
THE FORGETRON: A KERNEL-BASED PERCEPTRON ON A

BUDGET

OFER DEKEL∗, SHAI SHALEV-SHWARTZ† , AND YORAM SINGER‡

Abstract. The Perceptron algorithm, despite its simplicity, often performs well in online clas-
sification tasks. The Perceptron becomes especially effective when it is used in conjunction with
kernel functions. However, a common difficulty encountered when implementing kernel-based on-
line algorithms is the amount of memory required to store the online hypothesis, which may grow
unboundedly as the algorithm progresses. Moreover, the running time of each online round grows
linearly with the amount of memory used to store the hypothesis. In this paper, we present the
Forgetron family of kernel-based online classification algorithms, which overcome this problem by
restricting themselves to a predefined memory budget. We obtain different members of this family
by modifying the kernel-based Perceptron in various ways. We also prove a unified mistake bound
for all of the Forgetron algorithms. To our knowledge, this is the first online kernel-based learning
paradigm which, on one hand, maintains a strict limit on the amount of memory it uses and, on the
other hand, entertains a relative mistake bound. We conclude with experiments using real datasets,
which underscore the merits of our approach.

Key words. online classification, kernel methods, the Perceptron algorithm, learning theory

AMS subject classifications. 68T05, 68Q32

1. Introduction. The introduction of the Support Vector Machine (SVM) [11]
sparked a widespread interest in kernel methods as a means of solving binary classi-
fication problems. Although SVM was initially stated as a batch-learning technique,
it significantly influenced the development of kernel methods in the online-learning
setting. Online classification algorithms that can incorporate kernels include the Per-
ceptron [10], ROMMA [9], ALMA [5], NORMA [7] and the Passive-Aggressive family
of algorithms [2]. Each of these algorithms observes examples in a sequence of rounds,
and constructs its classification function incrementally, by storing a subset of the ob-
served examples in its internal memory. The classification function is then defined
by a kernel-dependent combination of the stored examples. This set of stored exam-
ples is the online equivalent of the support set in SVMs, however in contrast to the
support, it constantly changes as learning progresses. In this paper, we call this set
the active set, as it includes those examples that actively define the current classi-
fier. Typically, an example is added to the active set every time the online algorithm
makes a prediction mistake, or when its confidence in a prediction is inadequately
low. Under certain circumstances, the active set often grow to be very big, and this
can lead to significant computational difficulties. Naturally, since computing devices
have bounded memory resources, there is the danger that an online algorithm would
require more memory than is physically available. This problem becomes especially
eminent in cases where the online algorithm is implemented as part of a specialized
hardware system with a small memory, such as a mobile telephone or an autonomous
robot. Moreover, the growth of the active set can lead to unacceptably long running
times, as the time-complexity of each online round scales linearly with the size of the
active set.

Crammer, Kandola, and Singer [3] first addressed this problem by describing an
online kernel-based modification of the Perceptron algorithm in which the active set

∗School of CS and Eng., The Hebrew University, Jerusalem, 91904, Israel (oferd@cs.huji.ac.il)
†School of CS and Eng., The Hebrew University, Jerusalem, 91904, Israel (shais@cs.huji.ac.il)
‡Google Inc., 1600 Amphitheatre Parkway, Moutain View, California, 94043 (singer@google.com)

1

2 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

does not exceed a predefined budget. Their algorithm removes redundant examples
from the active set in an attempt to make the best use of the limited memory resource.
Weston, Bordes and Bottou [12] followed with their own online kernel machine on a
budget. Both techniques work relatively well in practice, however they both lack
formal guarantees on prediction accuracy.

In this paper we present an online kernel-based classifier which is restricted to a
fixed budget of active examples and for which we derive a formal learning-theoretic
analysis. To the best of our knowledge, this is the first online algorithm on a budget
for which a rigorous mistake bound has been proven. Like [3], our approach also uses
the kernel-based Perceptron as a starting point, and enforces the budget constraint
by removing an example from the active set whenever the size of this set exceeds
the predefined limit. We name our algorithm Forgetron, since it is a variation of the
Perceptron algorithm which forgets active examples as necessary.

Besides forgetting active examples, the Forgetron algorithm also shrinks the on-
line hypothesis every time it performs an update. This repeated shrinking technique
is the key ingredient that makes our theoretical analysis possible. Every time a new
example is added to the active set, the entire hypothesis is multiplied by a positive
scalar which is at most 1, and often smaller than 1. This causes the weight of each
active example to diminish from update to update. If this scaling procedure is done
correctly, it ensures that there always exists an active example with a small weight
and a minor influence on the current hypothesis. This example can be safely removed
from the active set without causing serious damage to the accuracy of our online clas-
sifier. The scaling step should be performed carefully, since an over-aggressive scaling
policy could significantly impair the algorithm’s prediction abilities. The delicate bal-
ance between safe removal of active examples and over-aggressive scaling is the main
accomplishment of this paper.

Following the preliminary presentation of the Forgetron algorithm [4], Cesa-
Bianchi and Gentile devised a randomized online classification algorithm on a budget
[1]. They also proved an upper bound on the expected number of prediction mistakes
made by their algorithm. We revisit the algorithm of Cesa-Bianchi and Gentile in
Sec. 8.

This paper is organized as follows. In Sec. 2 we begin with a more formal pre-
sentation of our problem and discuss a profound difficulty in proving mistake bounds
for kernel-methods on a budget. In Sec. 3 and Sec. 4 we lay the groundwork for our
algorithm by analyzing two possible modifications to the Perceptron algorithm. In
Sec. 5 we derive the basic Forgetron algorithm, and in Sec. 6 and Sec. 7 we present
two possible improvements to the basic algorithm. We conclude with an empirical
evaluation of our algorithms in Sec. 8 and a discussion in Sec. 9.

2. Problem Setting. Online learning is performed in a sequence of consecutive
rounds. On round t, the online algorithm observes an instance xt, which is drawn
from some predefined instance domain X . The algorithm predicts the binary label
associated with that instance and is then given the correct label yt ∈ {−1,+1}. At
this point, the algorithm may use the new example (xt, yt) to improve its prediction
mechanism for future rounds. We make no assumptions on the way in which the
sequence of examples is generated. The goal of the algorithm is to correctly predict
as many labels as possible.

The predictions of the online algorithm are determined by a function which is
stored in its internal memory and is updated from round to round. We refer to this
function as the hypothesis of the algorithm and denote the hypothesis used on round

THE FORGETRON: 3

t by ft. Our focus in this paper is on margin based hypotheses, namely, ft is a
function from X to R where sign(ft(xt)) constitutes the actual binary prediction and
|ft(xt)| is the confidence in this prediction. The term yf(x) is called the margin of
the prediction and is positive whenever y and sign(f(x)) agree. We can evaluate the
performance of an hypothesis on a given example (x, y) in one of two ways. First,
we can check whether the hypothesis makes a prediction mistake, namely determine
whether y = sign(f(x)) or not. Throughout this paper, we use M to denote the
number of prediction mistakes made by an online algorithm on a sequence of ex-
amples (x1, y1), . . . , (xT , yT). The second way we can evaluate the predictions of an
hypothesis is by using the hinge-loss function, defined as

ℓ
(
f ; (x, y)

)
=

{
0 if yf(x) ≥ 1
1 − yf(x) otherwise

.(2.1)

The hinge-loss penalizes an hypothesis for any margin less than 1. Additionally, if
y 6= sign(f(x)) then ℓ(f, (x, y)) ≥ 1 and therefore the cumulative hinge-loss suffered
over a sequence of examples upper bounds M . The algorithms discussed in this paper
use kernel-based hypotheses, namely, they are defined with respect to a symmetric
positive semidefinite kernel operator K : X × X → R. A kernel-based hypothesis
takes the form

f(x) =

k∑

i=1

αiK(xi,x) ,(2.2)

where x1, . . . ,xk are members of X and α1, . . . , αk are real valued weights. To facili-
tate the derivation of our algorithms and their analysis, we associate a Reproducing
Kernel Hilbert Space (RKHS) with K in the standard way common to all kernel-
based learning methods. First, we define the inner product between the functions
f(x) =

∑k
i=1 αiK(xi,x) and g(x) =

∑l
j=1 βjK(zj ,x) to be

〈f, g〉 =
k∑

i=1

l∑

j=1

αiβjK(xi, zj) .

This inner-product naturally induces a norm defined by ‖f‖ = 〈f, f〉1/2 and a metric
‖f − g‖ = (〈f, f〉 − 2〈f, g〉+ 〈g, g〉)1/2. Next, we let HK denote the closure of the set
of all hypotheses of the form given in Eq. (2.2), with respect to this metric. These
definitions play an important role in the analysis of our algorithms.

Online kernel methods typically restrict themselves to hypotheses that are defined
by a subset of the examples observed on previous rounds. That is, the hypothesis used
on round t takes the form

ft(x) =
∑

i∈It

αiK(xi,x) ,(2.3)

where It is a subset of {1, . . . , (t− 1)} and xi is the instance observed on round i. As
stated above, It is called the active set, and we say that example (xi, yi) is active on
round t if i ∈ It.

Perhaps the most well known online algorithm for binary classification is the Per-
ceptron [10]. Stated as a kernel method, the hypotheses generated by the Perceptron
take the form ft(x) =

∑

i∈It
yiK(xi,x). Namely, the weight assigned to each active

4 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

example is either +1 or −1, depending on the label of that example. The Perceptron
initializes I1 to be the empty set, which implicitly sets f1 to be the zero function. It
then updates its hypothesis only on rounds where a prediction mistake is made. Con-
cretely, if on round t the margin ytft(xt) is non-positive then the index t is inserted
into the active set. As a consequence, the size of the active set on round t equals the
number of prediction mistakes made on previous rounds. A relative mistake bound
can be proven for the Perceptron algorithm. The bound holds for any sequence of
examples, and compares the number of mistakes made by the Perceptron with the
cumulative hinge-loss of any fixed hypothesis g ∈ HK , even one defined with prior
knowledge of the sequence.

Theorem 2.1. Let K be a kernel and let (x1, y1), . . . , (xT , yT) be a sequence of
examples such that K(xt,xt) ≤ 1 for all t. Let g be an arbitrary function in HK

and define ℓ⋆
t = ℓ

(
g; (xt, yt)

)
. Then the number of prediction mistakes made by the

Perceptron on this sequence is bounded by

M ≤ ‖g‖2 + 2

T∑

t=1

ℓ⋆
t .

The proof of this theorem is given in the next section, and serves as the basis of the
analysis in this paper. Although the Perceptron is guaranteed to be competitive with
any fixed hypothesis g ∈ HK , the fact that its active set grows with every mistake may
pose a serious computational problem, as already noted in the introduction. In fact,
this problem is common to most kernel-based online methods which do not explicitly
monitor the size of It.

On the limitation of algorithms on a memory budget:. Our goal is to derive and
analyze an online prediction algorithm which resolves the problems discussed above
by enforcing a fixed bound on the size of the active set. Formally, let B be a positive
integer which we refer to as the budget parameter. We would like to devise an algorithm
which enforces the constraint |It| ≤ B on every round t. Furthermore, we would like
to prove a relative mistake bound for this algorithm along the lines of Thm. 2.1.
Regretfully, it turns out that this goal cannot be reached without making additional
assumptions. We show this inherent limitation by presenting a simple counterexample.
That is, for any kernel-based algorithm that uses a prediction function of the form
given in Eq. (2.3), and which adheres to the constraint |It| ≤ B, we can find a kernel
K, an hypothesis g ∈ HK and an arbitrarily long sequence of examples such that the
algorithm makes a prediction mistake on every single round while g suffers no loss
at all. Our counterexample is constructed as follows. We choose X to be the set of
B + 1 standard unit vectors in R

B+1, namely X = {ei}B+1
i=1 where ei is the vector

with 1 in its i’th coordinate and zeros elsewhere. The kernel function K is set to be
the standard dot product in R

B+1, thus K(x,x′) = x · x′. On every round t, the
online hypothesis, ft, is a linear combination of at most B vectors from X . Since
|X | = B + 1, there exists a vector xt ∈ X which is not currently active. Furthermore,
by construction, xt is orthogonal to all of the active vectors, and therefore ft(xt) = 0.
Assume without loss of generality that the online algorithm we are using predicts yt

to be −1 when ft(x) = 0. If on every round we were to present the online algorithm
with the example (xt,+1) then the online algorithm would make a prediction mistake

on every round. On the other hand, the hypothesis ḡ =
∑B+1

i=1 ei is a member of HK

and attains a hinge-loss of 0 on every round. We have found a sequence of examples
and a fixed hypothesis (which is indeed defined by more than B vectors from X) that
attains a cumulative loss of zero on this sequence, while the number of mistakes made

THE FORGETRON: 5

by our online algorithm equals the number of rounds. Clearly, a general theorem
along the lines of Thm. 2.1 cannot be proven.

One way to resolve the problem illustrated above is to limit the set of competing
hypotheses to a subset of HK in a way that would naturally exclude ḡ in the example
above. In this paper, we limit the set of competitors to hypotheses with a bounded
norm. Formally, we wish to devise an online algorithm which is competitive with every
hypothesis g ∈ HK for which ‖g‖ ≤ U , where U is a predefined positive constant.
The counterexample above indicates that we cannot prove a relative mistake bound
with U ≥

√
B + 1, since the norm of ḡ in our counterexample is

√
B + 1. In this

paper we come close to this upper bound by proving that our algorithms can compete
with any hypothesis whose norm is bounded from above by 1

4

√

(B + 1)/ log(B + 1).
Limiting the set of competing hypotheses to a ball of norm U about the origin of
HK is one possible way to overcome the problem exposed by our counterexample. It
seems plausible that other restrictions on the general problem setting, such as specific
choices of the instance domain X or the kernel function K, could resolve this problem
equally well.

As mentioned in the previous section, Cesa-Bianchi and Gentile devised a random-
ized online classification algorithm on a budget [1]. Their analysis shows that their
algorithm is competitive with any hypothesis whose norm is bounded from above
by O(

√
B + 1). However, in contrast to our analysis that bounds the actual num-

ber of prediction mistakes (M), the analysis of Cesa-Bianchi and Gentile bounds the
expected number of mistakes (E[M]), where expectation is taken over the internal
randomization of their algorithm. Namely, the actual performance of their random-
ized algorithm varies from run to run. We illustrate this phenomenon empirically in
Sec. 8.

3. The Remove-Oldest Perceptron. The Perceptron algorithm and its mis-
take bound (Thm. 2.1) serve as our starting point. Therefore, it is important to
understand the proof of Thm. 2.1 before proceeding. The key to proving Thm. 2.1
is the observation that the hypothesis of the Perceptron is drawn towards good hy-
potheses in HK . Specifically, whenever the Perceptron makes a prediction mistake,
its hypothesis moves closer to every hypothesis g ∈ HK which attains a margin of at
least 1

2 on the current example. This fact is formally stated and proven below.
Lemma 3.1. Let (x, y) be an example, where x ∈ X , K(x,x) ≤ 1, and y ∈

{−1,+1}. Let f ∈ HK be a function such that yf(x) ≤ 0, and define f ′ = f+yK(x, ·).
Then for any function g ∈ HK it holds that

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1 .

Proof. Using the definition of f ′ we can write,

‖f − g‖2 − ‖f ′ − g‖2

= ‖f − g‖2 − ‖(f − g) + yK(x, ·)‖2

= ‖f − g‖2 − ‖f − g‖2 − 2y〈(f − g),K(x, ·)〉 − K(x,x)

= −2y〈f,K(x, ·)〉 + 2y〈g,K(x, ·)〉 − K(x,x) .

Using the reproducing property of HK , we know that 〈f,K(x, ·)〉 = f(x) and that
〈g,K(x, ·)〉 = g(x), and thus we get

‖f − g‖2 − ‖f ′ − g‖2 = − 2yf(x) + 2yg(x) − K(x,x) .(3.1)

6 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

Using our assumption that yf(x) ≤ 0, it follows that −2yf(x) ≥ 0. Additionally,
recall that we made the assumption that K(x,x) ≤ 1. Plugging these facts back into
Eq. (3.1) gives

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1 .(3.2)

This concludes the proof.
The term ‖ft − g‖2 − ‖ft+1 − g‖2 measures how much the hypothesis of the

Perceptron gets closer to g, as a result of the update on round t. This term plays an
important role in our paper and we therefore denote it by ∆t. It is worth noting that
∆t also plays an important role in the analysis of other online algorithms [8, 6, 2].
The proof of Thm. 2.1 is a simple corollary of Lemma 3.1.

Proof. [Proof of Thm. 2.1] We prove the theorem by bounding
∑T

t=1 ∆t from
above and from below. First note that

∑

t ∆t is a telescopic sum, which reduces to

T∑

t=1

∆t = ‖f1 − g‖2 − ‖fT+1 − g‖2 .

Using the facts that ‖fT+1 − g‖2 ≥ 0 and that f1 is the zero function, we can upper
bound

∑

t ∆t by ‖g‖2. Next we show a lower bound on
∑

t ∆t. For rounds on
which the Perceptron makes a correct prediction, we have that ft+1 = ft and thus
∆t = 0. For rounds on which the Perceptron makes a mistake, Lemma 3.1 tells us
that ∆t ≥ 2ytg(xt) − 1. The definition of the hinge-loss in Eq. (2.1) implies that
ℓ⋆
t ≥ 1 − ytg(xt) and therefore 2ytg(xt) ≥ 2 − 2ℓ⋆

t . Therefore, we have that

‖ft − g‖2 − ‖ft+1 − g‖2 ≥ 1 − 2ℓ⋆
t .

Recalling that M denotes the total number of prediction mistakes made on the entire
sequence of examples, we obtain that

T∑

t=1

∆t ≥ M − 2
∑

t:ytft(xt)≤0

ℓ⋆
t .

Since the hinge-loss is non-negative, it holds that

T∑

t=1

∆t ≥ M − 2

T∑

t=1

ℓ⋆
t .(3.3)

Comparing this lower bound with the upper bound
∑

t ∆t ≤ ‖g‖2 and rearranging
terms proves the theorem.

We now present the Remove-Oldest Perceptron, a simple modification of the
kernel Perceptron, which conforms with a fixed budget constraint. As long as the
active set is smaller than the budget parameter B, the Remove-Oldest Perceptron
behaves exactly like the standard kernel Perceptron. The active set therefore grows
with every mistake and eventually contains B examples. Once the active set reaches
B examples, the online update is performed in two steps. Whenever the algorithm
makes a mistake, it first adds an example to the active set by performing the standard
Perceptron update, and then it reduces the size of the active set back to B by removing
the oldest active example. More formally, for all 1 ≤ t ≤ T , let I ′t define the active
set obtained on round t after applying the standard Perceptron update. That is,

I ′t =

{
It if ytft(xt) > 0
It ∪ {t} if ytft(xt) ≤ 0

.(3.4)

THE FORGETRON: 7

Also, let f ′
t denote the hypothesis defined by I ′t, namely,

f ′
t =

∑

t∈I′
t

ytK(xt, ·) .(3.5)

Now, define It+1 to be

It+1 =

{
I ′t \ {rt} if |I ′t| = B + 1
I ′t if |I ′t| ≤ B

,(3.6)

where rt = min I ′t. Besides being an interesting algorithm, the Remove-Oldest Per-
ceptron is an important intermediate step towards the Forgetron algorithm.

We are unable to prove a mistake bound for the Remove-Oldest Perceptron, how-
ever we are able to quantify the damage due to the second step of the update, defined
in Eq. (3.6). Assume that the algorithm is run for T rounds. Let J denote the set of
rounds on which a prediction mistake is made, namely J = {1 ≤ t ≤ T : ytft(xt) ≤ 0}
and M = |J |. Note that IT+1, the active set at the end of T rounds, is a subset of
J . To analyze the Remove-Oldest Perceptron, we again assume that g is an arbitrary
function in HK and define ∆t = ‖ft − g‖2 −‖ft+1 − g‖2. As in the proof of Thm. 2.1,

the sum
∑T

t=1 ∆t can be upper bounded by ‖g‖2 and we concentrate on bounding it
from below. Using the notation f ′

t , defined in Eq. (3.5), we can rewrite ∆t as follows,

∆t = ‖ft − g‖2 − ‖f ′
t − g‖2 + ‖f ′

t − g‖2 − ‖ft+1 − g‖2 .

For brevity, let us define

αt = ‖ft − g‖2 − ‖f ′
t − g‖2 and γt = ‖f ′

t − g‖2 − ‖ft+1 − g‖2 ,

and thus
∑

t ∆t =
∑

t αt +
∑

t γt. Since ∆t 6= 0 only for t ∈ J , we can rewrite

T∑

t=1

∆t =
∑

t∈J

(αt + γt) =
∑

t∈IT+1

αt +
∑

t∈J\IT+1

αt +
∑

t∈J

γt .(3.7)

The summands in
∑

t∈J γt which are equal to zero can be omitted from the sum.
Specifically, note that γt is nonzero only on rounds for which |It| = B, and therefore,

∑

t∈J

γt =
∑

t∈J : |It|=B

γt .(3.8)

The set J \ IT+1 consists of the indices of the examples that were inserted into the
active set and later removed from it. Another way to write this set, using the nota-
tion rt defined above, is {rt : t ∈ J ∧ |It| = B}, since active examples are removed
precisely on rounds on which a mistake occurs and the active set is full. Therefore, it
holds that

∑

t∈J\IT+1

αt =
∑

t∈J : |It|=B

αrt
.(3.9)

Using Eq. (3.8) and Eq. (3.9), we can rewrite Eq. (3.7) as

T∑

t=1

∆t =
∑

t∈IT+1

αt +
∑

t∈J : |It|=B

(αrt
+ γt) .(3.10)

8 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

We have rewritten
∑

t ∆t as the sum of two terms. Next, we lower-bound each term
individually. The first term deals with examples that were added to the active set
and never removed. For these examples, only the effect of the standard Perceptron
update (αt) must be taken into account. The second term deals with examples that
were added and then later removed from the active set. Decomposing

∑
∆t in this

way, and dealing with the two terms separately, is an important technique which we
reuse in our main formal result, namely the proof of Thm. 6.2.

We first consider the first term on the right-hand side of Eq. (3.10). For every
t ∈ IT+1 we can use Lemma 3.1 to bound αt ≥ 2ytg(xt) − 1. Using the definition of
the hinge-loss in Eq. (2.1), we know that 2ytg(xt) − 1 ≥ 1 − 2ℓ⋆

t and therefore,

αt ≥ 1 − 2ℓ⋆
t .(3.11)

Moving on to the second term on the right-hand side of Eq. (3.10), we note that for
every round t on which an example was removed from the active set, αrt

measures
the benefit of initially adding the example rt to the active set, whereas γt measures
the damage caused by removing this example later on. We will actually analyze a
more general case where instead of entirely removing example rt on round t, we may
only decrease its weight. In other words, instead of subtracting yrt

K(xrt
, ·) from the

current hypothesis, we subtract λyrt
K(xrt

, ·) for some 0 < λ ≤ 1. For the purpose
of lower-bounding Eq. (3.10), we can simply assume that λ = 1. However, the more
general form of our analysis will prove useful later on, as we make further progress
toward an algorithm with a budget constraint and a mistake bound.

Next, we show that our lower bound on αrt
+ γt is influenced by two factors:

the parameter λ, which determines what portion of the example xrt
is removed, and

the term yrt
f ′

t(xrt
), which is the margin attained by the current hypothesis on the

example being removed. More precisely, we show that the lower bound on αrt
+ γt is

similar to the lower bound in Eq. (3.11) minus the additional penalty

Ψ(λ, µ) = λ2 + 2λ − 2λµ ,(3.12)

where µ is an abbreviation for yrt
f ′

t(xrt
).

Lemma 3.2. Let f , f ′, and g be arbitrary functions in HK and let (x, y) be an
example such that x ∈ X , K(x,x) ≤ 1 and y ∈ {−1,+1}, and define ℓ⋆ = ℓ(g; (x, y)).
Assume that yf(x) ≤ 0. Then for any λ ∈ (0, 1] it holds that

(

‖f − g‖2 − ‖(f + yK(x, ·)) − g‖2
)

+
(

‖f ′ − g‖2 − ‖(f ′ − λyK(x, ·)) − g‖2
)

≥ 1 − 2ℓ⋆ − Ψ(λ, yf ′(x)) .

Proof. We rewrite ‖f ′ − g‖2 − ‖(f ′ − λyK(x, ·)) − g‖2 as,

‖f ′ − g‖2 − ‖f ′ − λyK(x, ·) − g‖2

= ‖f ′ − g‖2 − ‖f ′ − g‖2 + 2λy〈f ′ − g,K(x, ·)〉 − λ2‖K(x, ·)‖2

= 2λy〈f ′,K(x, ·)〉 − 2λy〈g,K(x, ·)〉 − λ2‖K(x, ·)‖2

Using the reproducing property of HK , it holds that 〈f ′,K(x, ·)〉 = f ′(x), 〈g,K(x, ·)〉 =
g(x) and ‖K(x, ·)‖2 = K(x,x). Plugging these equalities into the above, and using
our assumption that K(x,x) ≤ 1, we have

‖f ′ − g‖2 − ‖f ′ − λyK(x, ·) − g‖2 ≥ 2λyf ′(x) − 2λyg(x) − λ2 .(3.13)

THE FORGETRON: 9

Using Lemma 3.1 and denoting f ′ = f + yK(x, ·) we get the bound

‖f − g‖2 − ‖f ′ − g‖2 ≥ 2yg(x) − 1 .(3.14)

For brevity, let us denote the term on the left-hand side of the statement of the lemma
by δ. Summing Eq. (3.14) with Eq. (3.13), we have

δ ≥ 1 − 2(1 − λ)(1 − yg(x)) −
(

2λ + λ2 − 2λyf ′(x)
)

.

Using the definition of the hinge loss, it holds that ℓ⋆ ≥ 1−yg(x), and since (1−λ) ≥ 0,
we get

δ ≥ 1 − 2(1 − λ)ℓ⋆ −
(

2λ + λ2 − 2λyf ′(x)
)

.

Finally, we neglect the non-negative term 2λℓ⋆, and the lemma is proven.
Using Lemma 3.2 with λ set to 1, and f ′ set to f ′

t , we get

αrt
+ γt ≥ 1 − 2ℓ⋆

rt
− Ψ(1, yrt

f ′
t(xrt

)) .(3.15)

Combining Eq. (3.10) with Eq. (3.11) and Eq. (3.15), we obtain the lower bound

T∑

t=1

∆t ≥ M − 2
∑

t∈J

ℓ⋆
t −

∑

t∈J : |It|=B

Ψ(1, yrt
f ′

t(xrt
)) .

Comparing this bound to the upper bound
∑

t ∆t ≤ ‖g‖2, and using the fact that the
hinge loss is always non-negative, yields the following corollary.

Corollary 3.3. Let K be a symmetric positive semidefinite kernel and let
(x1, y1), . . . , (xT , yT) be a sequence of examples such that K(xt,xt) ≤ 1 for all t.
Let g be an arbitrary function in HK , define ℓ⋆

t = ℓ
(
g; (xt, yt)

)
and let Ψ be as define

in Eq. (3.12). Then the number of prediction mistakes made by the Remove-Oldest-
Perceptron on this sequence is bounded by

M ≤ ‖g‖2 + 2
T∑

t=1

ℓ⋆
t +

∑

t∈J : |It|=B

Ψ(1, yrt
f ′

t(xrt
)) .

This corollary does not constitute a relative mistake bound since we cannot provide
any guarantee on the value of Ψ(1, yrt

f ′
t(xrt

)). The magnitude of this term depends
on how well the classifier f ′

t classifies the example being removed, xrt
. Referring back

to the definition of Ψ in Eq. (3.12), we get that Ψ(1, yrt
f ′

t(xrt
)) = 3 − 2yrt

f ′
t(xrt

).
Therefore, every time yrt

f ′
t(xrt

) ≥ 3
2 , the bound in Corollary 3.3 is actually strength-

ened, whereas every time yrt
f ′

t(xrt
) < 3

2 it is weakened. Clearly, the term yrt
f ′

t(xrt
)

plays an important role in determining whether or not xrt
can be safely removed from

the active set on round t. In order to obtain a concrete mistake bound, we must mod-
ify the remove-oldest Perceptron in a way which controls the damage caused by the
removal step. Lemma 3.2, in its general form (0 < λ ≤ 1), helps us gain this control.
Namely, we can control the magnitude of the term Ψ(λ, yrt

f ′
t(xrt

)) by ensuring that
|f ′

rt
(xt)| is sufficiently small, and by setting λ to a value smaller than 1. Both tasks

can be achieved by repeatedly shrinking the online hypothesis on every update. The
details of this modification are discussed in the next section.

10 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

4. Repeatedly Shrinking the Perceptron Hypothesis. In the previous sec-
tion, we discussed the damage caused by removing the oldest active example from the
active set. The key to controlling the extent of this damage is to ensure that the
example being removed has a sufficiently small influence on the current hypothesis.
One way to achieve this is by shrinking the norm of the online hypothesis following
each update. Namely, on each round t where an update is performed, the online
hypothesis is multiplied by a scalar 0 < φt ≤ 1 (the concrete value of φt is specified
in the next section). To study the effect of the shrinking step on the accuracy of the
online algorithm, let us momentarily forget about the removal step introduced in the
previous section and focus only on the shrinking step. The two techniques, removal
and shrinking, are combined in the next section.

To facilitate the analysis of the shrinking technique, we introduce a new online
algorithm, the Shrinking Perceptron. This algorithm is a variation of the standard
kernel-based Perceptron and constructs an online hypothesis which is a weighted com-
bination of functions in HK ,

ft =
∑

i∈It

yiσi,tK(xi, ·) ,

where σi,t ∈ [0, 1]. The update procedure starts with the standard Perceptron update.
Specifically, if a correct prediction is made then ft+1 = ft. Otherwise, It+1 is set to
It ∪ {t} and σt,t is set to 1. We use the notation f ′

t to denote the intermediate
hypothesis which results from this update, namely,

f ′
t(x) = ft(x) + ytσt,tK(xt,x) .(4.1)

The second step of the update is the shrinking step, which sets ft+1 to be φtf
′
t , where

φt is a shrinking coefficient in (0, 1]. Setting σi,t+1 = φtσi,t for all 1 ≤ i ≤ t, we can
write

ft+1 =
∑

i∈It+1

yiσi,t+1K(xi, ·) .

The recursive definition of each weight σi,t can be unraveled to give the following
explicit form,

σi,t =
∏

j∈It−1 ∧ j≥i

φj .

By choosing sufficiently small shrinking coefficients φt, we can make the weights σi,t

decrease as fast as we like. If these weights indeed decrease rapidly enough, the
contribution of older active examples to the online hypothesis becomes negligible.
This demonstrates the potential of shrinking as a means of controlling the effect of
old active examples on the current hypothesis. However, this benefit comes at a
price. Repeatedly shrinking the norm of the Perceptron hypothesis takes a toll on
the accuracy of the online algorithm. A good choice of φt should balance the need
to attenuate the influence of older active examples with the damage caused by the
shrinking step. In the remainder of this section, we prove a bound on the damage
caused by the shrinking step.

To remind the reader, our goal, as stated in Sec. 2, is to find an algorithm which
is competitive with any g ∈ HK whose norm ‖g‖ is bounded above by U , where
U = 1

4

√

(B + 1)/ log(B + 1). The term ∆t = ‖ft − g‖2 − ‖ft+1 − g‖2, which played

THE FORGETRON: 11

g
φf ′

f ′

g

φf ′

f ′
g

φf ′

f ′

J1 J2 J3

Fig. 4.1. A geometrical interpretation of the three hypothesis-shrinking cases.

a major role in the proof of Thm. 2.1, again appears in our analysis. We now show
how this term is affected by the shrinking step. As before ∆t = 0 on rounds where a
correct prediction was made, and we can focus on rounds where ∆t 6= 0. As before,
we denote the set of indices t for which ∆t > 0 by J . Using the notation f ′

t defined
above, we can rewrite ∆t as

∆t = ‖ft − g‖2 − ‖f ′
t − g‖2 + ‖f ′

t − g‖2 − ‖ft+1 − g‖2 .

For brevity, define

αt = ‖ft − g‖2 − ‖f ′
t − g‖2 and βt = ‖f ′

t − g‖2 − ‖ft+1 − g‖2 ,(4.2)

and so
∑

t ∆t =
∑

t∈J αt+
∑

t∈J βt. For each t, αt measures the progress made by the
Perceptron update on round t, while βt measures the damage caused by the shrinking
step which follows the Perceptron update. Our first task is to lower-bound

∑

t∈J βt.
In order to do so, we partition the set J into the following three subsets,

J1 = {t ∈ J : φt ‖f ′
t‖ ≥ U}

J2 = {t ∈ J : ‖f ′
t‖ ≤ U ∧ φt ‖f ′

t‖ < U}
J3 = {t ∈ J : ‖f ′

t‖ > U ∧ φt ‖f ′
t‖ < U} .(4.3)

To gain some intuition, we can think of the shrinking step in geometric terms. On
round t, we first apply the Perceptron update and obtain f ′

t . The function f ′
t is a point

in the Hilbert space HK . Then, we perform the shrinking step which moves f ′
t towards

the origin of HK , resulting in ft+1. Now let BU ⊂ HK be a ball of radius U , centered
at the origin of HK . The set J1 represents those rounds where both f ′

t and ft+1 lie
outside or on the surface of BU . The set J2 represents the rounds where f ′

t ∈ BU and
ft+1 lies in the interior of BU . Finally, J3 represents rounds where f ′

t 6∈ BU and the
shrinking step moves ft+1 into the interior of BU . This geometric interpretation is
illustrated in Fig. 4.1. We now deal with each of the three cases individually, beginning
with the set J1. The following lemma builds on our assumption that ‖g‖ ≤ U .

Lemma 4.1. Let U > 0 and 0 < φ ≤ 1 be scalars and let g and f be two functions
in HK such that ‖g‖ ≤ U ≤ φ‖f‖. Then,

‖f − g‖2 − ‖φf − g‖2 ≥ 0 .

12 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

Proof. We begin by noting φ‖f‖2 ≥ U‖f‖ ≥ ‖g‖‖f‖. Using the Cauchy-Schwartz
inequality, we have that ‖g‖‖f‖ ≥ 〈f, g〉, and therefore

φ‖f‖2 ≥ 〈f, g〉 .(4.4)

The term ‖f − g‖2 − ‖φf − g‖2 can now be rewritten as,

‖f − g‖2 − ‖φf − g‖2 =
(
‖f‖2 − 2〈f, g〉 + ‖g‖2

)
−
(
φ2‖f‖2 − 2φ〈f, g〉 + ‖g‖2

)

= (1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉 .(4.5)

Since (1 − φ) is non-negative, we can plug Eq. (4.4) into the right-hand side above
and get the bound,

‖f − g‖2 − ‖φf − g‖2 ≥ (1 − φ2)‖f‖2 − 2(1 − φ)φ‖f‖2 = (1 − φ)2 ‖f‖2 ≥ 0 .

To recap, the geometric implication of Lemma 4.1 is that the shrinking step does
not have an adverse effect on ∆t so long as ft+1 remains outside the interior of BU .

Next, we prove a looser bound, compared to the bound provided by Lemma 4.1,
which holds for all t ∈ J and in particular for t ∈ J2.

Lemma 4.2. Let g and f be two functions in HK . Then, for any φ in (0, 1] the
following bound holds,

‖f − g‖2 − ‖φf − g‖2 ≥ ‖g‖2(φ − 1) .

Proof. As in Eq. (4.5), the left-hand side in the statement of the Lemma can be
rewritten as,

‖f − g‖2 − ‖φf − g‖2 = (1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉 .

We now use the elementary fact that for any u, v ∈ HK , ‖u − v‖2 ≥ 0 which can be

rewritten as ‖u‖2 − 2〈u, v〉 ≥ −‖v‖2. Setting u =
√

1 − φ2 f and v =
√

1−φ
1+φ g, this

inequality becomes

(1 − φ2)‖f‖2 − 2(1 − φ)〈f, g〉 ≥ − 1 − φ

1 + φ
‖g‖2 .

Combining the above inequality with the fact that 1 + φ ≥ 1 proves the bound.
Finally, we focus on rounds from J3.
Lemma 4.3. Let U > 0 and 0 < φ ≤ 1 be scalars and let g and f be two functions

in HK such that ‖g‖ ≤ U , ‖f‖ > U and ‖φf‖ < U . Then,

‖f − g‖2 − ‖φf − g‖2 ≥ ‖g‖2

(
φ‖f‖

U
− 1

)

.

Proof. Defining ν = U/‖f‖, we can rewrite the left-hand side of our claim as
(
‖f − g‖2 − ‖νf − g‖2

)
+
(
‖νf − g‖2 − ‖φf − g‖2

)
.

Since 0 < ν < 1 and ‖νf‖ = U , we can use Lemma 4.1 to lower-bound the first term
above by 0. Similarly, we can use Lemma 4.2 to lower-bound the second term above

by −‖g‖2
(

1 − φ
ν

)

. Summing the two bounds we get

‖f − g‖2 − ‖φf − g‖2 ≥ − ‖g‖2

(

1 − φ

ν

)

= ‖g‖2

(
φ‖f‖

U
− 1

)

,

THE FORGETRON: 13

which proves the lemma.
Combining Lemmas 4.1, 4.2, and 4.3, and recalling that βt = ‖f ′

t − g‖2 −‖ft+1 −
g‖2, we obtain the following lower-bound

∑

t∈J

βt ≥ ‖g‖2

(
∑

t∈J2

(φt − 1) +
∑

t∈J3

(φt‖f ′
t‖

U
− 1
)
)

.

This bound can be restated as follows,

∑

t∈J

βt ≥ ‖g‖2
∑

t∈J

(Φt − 1) where Φt =







1 if t ∈ J1

φt if t ∈ J2
φt‖f ′

t‖
U if t ∈ J3

.(4.6)

Using the inequality x − 1 ≥ log(x), we obtain the following corollary.
Corollary 4.4. Let g be a function in HK such that ‖g‖ ≤ U , where U ≥ 0.

Let βt be as defined in Eq. (4.2) and Φt as defined in Eq. (4.6). Then it holds that

∑

t∈J

βt ≥ ‖g‖2 log

(
∏

t∈J

Φt

)

.

Repeating the analysis of the kernel Perceptron, we can lower bound
∑

t∈J αt ≥
M − 2

∑T
t=1 ℓ⋆

t (as in Eq. (3.3)) and upper bound
∑

t∈J(αt + βt) ≤ ‖g‖2. Combining
these two inequalities with the result from Corollary 4.4 gives

M ≤ ‖g‖2

(

1 − log
(∏

t∈J

Φt

)
)

+ 2
T∑

t=1

ℓ⋆
t .

The above mistake bound can be applied to any concrete strategy of choosing the
shrinking coefficient φt. In the next section, we combine elements from the analysis of
the Remove-Oldest Perceptron and the Shrinking Perceptron to derive the Forgetron
algorithm, our first online algorithm on a budget for which we prove a mistake bound.

5. The Forgetron Algorithm. In this section we present the Forgetron algo-
rithm, which combines the removal and shrinking techniques presented in the previous
sections. The result is a provably correct online learning algorithm on a fixed budget.
The main challenge in combining the two techniques revolves around the choice of the
shrinking coefficients φ1, . . . , φT . On one hand, the shrinking step must be aggressive
enough to attenuate the contribution of old active examples to the online hypothesis.
On the other hand, an overly aggressive shrinking policy could damage the accuracy
of our algorithm. Concretely, we show that the following choice of φt successfully
balances this tradeoff:

φt = min

{

(B + 1)−
1

2(B+1) ,
U

‖f ′
t‖

}

,(5.1)

where f ′
t = ft + ytK(xt, ·) and

U =
1

4

√

B + 1

log(B + 1)
.(5.2)

14 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

Although this simple choice of φt enables us to prove a formal mistake bound, we
note that it has some deficiencies, which we discuss at the end of this section. In the
next section, we describe a refined mechanism for choosing φt, which overcomes these
deficiencies.

The Forgetron algorithm initializes I1 to be the empty set, which implicitly sets f1

to be the zero function. If a prediction mistake occurs on round t, namely, ytft(xt) ≤
0, a three step update is performed. The first step is the Perceptron update, which
inserts the index t into the active set. We denote the resulting active set by I ′t and
the resulting hypothesis by

f ′
t = ft(x) + ytK(xt, ·) .(5.3)

The second step is the shrinking step, which sets

f ′′
t = φtf

′
t ,(5.4)

where φt ∈ (0, 1] is the shrinking coefficient. The last step of the update is the
removal step: if the budget constraint is violated we remove the oldest element from
the active set. Put more formally, if |I ′t| > B we set It+1 = I ′t \{rt} where rt = min I ′t
and otherwise, if |I ′t| ≤ B, we set It+1 = It. Following the notation established in the
previous section, we can rewrite ft as

ft =
∑

i∈It

yi σi,t K(xi, ·) where σi,t =
∏

j∈It−1 ∧ j≥i

φj .

The pseudo-code of the Forgetron algorithm is given in Fig. 5.1.

We now turn to the analysis of the Forgetron algorithm. Recall that our goal is
to prove a mistake bound similar to that of the Perceptron (see Thm. 2.1), relative to
any competitor g from the set {g ∈ HK : ‖g‖ ≤ U}. To gain some intuition into our
proof technique, assume that g attains a zero loss on every example from the input
sequence, that is, yt g(xt) ≥ 1 for all t. As in the proof of Thm. 2.1, we prove a mistake
bound for the Forgetron by tracking the dynamics of ‖ft−g‖2. We informally refer to
‖ft − g‖2 as our instantaneous distance from the competitor g. Initially, f1 ≡ 0 and
therefore ‖f1 − g‖2 = ‖g‖2. For rounds on which the Forgetron makes a prediction
mistake, we first perform the Perceptron update and obtain f ′

t . From Lemma 3.1 we
know that ‖ft − g‖2 − ‖f ′

t − g‖2 ≥ 2ytg(xt) − 1 ≥ 1, namely, the Perceptron update
moves our classifier closer to g by at least one unit. Next, we perform the shrinking
and removal steps. These steps might increase the distance between our classifier and
g. Suppose that we could show that the deviation caused by these two steps is at most
a half. Then overall, after performing the three step update, the distance between our
classifier and g decreases by at least a half. Therefore, after M prediction mistakes,
the distance to g decreases by at least 1

2M . Using the facts that the initial distance to
g is ‖g‖2 and the final distance cannot be negative, we conclude that ‖g‖2 − 1

2M ≥ 0
which gives us a bound on M . Therefore, to obtain a mistake bound, we must bound
the total amount by which the shrinking and removal steps increase our distance to
g. We now formalize this intuition and prove the following relative mistake bound.

Theorem 5.1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such that
K(xt,xt) ≤ 1 for all t. Assume that this sequence is presented to the Forgetron
algorithm with a budget parameter B ≥ 83 and with φt defined as in Eq. (5.1). Let
g be a function in HK such that ‖g‖ ≤ U , where U is given by Eq. (5.2), and define

THE FORGETRON: 15

Input: symmetric positive semidefinite kernel K(·, ·) ; budget B > 0

Initialize: I1 = ∅ ; f1 ≡ 0 ; U = 1
4

√
B+1

log(B+1)

For t = 1, 2, . . .
receive an instance xt

predict sign(ft(xt))
receive correct label yt

If ytft(xt) > 0
set It+1 = It

and ∀(i ∈ It) set σi,t+1 = σi,t

Else

(1) set I ′t = It ∪ {t}
// define f ′

t = ft + ytK(x, ·)
(2) set φt = min{ (B + 1)−

1
2(B+1) , U/‖f ′

t‖ }
set σt,t+1 = φt and ∀(i ∈ It) set σi,t+1 = φt σi,t

// define f ′′
t = φtf

′
t

(3) If |I ′t| ≤ B

set It+1 = I ′t
Else

define rt = min It

set It+1 = I ′t \ {rt}
define ft+1 =

∑

i∈It+1
σi,t+1 yi K(xi, ·)

Fig. 5.1. The basic Forgetron algorithm.

ℓ⋆
t = ℓ

(
g; (xt, yt)

)
. Then, the number of prediction mistakes made by the Forgetron

on this sequence is at most

M ≤ 2 ‖g‖2 + 4

T∑

t=1

ℓ⋆
t .

Before proving this theorem, we must quantify the negative effect of the shrinking
and removal steps on our mistake bound. As before, let J denote the set of rounds
on which the Forgetron makes a prediction mistake and for every t ∈ J define Φt as
in Eq. (4.6). The role played by Φt in our analysis below is similar to its role in the
analysis of the shrinking Perceptron, in Sec. 4. Namely, Φt bounds the effect of the
shrinking step on our mistake bound. Furthermore, let t be a round in J on which
|It| = B and let rt denote the index of the example which is removed from the active
set on that round. Recall the definition of the function Ψ in Eq. (3.12) and define

Ψt =

{

Ψ
(

σrt,t+1 , yrt
f ′′

t (xrt
)
)

if t ∈ J ∧ |It| = B

0 otherwise
.(5.5)

It should come as no surprise that the function Ψ plays a role in the analysis of the
removal step of the Forgetron update, similar to the role it played in our analysis of the
remove-oldest Perceptron, in Sec. 3. The following lemma formalizes the relationship
between Φt, Ψt and the number of mistakes made by the Forgetron.

16 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

Lemma 5.2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such that
K(xt,xt) ≤ 1 for all t and assume that this sequence is presented to the Forgetron
algorithm. Let Φt and Ψt be as defined in Eq. (4.6) and Eq. (5.5) respectively. Then,
the following bound holds for any g ∈ HK ,

M −
(

‖g‖2
∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)

≤ ‖g‖2 + 2
∑

t∈J

ℓ⋆
t .

Proof. For each t define ∆t = ‖ft − g‖2 −‖ft+1 − g‖2. As in our previous proofs,

we prove the lemma by bounding
∑T

t=1 ∆t from above and from below. First note
again that

∑

t ∆t is a telescopic sum, which collapses to, ‖f1 − g‖2 − ‖fT+1 − g‖2.
Using the facts that ‖fT+1 − g‖2 ≥ 0 and that f1 ≡ 0, we obtain the upper bound

T∑

t=1

∆t ≤ ‖g‖2 .(5.6)

Next we show a lower bound on
∑

t ∆t. On rounds where the Forgetron makes a
correct prediction, we have that ft+1 = ft and thus

T∑

t=1

∆t =
∑

t∈J

∆t .(5.7)

Next, we rewrite ∆t as a sum of three terms for rounds on which the Forgetron makes
a mistake,

∆t = ‖ft - g‖2 − ‖f ′
t - g‖2

︸ ︷︷ ︸

αt

+ ‖f ′
t - g‖2 − ‖f ′′

t - g‖2

︸ ︷︷ ︸

βt

+ ‖f ′′
t - g‖2 − ‖ft+1 - g‖2

︸ ︷︷ ︸

γt

,(5.8)

where f ′
t and f ′′

t are defined in Eq. (5.3) and Eq. (5.4) respectively. Summing over
t ∈ J and using Eq. (3.10) we get that

∑

t∈J

∆t =
∑

t∈J

αt +
∑

t∈J

βt +
∑

t∈J

γt =
∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt
+ γt) +

∑

t∈J

βt .(5.9)

We now bound each of the summands in the above equation. First, we use Lemma 3.1
and Eq. (3.11) to get that

∑

t∈IT+1

αt ≥
∑

t∈IT+1

(1 − 2ℓ⋆
t) .(5.10)

Recall that f ′
rt

= frt
+ yrt

K(xrt
, ·) and in addition we can rewrite ft+1 as f ′′

t −
σrt,t+1yrt

K(xrt
, ·). Using Lemma 3.2 with f = frt

, f ′ = f ′′
t , and λ = σrt,t+1 we get

that for any t ∈ J for which |It| = B we have that

αrt
+ γt ≥ 1 − 2ℓ⋆

rt
− Ψt .

Combining the above with Eq. (5.10) gives

∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt
+ γt) ≥

∑

t∈IT+1

(1 − 2ℓ⋆
t) +

∑

t∈J:|It|=B

(
1 − 2ℓ⋆

rt
− Ψt

)
.

THE FORGETRON: 17

Note that for each t ∈ J we have that either t ∈ IT+1 or there exists i ∈ J for which
|Ii| = B and ri = t. In addition, Ψt is defined to be zero if on round t we do not
remove any element from the active set. Therefore, we can further write

∑

t∈IT+1

αt +
∑

t∈J:|It|=B

(αrt
+ γt) ≥ M − 2

∑

t∈J

ℓ⋆
t −

∑

t∈J

Ψt .(5.11)

Next, we bound
∑

t βt using corollary 4.4,

∑

t∈J

βt ≥ ‖g‖2
∑

t∈J

log(Φt) = − ‖g‖2
∑

t∈J

log(1/Φt) .(5.12)

Using Eq. (5.11) and Eq. (5.12) in Eq. (5.9) yields,

∑

t∈J

∆t ≥ M − 2
∑

t∈J

ℓ⋆
t − ‖g‖2

∑

t∈J

log(1/Φt) −
∑

t∈J

Ψt .

Combining the above with Eq. (5.6) and Eq. (5.7) gives

M −
(

‖g‖2
∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)

≤ ‖g‖2 + 2
∑

t∈J

ℓ⋆
t .

This concludes the proof.
Lemma 5.2 bounds the total damage to our mistake bound due to the shrinking

and removal steps. To prove Thm. 5.1, we show that our choice of the shrinking
coefficient in Eq. (5.1) ensures that the term

(
‖g‖2

∑

t∈J log(1/Φt) +
∑

t∈J Ψt

)
is

well-behaved. First, we prove an upper bound on ‖g‖2
∑

t∈J log(1/Φt), the negative
effect due to the shrinking step of the Forgetron update.

Lemma 5.3. Let (x1, y1), . . . , (xT , yT) be a sequence of examples presented to the
Forgetron algorithm with φt defined as in Eq. (5.1). Let J denote the online iterations
on which the Forgetron algorithm makes a prediction mistake and let M = |J |. Let g
be any function in HK with ‖g‖ ≤ U , where U is given in Eq. (5.2), and let Φt be as
defined in Eq. (4.6). Then

‖g‖2
∑

t∈J

log(1/Φt) ≤ M

32
.

Proof. We begin the proof by showing that

Φt ≥ (B + 1)−
1

2(B+1) ,(5.13)

for all t ∈ J . If t ∈ J1 then Φt = 1, which is clearly greater than (B + 1)−
1

2(B+1) . If
t ∈ J2 then Φt is defined to equal φt. It follows from the definition of J2 in Eq. (4.3)
that U ≥ ‖f ′

t‖ and therefore

(B + 1)−
1

2(B+1) ≤ 1 ≤ U

‖f ′
t‖

.

Referring back to Eq. (5.1), we get that φt = (B + 1)−
1

2(B+1) and therefore Eq. (5.13)
holds in this case as well. Finally, if t ∈ J3 then Φt is defined to equal φ‖f ′

t‖/U . From
the definition of J3 in Eq. (4.3), we have that U < ‖f ′

t‖ and therefore Φt > φt. If

18 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

φt = (B + 1)−
1

2(B+1) then Eq. (5.13) holds trivially. Otherwise, φt = U/‖f ′
t‖, Φt > 1

and once again Eq. (5.13) holds. We can now rewrite Eq. (5.13) as

log

(
1

Φt

)

≤ log(B + 1)

2(B + 1)
.

Combining the above with the assumption that ‖g‖2 ≤ U2 and using the definition
of U in Eq. (5.2) result in

‖g‖2 log(1/Φt) ≤ B + 1

16 log(B + 1)

log(B + 1)

2(B + 1)
=

1

32
.

Summing both sides of the above over all t ∈ J proves the lemma.
Next, we prove that our choice of φt in Eq. (5.1) guarantees an upper bound on

∑

t∈J Ψt, the negative effect due to the removal step of the Forgetron update.
Lemma 5.4. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such that

K(xt,xt) ≤ 1 for all t. Assume that this sequence is presented to the Forgetron
algorithm with a budget parameter B ≥ 83 and with φt defined as in Eq. (5.1). Let
J denote the online iterations on which the Forgetron algorithm makes a prediction
mistake and let M = |J |. Let g be a function in HK such that ‖g‖ ≤ U , where U is
given in Eq. (5.2), and let Ψt be as defined in Eq. (3.12). Then,

∑

t∈J

Ψt ≤ 15M

32
.

Proof. Let t be an online round in J , and recall that It is the active set of the
Forgetron algorithm on round t and that B is the predefined memory budget. If
|It| < B then Ψt = 0. Otherwise, Ψt equals

Ψt = σ2
rt,t+1 + 2σrt,t+1 − 2σrt,t+1 yrt

f ′′
t (xrt

) .(5.14)

The definition of φt given in Eq. (5.1) implies that φt ≤ (B + 1)−1/(2(B+1)) for all
t ∈ J . Since the oldest element in the active set, whose index is rt, is scaled B + 1
times before it is removed from the active set, we get

σrt,t+1 ≤
(

(B + 1)−
1

2(B+1)

)B+1

=
1√

B + 1
.(5.15)

Next, we use the Cauchy-Schwartz inequality to bound the term −yrt
f ′′

t (xrt
) by

‖f ′′
t ‖ ‖K(xrt

, ·)‖. The definition of φt implies that ‖f ′′
t ‖ ≤ U , and we assumed

K(xt,xt) ≤ 1 for all t, so −yrt
f ′′

t (xrt
) ≤ U . Plugging this inequality and the in-

equality in Eq. (5.15) into Eq. (5.14) gives

Ψt ≤ 1

B + 1
+

2√
B + 1

+
2U√
B + 1

.

Using the definition of U from Eq. (5.2), we have

Ψt ≤ 1

B + 1
+

2√
B + 1

+
1

2
√

log(B + 1)
.(5.16)

The right hand side of the above inequality decreases monotonically with B and is at
most 15/32 for B ≥ 83. Thus,

∑

t∈J Ψt ≤ 15M
32 .

THE FORGETRON: 19

Proof. [Proof of Thm. 5.1] From Lemma 5.2 we have

M −
(

‖g‖2
∑

t∈J

log(1/Φt) +
∑

t∈J

Ψt

)

≤ ‖g‖2 + 2
∑

t∈J

ℓ⋆
t .

Plugging the bounds in Lemma 5.3 and Lemma 5.4 into the above inequality gives

M −
(

M

32
+

15M

32

)

≤ ‖g‖2 + 2
∑

t∈J

ℓ⋆
t .

Multiplying both sides of the above inequality by 2 provides the desired mistake
bound.

We have shown that the choice of φt in Eq. (5.1) indeed results in a provably
correct learning algorithm on a budget. However, this definition of φt suffers from
several drawbacks. First and foremost, the resulting algorithm performs poorly in
practice. In the next section, we present the self-tuned Forgetron, which uses a refined
shrinking mechanism, and significantly outperforms the algorithm presented in this
section (see experimental results in Sec. 8). Another problem with the definition of
φt in Eq. (5.1) is that it forces ‖f ′′

t ‖ to be at most U . We used this property in the
proof above to bound −yrt

f ′′
t (xrt

), which in turn provided us with an upper bound
on Ψt. In practice, it is often the case that rt can be safely removed from the active
set without any shrinking, and the norm of f ′′

t can be allowed to grow beyond U .
The refined shrinking mechanism of the self-tuned Forgetron uses the actual values of
Ψ1, . . . ,Ψt to define φt, and does not explicitly use U .

6. The Self-Tuned Forgetron. In Sec. 5 we introduced the Forgetron frame-
work and proposed a simple definition of the shrinking coefficients in Eq. (5.1). Be-
sides constants, which do not change from round to round, the definition in Eq. (5.1)
depends solely on ‖f ′

t‖. Moreover, it makes explicit use of the upper bound U . In
this section we propose an improved shrinking scheme which does not rely on the
knowledge of U . We name the resulting algorithm the self-tuned Forgetron. The main
principle which we follow in the derivation of the self-tuned Forgetron is to apply the
gentlest possible shrinking step. For example, if we are fortunate, and the damage
from the removal step happens to be small without applying any shrinking, then our
improved shrinking scheme will set φt = 1. On such rounds, the self-tuned Forgetron
algorithm update reduces back to the remove-oldest-Perceptron update discussed in
Sec. 3.

Recall that in our analysis in Sec. 5, Lemma 5.3 provided an upper bound on
‖g‖2

∑

t∈J log(1/Φt) and Lemma 5.4 provided an upper bound on
∑

t∈J Ψt. Together
with Lemma 5.2, these upper bounds were sufficient to prove the Forgetron mistake
bound in Thm. 5.1. On every update, the self-tuned Forgetron chooses the gentlest
shrinking that still ensures that the bounds in Lemma 5.3 and Lemma 5.4 still hold,
and that our mistake bound remains valid. More formally, given an input sequence
of examples of length T , define Mt to be the number of prediction mistakes made by
our algorithm on rounds {1, 2, . . . , t}. On round t, if an online update is invoked, the
self-tuned Forgetron chooses the shrinking coefficient φt to be the largest number in
(0, 1] that satisfies the condition

∀t,
∑

i∈J : i≤t

Ψi ≤ 15

32
Mt ,(6.1)

20 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

is met. More concretely, define

Qt =
∑

i∈J : i<t

Ψi .

Let t ∈ J be an index of a round on which the Forgetron makes a prediction mistake
and is required to remove an example from the active set (|It| = B). The t’th
constraint from Eq. (6.1) can be rewritten as

Ψ
(
σrt,t φt , yrt

φtf
′
t(xrt

)
)

+ Qt ≤ 15

32
Mt .

The self-tuned Forgetron sets φt to be the maximal value in (0, 1] for which the above
inequality holds, namely,

φt = max

{

φ ∈ (0, 1] : Ψ
(
σrt,t φ , yrt

φf ′
t(xrt

)
)

+ Qt ≤ 15

32
Mt

}

.(6.2)

Note that Ψ is a quadratic function in φ and thus the optimal value of φt can be
found analytically. Simple algebraic manipulations yield that

φt =







min
{

1, −b+
√

d
2a

}

if a > 0 ∨ (a < 0 ∧ d > 0 ∧ −b−
√

d
2a > 1)

min{1,−c/b} if a = 0
1 otherwise

,(6.3)

where

a = σ2
rt,t − 2σrt,t yrt

f ′
t(xrt

), b = 2σrt,t,

c = Qt − 15
32Mt, and d = b2 − 4ac .

(6.4)

The pseudo-code of the self-tuned Forgetron is given in Fig. 6.1.
By construction, the effect of the removal step is upper bounded by

∑

t∈J

Ψt ≤ 15

32
M .(6.5)

This fact replaces Lemma 5.4. Therefore, to apply the same proof technique as in the
previous section, it now suffices to show that the bound

‖g‖2
∑

t

log(1/Φt) ≤
1

32
M ,(6.6)

still holds. To prove the above inequality, we require the following lemma.
Lemma 6.1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such that

K(xt,xt) ≤ 1 for all t and assume that this sequence is presented to the self-tuned
Forgetron with a budget parameter B ≥ 83. Let J denote the set of rounds on which
the algorithm makes a prediction mistake, let φt as in Eq. (6.2) and let Φt be as
defined in Eq. (4.6). Finally, let t be a round in J such that Φt < 1. Then,

Φt σrt,t ≥ 1√
B + 1

.

THE FORGETRON: 21

Input: symmetric positive semidefinite kernel K(·, ·) ; budget B > 0

Initialize: I1 = ∅ ; f1 ≡ 0 ; Q1 = 0 ; M0 = 0

For t = 1, 2, . . .
receive an instance xt

predict sign(ft(xt))
receive correct label yt

If ytft(xt) > 0
set It+1 = It, Qt+1 = Qt, Mt = Mt−1,

and ∀(i ∈ It) set σi,t+1 = σi,t

Else

set Mt = Mt−1 + 1

(1) set I ′t = It ∪ {t}
// define f ′

t = ft + ytK(x, ·)
If |I ′t| ≤ B

set It+1 = I ′t, Qt+1 = Qt, σt,t = 1,

and ∀(i ∈ It+1) set σi,t+1 = σi,t

Else

(2) define rt = min It

define a, b, c, d as in Eq. (6.4) and set φt as in Eq. (6.3)

set σt,t+1 = φt and ∀(i ∈ It) set σi,t+1 = φt σi,t

set Qt+1 = Ψ
(
σrt,t+1 , yrt

f ′′
t (xrt

)
)

+ Qt

// define f ′′
t = φtf

′
t

(3) set It+1 = I ′t \ {rt}
define ft+1 =

∑

i∈It+1
σi,t+1 yi K(xi, ·)

Fig. 6.1. The self-tuned Forgetron algorithm.

Proof. Define

φ′ = min

{

1 ,
U

‖f ′
t‖

,
1

σrt,t

√
B + 1

}

.

This definition implies that: (i) φ′ ∈ (0, 1]. (ii) φ′‖f ′
t‖ ≤ U and therefore, using the

Cauchy-Schwartz inequality, φ′f ′
t(xrt

) ≤ U . (iii) σrt,t φ′ ≤ 1/
√

B + 1. Therefore,

(σrt,t φ′)2 + 2σrt,t φ′ (1 − yrt
φ′f ′

t(xrt
)) ≤ 1

B + 1
+

2√
B + 1

(1 + U) .

The left-hand side of the above equals Ψ
(
σrt,t+1, yrt

f ′′
t (xrt

)
)
. Using the definition of

U we get that

Ψ
(
σrt,tφ

′ , yrt
φ′f ′

t(xrt
)
)

≤ 1

B + 1
+

2√
B + 1

+
1

2
√

log(B + 1)
.

The right-hand side of the above inequality is at most 15
32 for B ≥ 83. In addition, the

definition of the self-tuned Forgetron implies that Qt ≤ 15
32Mt−1 for each t. Therefore,

Ψ
(
σrt,tφ

′ , yrt
φ′f ′

t(xrt
)
)

+ Qt ≤ 15

32
Mt .(6.7)

22 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

Since φ′ is in (0, 1] and satisfies Eq. (6.7), and φt is the largest value which satisfies
Eq. (6.7), we get that φt ≥ φ′. By the definition of Φt in Eq. (4.6) we have Φt ≥ φt,
and therefore Φt ≥ φ′. We have therefore reduced our problem to proving φ′σrt,t ≥
1/
√

B + 1.
The assumption that Φt < 1 implies that φ′ < 1 as well. We are left with two

possibilities, either φ′ = U/‖f ′
t‖ or φ′ = 1

σrt,t

√
B+1

. If φ′ = U/‖f ′
t‖ then

φt ‖f ′
t‖ ≥ φ′ ‖f ′

t‖ =
U

‖f ′
t‖

‖f ′
t‖ = U .

Therefore, t ∈ J1 , that is, the norm of the hypothesis after the shrinking step is still
as large as U (see also Fig. 4.1). This immediately implies that Φt = 1, which stands
in contradiction to the assumption that Φt < 1. We have thus shown that φ′ must
equal 1/(σrt,t

√
B + 1). It therefore holds that φ′σrt,t ≥ 1/

√
B + 1 and this concludes

our proof.
Equipped with the above lemma, we can prove a mistake bound for the self-tuned

Forgetron.
Theorem 6.2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such that

K(xt,xt) ≤ 1 for all t. Assume that this sequence is presented to the self-tuned
Forgetron of Fig. 6.1 with a budget parameter B ≥ 83. Let g be a hypothesis in HK

such that ‖g‖ ≤ U , where U is given by Eq. (5.2), and define ℓ⋆
t = ℓ

(
g; (xt, yt)

)
. Then,

the number of prediction mistakes made by the self-tuned Forgetron on this sequence
is at most

M ≤ 2 ‖g‖2 + 4

T∑

t=1

ℓ⋆
t .

Proof. We follow the proof of Thm. 5.1. The bound in Eq. (6.5) holds by con-
struction and therefore it suffices to show that Eq. (6.6) holds. Since ‖g‖ ≤ U , we
know that

‖g‖2
∑

t∈J

log(1/Φt) ≤ B + 1

16 log(B + 1)

∑

t∈J

log(1/Φt) .

Therefore, to prove that Eq. (6.6) holds it suffices to show that

∑

t∈J

log(1/Φt) ≤ log(B + 1)

2(B + 1)
M ,

or equivalently that
∏

t∈J

Φt ≥ (B + 1)−
M

2(B+1) .(6.8)

We prove the above inequality by strong induction on the number of prediction mis-
takes made by the self-tuned Forgetron. Once again, J denotes the online rounds
on which the algorithm made a prediction mistake. First note that if |J | < B then
φt = 1 for all t ∈ J , in which case the claim is trivial. Therefore, we assume that
|J | ≥ B. Assume that the claim holds for every J ′ ⊂ J (which means that |J ′| < M)
and let us prove the claim for J . That is, we need to show that

∏

t∈J

Φt ≥ (B + 1)−
|J|

2(B+1) .(6.9)

THE FORGETRON: 23

Let j = max J denote the index of the last element that was inserted into J . If Φj = 1
then

∏

t∈J

Φt =
∏

t∈J\{j}
Φt .

Applying the inductive assumption to the set J ′ = J \ {j} ⊂ J we get that

∏

t∈J

Φt =
∏

t∈J ′

Φt ≥ (B + 1)−
|J′|

2(B+1) ≥ (B + 1)−
|J|

2(B+1) .

Therefore, it is left to show that the claim holds for Φj < 1. Recall that I ′j denotes the
active set after applying the Perceptron update step and before applying the removal
step on round j. Using the inductive assumption on the set J ′ = J \ I ′j , we have
|J ′| = |J | − (B + 1) and therefore,

∏

t∈J

Φt =
∏

t∈J ′

Φt

∏

t∈I′
j

Φt ≥ (B + 1)−
|J|−(B+1)

2(B+1)

∏

t∈I′
j

Φt .(6.10)

Recall that rj = min I ′j . Using the fact that Φj ≥ φj and the definition of σrj ,j we
get that

∏

t∈I′
j

Φt ≥ Φj

∏

t∈Ij

φt = Φj σrj ,j .

From Lemma 6.1 we know that the right-hand side of the above is at least 1/
√

B + 1.
Using this fact in Eq. (6.10) gives,

∏

t∈J

Φt ≥ (B + 1)−
|J|−(B+1)

2(B+1)
1√

B + 1
= (B + 1)−

|J|
2(B+1) .

This concludes our proof.

7. A Greedy Removal Scheme. The variants of the Forgetron algorithm we
discussed so far always remove the oldest element from the active set. The accom-
panying shrinking step controls the damage due to the removal step. Our approach
stands in contrast to earlier online learning algorithms on a budget [3, 12] which focus
on choosing which example to remove from the active set and do not take any mea-
sures to control the damage due to this removal. While earlier work did not provide
any mistake bounds, we would like to build on the intuition conveyed in previous work
to devise a greedy removal scheme that may skip the shrinking step when possible.

In this section we describe an extension of the Forgetron framework which allows
removal of examples other than the oldest one. Our removal criterion is based on the
analysis presented in Sec. 5. Specifically, in Lemma 5.2 we showed that the damage
inflicted upon the hypothesis due to the removal step is Ψ

(
σrt,t φt , yrt

φtf
′′
t (xrt

)
)
.

The goal of the shrinking step is to ensure that the total damage due to the removal
step is at most 15

32 times the number of prediction mistakes. According to our analysis,
if there exists an example i ∈ It for which

Ψ
(
σrt,t , yrt

f ′
t(xrt

)
)

≤ 15

32
,(7.1)

24 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

then this example can be safely removed from the active set without any shrinking.
We therefore employ the following two stage approach. If indeed there exists an index
i ∈ It for which Eq. (7.1) holds, then we skip the shrinking step and remove this index
from the active set. Otherwise, we perform the self-tuned Forgetron update discussed
in the previous section. Formally, define

j = arg min i ∈ ItΨ(σi,t , yif
′
t(xi)) .

The example to be removed is set to

rt =

{
j if Ψ(σj,t , yjf

′
t(xj)) ≤ 15

32
min It otherwise

.(7.2)

The shrinking coefficient φt is set as before, namely,

φt = max

{

φ ∈ (0, 1] : Ψ
(
σrt,t φ , yrt

φf ′
t(xrt

)
)

+ Qt ≤ 15

32
Mt

}

,

where Qt =
∑

i∈J:i<t Ψi.
The greedy removal scheme entertains the mistake bound proven for the self-tuned

Forgetron. To see this, first note that Lemma 5.2 does not assume that rt = min It.
In fact, the lemma holds for any choice of rt ∈ It. In particular, Lemma 5.2 holds
for the example chosen by the greedy removal scheme. In addition, the inequality
∑

t Ψt ≤ 15
32M holds by construction. Thus, it again suffices to show that

‖g‖2
∑

t

log(1/Φt) ≤
1

32
M .(7.3)

To prove the above inequality, note that whenever Φt < 1 (and thus φt < 1) we have
that rt = min It. Therefore, the update coincides with the update of the self-tuned
Forgetron and the proof of Lemma 6.1 can be repeated verbatim. Moreover, it is
immediate to verify that the same reasoning used to prove Thm. 6.2 carries over to
the greedy removal scheme. In summary, the bound of Thm. 6.2 also applies to the
greedy removal scheme.

8. Experiments. In this section we present experimental results which demon-
strate the merits of the Forgetron algorithms. Since the focus of this paper is on the
online learning setting, we ran different online algorithms on various datasets and we
report the online error for each experiment. The online error is the number of predic-
tion mistakes an algorithm makes on a sequence of examples, divided by the sequence
length. Throughout this section we consistently use the online error to assess the
performance of the different algorithms.

We compare the performance of our algorithms with the two methods described
in [3] and [1], abbreviated by CKS and CG respectively, and with the standard kernel-
based Perceptron. The CKS algorithm is a variant of the kernel-based Perceptron,
which uses the following heuristic to enforce a strict memory budget. When the
budget is exceeded, the algorithm calculates the margin attained by removing each
active example from the active set, and then applying the resulting hypothesis to the
removed example. The removed example is the one which attains the maximal margin.
This removal scheme is similar to the removal scheme described in Sec. 7. The CKS
algorithm only guarantees that its removal scheme does not damage the accuracy of
the hypothesis when the margin attained by the removed example is greater than one.

THE FORGETRON: 25

B = p/4
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 35.22 11.25 9.54 17.45
USPS 7.73 40.70 14.88 12.70 18.52
ADULT 20.33 30.44 22.31 24.06 33.48
synth. (5%) 9.56 11.60 9.89 11.84 32.76
synth. (10%) 18.16 20.30 18.38 21.07 41.13

B = p/2
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 27.05 8.62 7.78 9.02
USPS 7.73 31.95 11.03 9.78 10.26
ADULT 20.33 26.67 21.40 23.70 27.82
synth. (5%) 9.56 10.66 9.70 11.98 20.16
synth. (10%) 18.16 19.10 18.27 21.74 30.05

B = p
Perceptron F (basic) F (slf-tuned) F (greedy) CKS

MNIST 6.08 16.07 6.08 6.08 6.08
USPS 7.73 20.29 7.73 7.73 7.73
ADULT 20.33 22.06 20.33 20.33 20.33
synth. (5%) 9.56 9.79 9.56 9.56 9.56
synth. (10%) 18.16 18.37 18.16 18.16 18.16

Table 8.1

Each of the three tables above corresponds to a different ratio between B, the budget parameter,
and p, the size of the active set used by the Perceptron on the respective dataset. For example, the
top table sets the B to be a quarter of the number of mistakes suffered by the standard Perceptron
algorithm. Each entry in the table gives the average online error attained by the algorithms on each
dataset.

If no such example exists in the active set, no formal guarantees are provided. We
therefore anticipate that the CKS algorithm would work well when the examples form
a separable dataset, but is likely to fail on more difficult, inseparable, datasets.

The CG algorithm is a randomized method for online learning on a budget. When
the CG algorithm exceeds its budget, it removes a randomly chosen example from the
active set. In all our experiments, we ran the CG algorithm 10 times on each dataset
and report the online error averaged over the 10 different runs. A disadvantage of
this average-case analysis in the online setting is that in real world online learning
problems, we typically run the algorithm over the sequence of examples only once.
We discuss this disadvantage in our last experiment below.

In all our experiments, we focus on the self-tuned Forgetron described in Sec. 6
and on the greedy removal Forgetron described in Sec. 7. We also conducted experi-
ments with the basic Forgetron algorithm described in Sec. 5, however its performance
was found to be significantly inferior to the other Forgetron variants. This can be
attributed to the worst-case definition of the shrinking coefficients employed by the
basic Forgetron. Also note that the self-tuned Forgetron and the greedy removal
Forgetron are identical to the original Perceptron when the active set used by the
Perceptron is less than the budget parameter, while the basic Forgetron is different
due to the fixed shrinking coefficient. For clarity, we present the results of the basic
Forgetron only in Table 8.1, and not in the graphs in Figures 8.1, 8.2, 8.3, and 8.4.

26 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CKS

500 1000 1500 2000 2500 3000 3500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CKS

100 200 300 400 500

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CG (mean)

500 1000 1500 2000 2500 3000 3500
0.05

0.1

0.15

0.2

0.25

0.3

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CG (mean)

Fig. 8.1. The average online error of different budget algorithms as a function of the budget B

on the USPS dataset (left) and the MNIST dataset (right). The online error of the Perceptron and
its budget requirements for each problem are marked with a circle.

Our first experiment was performed with two standard datasets: the MNIST
dataset, which consists of 60,000 training examples, and the USPS dataset, with
10,000 examples. These two datasets are well known and induce relatively easy clas-
sification problems. The instances in both datasets are handwritten images of digits,
thus each image corresponds to one of the 10 digit classes. We generated 126 bi-
nary problems by splitting the 10 labels into two equal-size sets in all possible ways
(
(
10
5

)
/2 = 126). We report the online error averaged over these 126 problems. We

ran the various algorithms with different values of the budget parameter B, using a
Gaussian kernel defined as K(x1,x2) = exp(− 1

2‖x1 − x2‖2). The results of these ex-
periments are summarized in Fig. 8.1 and in Table 8.1. Since the standard Perceptron
does not take a budget parameter, we mark its accuracy and active set size in Fig. 8.1
with a small circle. All four algorithms perform quite well on these datasets. It is
apparent that for both datasets, the greedy removal Forgetron is slightly better than
the alternative methods. Comparing the performance of the self-tuned Forgetron and
CKS, we note that the former performs better on small budgets while the latter is
better on large budgets. It is also apparent that the average online error of the CG
method is similar to the online error of the self-tuned Forgetron.

Our next experiment was performed with the census-income (adult) dataset,
which consists of 199,523 examples. This dataset is highly non-balanced (only 6.21
percent of the labels are positive). We overcame this problem by randomly generating
a balanced subset of this dataset. We repeated this process 10 times, generating 10
different balanced datasets. The results we report were obtained by averaging over

THE FORGETRON: 27

1000 2000 3000 4000 5000

0.2

0.25

0.3

0.35

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CKS

1000 2000 3000 4000 5000
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CG (mean)

Fig. 8.2. The average online error of different budget algorithms as a function of the bud-
get B on the census-income (adult) dataset. The average error of the Perceptron and its budget
requirements are marked with a circle.

the 10 different selections. We first ran the Perceptron algorithm on each dataset with
a Gaussian kernel. The online error of the Perceptron was approximately 21 percent.
We then ran the various budget algorithms on each dataset with different values of B.
The results are given in Fig. 8.2 and in Table 8.1. It is apparent that the self-tuned
Forgetron and the CG method perform very well on this dataset and outperform both
the greedy removal Forgetron algorithm and the CKS method. The performance of
the greedy removal Forgetron is also relatively good for small budgets. The relatively
poor performance of CKS on this dataset, when B takes small values, may be due to
the difficulty of the classification task. As mentioned above, the analysis of CKS is
based on the assumption that there always exists an example whose margin, after its
removal, is greater than 1. Whenever we are unfortunate, and there is no such exam-
ple in the active set, the CKS removal step may significantly damage the accuracy of
the current hypothesis.

To further investigate the performance of the various algorithms, our last exper-
iment examines the accuracy of the algorithms in the presence of label noise. Recall
that the number of active examples used by the basic Perceptron algorithm grows
with each prediction mistake. Therefore, we expect the Perceptron algorithm to re-
quire a large active set in the presence of noise. As in our previous experiments,
we ran the various budget algorithms with a Gaussian kernel. We generated two
synthetic datasets as follows. We randomly sampled 5000 positive examples from
a two-dimensional Gaussian with a mean vector of (1, 1) and a diagonal covariance
matrix with (0.2, 2) as its diagonal. We then sampled 5000 negative examples from
a normal distribution with a mean vector of (−1,−1) and the same covariance as
before. Finally, we flipped each label with a probability of 0.1 for the first dataset
and with a probability of 0.05 for the second dataset, thus introducing two noise rates.
We then presented the data to each of the algorithms. We repeated this process for
different values of the budget parameter B, ranging from 10 to 2000. We repeated
the entire experiment 100 times and averaged the results. The average online error
attained by each algorithm for each choice of B is given in Fig. 8.3 and in Table 8.1.
The graphs underscore several interesting phenomena. First note that the self-tuned
Forgetron and the CG method outperform both the greedy removal Forgetron and the
CKS method. In fact, the self-tuned Forgetron and the CG method achieve almost
the same accuracy as the vanilla Perceptron algorithm while requiring less than a fifth

28 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

0 200 400 600 800 1000

0.1

0.15

0.2

0.25

0.3

0.35

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CKS

0 500 1000 1500 2000

0.2

0.25

0.3

0.35

0.4

0.45

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CKS

200 400 600 800 1000
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CG (mean)

500 1000 1500 2000
0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

budget size − B

av
er

ag
e

er
ro

r

F (self−tuned)
F (greedy)
CG (mean)

Fig. 8.3. The average online error of different budget algorithms as a function of the budget B

on synthetic datasets with 5% label noise (left) and 10% label noise (right). The average accuracy
of the Perceptron and its budget requirements for each problem are marked by a circle.

of the active set size required by the Perceptron. The ability to obtain a low error
with a small budget on this dataset is not surprising as the decision boundary can
be described by a small number of examples. The performance of the greedy removal
Forgetron is also reasonable. The inferior performance of the CKS method on these
datasets may be attributed to the following observation. A mislabeled example in the
active set is likely to decrease the accuracy of the classifier. In addition, if these exam-
ples are removed from the active set, they are likely to be incorrectly classified by the
resulting classifier. Alas, the removal criterion of the CKS method prefers to leave
mislabeled examples in the active set. As mislabeled examples start accumulating
in the active set, the damage to the classifier’s accuracy becomes more pronounced.
In contrast, the Forgetron algorithms demote the weight of each example in the ac-
tive set on each round, thus ensuring that noisy examples do not remain active for a
very long period. The removal criterion of the greedy removal Forgetron algorithm
is also affected by the above argument. Indeed, we can see that the performance of
the greedy removal Forgetron is rather good with small budgets, it worsens as the
budget increases and finally it improves again when the budget is large. When the
budget is very small, the greedy removal Forgetron cannot find an example rt ∈ It

for which Ψ ≤ 15
32 . Thus, the example removed is the oldest example in the active set

(see Eq. (7.2)). As the budget increases, there are examples whose margin is greater
than 1, so the greedy removal Forgetron removes them without further scaling. As
with the CKS algorithm, this removal criterion prefers to leave noisy examples in the
active set and we can see deterioration in the performance.

THE FORGETRON: 29

200 400 600 800 1000
0.095

0.1

0.105

0.11

budget size − B

av
er

ag
e

er
ro

r

CG (range)
F (self−tuned)

500 1000 1500 2000
0.18

0.185

0.19

0.195

0.2

budget size − B

av
er

ag
e

er
ro

r

CG (range)
F (self−tuned)

Fig. 8.4. The online error of the self-tuned Forgetron and the CG algorithm on a single dataset
with 5% label noise (left) and on a single dataset with 10% label noise. For the CG algorithm, the
range of online errors over 10 runs is given.

So far, we have calculated the average online error of the CG algorithm, and our
experiments indicate that it is similar to the online error of the self-tuned Forgetron.
However, the CG algorithm is a randomized method and its performance on individual
runs may vary. Recall that the goal of online learning is to accurately predict a
sequence of labels that is revealed incrementally as learning proceeds. Once all of
the labels have been revealed, the prediction task becomes vacuous. Therefore, it
only makes sense to run the online algorithm over the sequence of examples once.
In our last experiment, we compared single runs of the CG algorithm with the self-
tuned Forgetron. We ran the self-tuned Forgetron on a single dataset with 5% label
noise and on a single dataset with 10% label noise, without averaging the results over
several datasets. We also ran the CG algorithm 10 times on each of these datasets.
In Fig. 8.4 we give the online error of the self-tuned Forgetron and the range of online
errors attained by the CG algorithm. The self-tuned Forgetron outperforms the CG
algorithm approximately half of the time, and the performance of the CG algorithm
varies significantly from run to run. Therefore, when running the CG algorithm a
single time on a given sequence of examples, we can only hope that we are lucky and
that its performance is close to average or better. On the other hand, the deterministic
self-tuned Forgetron does not suffer from this problem and consistently attains the
average accuracy of the CG algorithm.

We conclude this section with a brief discussion of the time complexity of the
various algorithms. Let κ denote the time required for a single evaluation of the
kernel function. The implementation of the self-tuned Forgetron requires at most B
kernel operations on each online round and an additional O(B) operations. Therefore,
its total complexity is O(Bκ) on each round. The complexity of a single round of the
CG method is also O(Bκ). A direct implementation of the greedy removal Forgetron
and of the CKS method requires calculating the prediction of the current hypothesis
on each example in the active set. The resulting complexity is therefore O(B2κ). A
more sophisticated implementation can decrease the number of kernel operations on
each online round to be at most B. This can be done by maintaining a matrix with all
the kernel evaluations for pairs xi,xj where i, j ∈ It and updating only a single row
and a single column of this matrix on each online round. The resulting complexity
of this implementation is O(Bκ + B2). However, this implementation requires an
additional storage for the B × B matrix described above.

30 O. DEKEL AND S. SHALEV-SHWARTZ AND Y. SINGER

9. Discussion. We presented a family of kernel-based online classifiers that re-
strict themselves to a memory of fixed size. The main idea behind our construction
is to control the influence that each individual active example has on the online hy-
pothesis. We achieve this control mechanism by repeatedly shrinking the weights that
define the online hypothesis. Our shrinking step is done in a way that ensures that
an active example can always be removed from the active set without significantly
sacrificing classification accuracy.

Our empirical evaluation demonstrates that the gentle shrinking policy employed
by the self-tuned Forgetron update significantly outperforms the aggressive shrinking
policy of the basic Forgetron algorithm. Moreover, the original Perceptron algorithm,
which neither performs any shrinking nor removes active examples, consistently out-
performs the Forgetron variants. These observations reinforce our view of the shrink-
ing and removal steps as a type of noise, which interferes with the online learning
process. By making this noise as small as possible, we obtain online learning algo-
rithms that approach the performance of the original Perceptron.

A nice property of this work, also shared by [1], is the way in which theory and
practice go hand-in-hand. As mentioned in the introduction of this paper, previous
attempts to address the task of online learning on a budget have all lacked a rigor-
ous mathematical justification. In contrast, our algorithm and the algorithm in [1]
both entertain formal worst-case guarantees. Our experiments demonstrate that the
theoretically-motivated algorithms consistently outperform the heuristic approach.

Our experiments suggest that an online kernel method on a memory budget fails
when its active set accumulates many noisy active examples. The basic Forgetron
and the self-tuned Forgetron avoid this problem by always removing the oldest active
example from the active set. This strategy ensures that a noisy active example is
removed from the active set after precisely B updates. Even if an adversary creates
the sequence of examples, our algorithms cannot be maneuvered into accumulating
the noisy examples for a longer number of updates. The CG algorithm [1] exhibits
a similar characteristic. Its randomized removal policy always gives an equal prob-
ability to removing each active example, and therefore cannot be manipulated into
accumulating noisy examples. On the other hand, the more sophisticated removal
strategies of the CKS algorithm [3] and the greedy Forgetron update can be exploited
by an adversary. These algorithms can be tricked into maintaining noisy examples
in their memory and discarding informative ones. Our experiments demonstrate that
this phenomenon is exhibited even in the case of random label noise, where the input
is not controlled by an adversary. This observation sheds a somewhat pessimistic light
on the prospects of developing more sophisticated online kernel methods on a budget.
It seems that any algorithm that applies a non-trivial removal strategy makes itself
vulnerable to manipulation, and may be coerced into accumulating noise.

Several interesting open problems remain to be solved. A first challenge is to
bridge the gap between the theoretical upper bound of

√
B + 1 on the norm of the

competitor and

U =
1

4

√

B + 1

log(B + 1)
,

achieved by our algorithms. The CG algorithm of [1] managed to close this gap using
a randomized algorithm and proving a bound on the expected number of mistakes
(where expectation is taken over the internal randomization of their algorithm). The

THE FORGETRON: 31

question whether there exists a deterministic algorithm which matches the upper
bound of

√
B + 1 is open.

The intersection of machine learning and computational resource management is
a fascinating research field, from both theoretical and practical standpoints. In this
paper, we investigated a very simple online learning scenario, but our construction
can be leveraged to solve more complex and realistic problems. For example, one
could try to use our framework to devise online algorithms on a memory budget for
tasks such as online regression, ranking, and sequence prediction. Another interesting
problem is how to train thousands or even millions of online classifiers in parallel,
where all of the classifiers share a common global memory of limited size. Rather
than just limiting the number of active examples available to each classifier, we would
like to dynamically allocate the global memory resource to the various classifiers in a
way that would make optimal use of it.

REFERENCES

[1] N. Cesa-Bianchi and C. Gentile, Tracking the best hyperplane with a simple budget per-
ceptron, in Proceedings of the Nineteenth Annual Conference on Computational Learning
Theory, 2006, pp. 483–498.

[2] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, Online passive
aggressive algorithms, Journal of Machine Learning Research, 7 (2006), pp. 551–585.

[3] K. Crammer, J. Kandola, and Y. Singer, Online classification on a budget, in Advances in
Neural Information Processing Systems 16, 2003.

[4] O. Dekel, S. Shalev-Shwartz, and Y. Singer, The Forgetron: A kernel-based perceptron on
a fixed budget, in Advances in Neural Information Processing Systems 18, 2005.

[5] C. Gentile, A new approximate maximal margin classification algorithm, Journal of Machine
Learning Research, 2 (2001), pp. 213–242.

[6] D. P. Helmbold, J. Kivinen, and M. Warmuth, Relative loss bounds for single neurons,
IEEE Transactions on Neural Networks, 10 (1999), pp. 1291–1304.

[7] J. Kivinen, A. J. Smola, and R. C. Williamson, Online learning with kernels, IEEE Trans-
actions on Signal Processing, 52 (2002), pp. 2165–2176.

[8] J. Kivinen and M. Warmuth, Exponentiated gradient versus gradient descent for linear pre-
dictors, Information and Computation, 132 (1997), pp. 1–64.

[9] Y. Li and P. M. Long, The relaxed online maximum margin algorithm, in Advances in Neural
Information Processing Systems 13, 1999.

[10] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organiza-
tion in the brain, Psychological Review, 65 (1958), pp. 386–407.

[11] V. N. Vapnik, Statistical Learning Theory, Wiley, 1998.
[12] J. Weston, A. Bordes, and L. Bottou, Online (and offline) on an even tighter budget, in

Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics,
2005, pp. 413–420.

