ(Yi), . . .)

≥ α‖X‖2Ψ,Φ + (1− α)‖Y ‖2Ψ,Φ

− 1
2
σ2α(1− α)Φ2(. . . ,Ψ(Xi − Yi), . . .)

= α‖X‖2Ψ,Φ + (1− α)‖Y ‖2Ψ,Φ

− 1
2
σ2α(1− α)‖X − Y ‖2Ψ,Φ

Plugging this into Eq. (12) proves Eq. (11).


