The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, shai s, si nger }@s. huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, oftemf@ens well in
online classification tasks. The Perceptron becomes eslyeeffective
when it is used in conjunction with kernels. However, a comrdd-
ficulty encountered when implementing kernel-based ordigerithms
is the amount of memory required to store the online hypdathesich
may grow unboundedly. In this paper we present and analyz & o
getron algorithm for kernel-based online learning on a firesimory
budget. To our knowledge, this is the first online learningoathm
which, on one hand, maintainssarict limit on the number of exam-
ples it stores and, on the other hand, entertains a relaistake bound.
In addition to the formal results, we also present experisieuith real
datasets which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] ggad a widespread interest
in kernel methods as a means of solving (binary) classifingtroblems. Although SVM
was initially stated as a batch-learning technique, it ificgmtly influenced the develop-
ment of kernel methods in the online-learning setting. @mtlassification algorithms that
can incorporate kernels include the Perceptron [6], ROMMRALMA [3], NORMA [4],
Ballseptron [7], and the Passive-Aggressive family of athms [1]. Each of these algo-
rithms observes examples in a sequence of rounds, andeotssts classification function
incrementally, by storing a subset of the observed exaniplés internal memory. The
classification function is then defined by a kernel-dependembination of the stored ex-
amples. This set of stored examples is the online equivaletite support sebf SVMs,
however in contrast to the support, it continually changekearning progresses. In this
paper, we call this set thective setas it includes those examples that actively define the
current classifier. Typically, an example is added to thevasket every time the online al-
gorithm makes a prediction mistake, or when its confideneeprediction is inadequately
low. A rapid growth of the active set can lead to significamhpaitational difficulties. Nat-
urally, since computing devices have bounded memory ressuthere is the danger that
an online algorithm would require more memory than is phaisi@vailable. This problem
becomes especially eminent in cases where the online #igois implemented as part of
a specialized hardware system with a small memory, such ashéertelephone or an au-

tonomous robot. Moreover, an excessively large active aef@ad to unacceptably long
running times, as the time-complexity of each online rourales linearly with the size of
the active set.

Crammer, Kandola, and Singer [2] first addressed this prolidg describing an online
kernel-based modification of the Perceptron algorithm iictvithe active set does not ex-
ceed a predefindaudget Their algorithm removes redundant examples from the astt
S0 as to make the best use of the limited memory resourceoWeddbrdes and Bottou [9]
followed with their own online kernel machine on a budget.ttBtechniques work rela-
tively well in practice, however they both lack a theoreltigaarantee on their prediction
accuracy. In this paper we present the Forgetron algorithroriline kernel-based classi-
fication. To the best of our knowledge, the Forgetron is thst &inline algorithm with a
fixed memory budget which also entertains a formal worse-caistake bound. We name
our algorithm the Forgetron since its update builds on ttah® Perceptron and since it
gradually forgets active examples as learning progresses.

This paper is organized as follows. In Sec. 2 we begin with eenfrmal presentation of
our problem and discuss some difficulties in proving mistakands for kernel-methods
on a budget. In Sec. 3 we present an algorithmic frameworkfine prediction with a
predefined budget of active examples. Then in Sec. 4 we darsgecific algorithm for
this framework and analyze its performance. Formal probtaio claims are omitted due
to the lack of space. Finally, we present an empirical evedonaf our algorithm in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutiveds. On round the online
algorithm observes an instangg which is drawn from some predefined instance domain
X. The algorithm predicts the binary label associated witit thstance and is then pro-
vided with the correct labe); € {—1,+1}. At this point, the algorithm may use the
instance-label paifx;, y;) to improve its prediction mechanism. The goal of the aldonit

is to correctly predict as many labels as possible.

The predictions of the online algorithm are determined bwracfion which is stored in

its internal memory and is updated from round to round. Werr& this function as

the hypothesisf the algorithm and denote the hypothesis used on rauog f;. Our
focus in this paper is on margin based hypotheses, narfiely,a function fromx’ to R
where sigiif;(x;)) constitutes the actual binary prediction drfedx;)| is the confidence

in this prediction. The terny f(x) is called themargin of the prediction and is positive
whenevery and sigrif(x)) agree. We can evaluate the performance of an hypothesis on
a given exampléx, y) in one of two ways. First, we can check whether the hypothesis
makes a prediction mistake, namely determine whethersign(f(x)) or not. Throughout

this paper, we usé/ to denote the number of prediction mistakes made by an online

algorithm on a sequence of examp(&s, 1), - . ., (xr,yr). The second way we evaluate
the predictions of an hypothesis is by using ltirege-lossunction, defined as,
. _ 0 if yflx) =21
((f; (xy) = { 1—yf(x) otherwise ' @)

The hinge-loss penalizes an hypothesis for any margin kesslt Additionally, if y #
sign(f(x)) then’(f, (x,y)) > 1 and therefore theumulative hinge-lossuffered over a
sequence of examples upper boundsThe algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kerrraltop& : X x X — R which
adheres to Mercer’s positivity conditions [8]. A kernelskd hypothesis takes the form,

k
f(X) = Z aiK(Xi, X) 9 (2)
i=1

wherexy,...,x; are members ot andag, ..., are real weights. To facilitate the
derivation of our algorithms and their analysis, we asgedareproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let Hx be the closure of the set of all hypotheses of the form givekdn (2). For

any two functions,f(x) = ZleaiK(xi,x) andg(x) = ZézlﬂjK(zj,x), define
the inner product between them to H¢, g) = Zle Zé’:l a;0; K (x;,2;). This inner-
product naturally induces a norm defined bg|| = (f, f)!/? and a metrid|f — g| =

(£, f) = 2(f,9) + (g,9))/%. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restriwmselves to hypotheses that are
defined by some subset of the examples observed on previendsoThat is, the hypothe-
sis used on rountltakes the formf;(x) = Zieh a; K (x;,x), wherel, is some subset of

1,...,(t-1) andx; is the example observed by the algorithm on roinds stated above,
1, is called the active set, and we say that examplis activeon round if ¢ € I,.

Perhaps the most well known online algorithm for binary sifésation is the Percep-
tron [6]. Stated in the form of a kernel method, the hypoteegmerated by the Perceptron
take the formf;(x) = >_,.; vi K (x;,x). Namely, the weight assigned to each active ex-
ample is either-1 or —1, depending on the label of the example. The Perceptroaliaitis

I; to be the empty set, which implicitly sefs to be the zero function. It then updates its
hypothesis only on rounds where a prediction mistake is m&d@acretely, on round, if
fi(x¢) # y+ then the index is inserted into the active set. As a consequence, the sthe of
active set on round equals the number of prediction mistakes made on previausis

A relative mistake bound can be proven for the Perceptroaritgn. The bound holds
for any sequence of instance-label pairs, and comparesutinder of mistakes made by
the Perceptron with the cumulative hinge-loss of any fixepldtlyesisy € Hy, even one
defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and letxy, 1), . .., (x7, yr) be a sequence of
examples such thak (x¢,x;) < 1 for all t. Letg be an arbitrary function irn{,x and

definel, = é(g; (x¢, yt)). Then the number of prediction mistakes made by the Peareptr
on this sequence is bounded By, < ||g||? + 2 Zthl 0.

Although the Perceptron is guaranteed to be competitivk ity fixed hypothesig €
‘Hxk, the fact that its active set can grow without a bound pose=iaus computational
problem. In fact, this problem is common to most kernel-Hasdine methods that do not
explicitly monitor the size of;.

As discussed above, our goal is to derive and analyze aneopadiction algorithm which
resolves these problems by enforcinfip@dbound on the size of the active set. Formally,
let B be a positive integer, which we refer to as thelget parameterWe would like to
devise an algorithm which enforces tha{ < B on every round. Furthermore, we would
like to prove a relative mistake bound for this algorithmalagous to the bound stated
in Thm. 1. Regretfully, this goal turns out to be impossiblghaut making additional
assumptions. Concretely, fanykernel-based algorithm which is restricted By < B,
we can find an hypothesess H x and an arbitrarily long sequence of examples such that
the algorithm makes a prediction mistake on every singladauhereag suffers no loss at
all. We show this inherent limitation by presenting a simgenterexample which applies
to any online algorithm which uses a prediction functiontaf form given in Eqg. (2), and
for which |I;| < B for all t. We choose the instance spateto be the set oB + 1
standard unit vectors iR®*!, namelyx’ = {e; f:;l wheree; is the vector withl in its
i'th coordinate and zeros elsewhef¢js set to be the standard inner-produdkii*!, that

is K (x,x") = x-x'. Now for everyt, f; is a linear combination of at mo&t vectors from
X. Since|X| = B+ 1, there exists a vector, € X which is currently not in the active set.
Furthermorex, is orthogonal to all of the active vectors and thereffife;) = 0. Assume

without loss of generality that the online algorithm we aseng predicts); to be—1 when
fi(x) = 0. If on every round we were to present the online algorithnhwlie example
(x¢, +1) then the online algorithm would make a prediction mistakeseery round. On

the other hand, the hypothegis= Zf:l e; Is a member of{ ;- and attains a zero hinge-
loss on every round. We have found a sequence of examplesfiaed &ypothesis (which
is indeed defined by more thds vectors fromX) that attains a cumulative loss of zero
on this sequence, while the number of mistakes made by theeoalgorithm equals the
number of rounds. Clearly, a theorem along the lines of Thoarihot be proven.

One way to resolve this problem is to limit the set of compgtiypotheses to a subset
of Hx, which would naturally excludg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devis@@aline algorithm which
is competitive with every hypothesise Hy for which ||g|| < U, for some constart.
Our counterexample indicates that we cannot prove a relatigtake bound witl/ set
to v/ B + 1 or greater, since that was the normgoin our counterexample. In this paper
we come close to this upper bound by proving that our algmstican compete with any

hypothesis with a norm bounded By/B/ log(B).

3 A Perceptron with “Shrinking” and “Removal” Steps

The Perceptron algorithm will serve as our starting poinec&l that whenever the Per-
ceptron makes a prediction mistake, it updates its hypathgsadding the elementto I,.
Thus, on any given round, the size of its active set equalstineber of prediction mis-
takes it has made so far. This implies that the Perceptronvinégte the budget constraint
|I;] < B. We can solve this problem by removing an example from theeset whenever
its size exceed®. One simple strategy is to remove the oldest example in ttiecaset
whenevell;| > B. Lett be a round on which the Perceptron makes a prediction mistake
We apply the following two step update. First, we perform Berceptron’s update by
addingt to I;. LetI; = I; U{¢} denote the resulting active set|If| < B we are done and
we setl;1 = I;. Otherwise, we apply eemovalstep by finding the oldest example in the
active sety; = min I/, and setting’;+1 = I; \ {r:}. The resulting algorithm is a simple
modification of the kernel Perceptron, which conforms witfixad budget constraint by
adding a removal step. While we are unable to prove a mistakadfor this modified
version, it is nonetheless an important milestone on thie fwaan algorithm with a fixed
budget and a formal mistake bound.

The removal of the oldest active example frégmay significantly change the hypothesis,
and thus damage its prediction ability. One way to overcdmsedbstacle is to lessen the
weight of relatively old examples in the definition of the @nt hypothesis. By controlling
the weight of the oldest active example, we can guarantddttbaemoval step will not
have a devastating effect on the prediction ability of thpdthesis. More formally, we
redefine our hypothesis to be,

ft = ZUi,tyiK(Xia') 3

i€l

where eaclw; ; is a weight in(0, 1]. Clearly, the effect of removing, from I, depends on
the magnitude o, ;.

Using the ideas discussed above, we are now ready to outkrieargetron algorithm. The
Forgetron initialized; to be the empty set, which implicitly sefs to be the zero function.
On roundt, if a prediction mistake occurs, a three step update is padd. The first step

is the standard Perceptron update, namely, the indeserted into the active set and the
weighto, , is set to bel. Let I; denote the active set which results from this update, and
let f/ denote the resulting hypothesfg(x) = fi(x) + v+ K (x¢,x). The second step of the

update is ashrinkingstep in which we scal¢’ by a coefficient; € (0,1]. The concrete
value of¢, is intentionally left unspecified for now. Le{’ denote the resulting hypothesis,
thatis, f; = ¢.f;. Settingo; ++1 = ¢r04 for alli € I/, we can write,

{(x) = > oinuiK(xi,x)
el

The third and last step of the update is the removal step sisclabove. That is, if the bud-
get constraint is violated ar|d;| > B thenI;;, is setto bel] \ {r,} wherer, = min I].
Otherwise,l;1; simply equalsl{. The recursive definition of the weight ; can be un-
raveled to give the following explicit formg; ; =]_[jeIH A j>i @5 - If the shrinking
coefficientsp, are chosen carefully, the example weights may decrease rapidly. If the
coefficients decrease rapidly enough, the contributioridotive examples to the online
hypothesis is attenuated and the removal step cannot td&gmificantly the online hy-
pothesis. Alas, repeatedly shrinking the online hypothestih every update might itself
distort the online hypothesis and therefgreshould not be too small. The delicate bal-
ance between safe removal of the oldest example and oveessipe scaling is our main
challenge.

To formalize this tradeoff, we must quantify the damage edusy the shrinking and re-
moval steps. We focus first on the removal step. Letenote the set of rounds on which
the Forgetron makes a prediction mistake and define theifumct

\11(0.7 ¢7 /’L) = (U¢)2 +20¢(1 _:u) .
Lett € J be around on whichl;| = B. On this round, the example whose indexiss
removed from the active set. Let = y,, f{(x,,) be the signed margin attained lfyyon
the active example being removed. Finally, we abbreviate,

U, = \Ij(arhta(bta,ut) ifteJ A |It|:B
ET0 otherwise

Lemma 1 below states that the degradation in the mistakecboansed by the removal
step on round is upper bounded by;. As expected¥, decreases with the weight of
the removed example,., ;1. In addition, it is clear from the definition off; that; also
plays a key role in determining whethey, can be safely removed from the active set. We
note in passing that [2] used a heuristic criterion simibgetto dynamically choose which
active example to remove on each online round.

Turning to the damage caused by the shrinking step, for every we define,

1 it || fial > U
$= & WFISUA Ifenl <U
SALEL i I ST A [feall <U

Lemma 1 below further implies that the mistake bound dediadaaused by the shrinking
step performed on roundis upper bounded b2 log(1/®;). Note that if|| ;1] > U
then®, = 1 and the damage caused by the shrinking step on reum@. Intuitively, if

| fe+1|l > U then the shrinking step on roundoes not make the current hypothesis shorter
than our competitog, whose norm is assumed to be at mdstn this case, it can be shown
that the shrinking step does not incur any penalty. The otakase in the mistake bound
due to the removal and shrinking steps of the Forgetron #lfigoris summarized in the
following lemma.

Lemma 1. Let(x1,v1),.-., (xr,yr) be a sequence of examples such thgk;, x;) < 1
for all t and assume that this sequence is presented to the Forgetiva budget constraint

B. Letg be a function i for which||g|| < U, and define; = £(g; (x;, ;). Then,

T
M < <||g|2+2 Z&) + (Z U, + U? Zlog(l/fbt)>
t=1

tedJ teJ

Note that the first term in the bound is identical to the misth&und of the standard Per-
ceptron, given in Thm. 1, and that the second term quantifeedégradation caused by the
additional update steps. If we set the shrinking coefficiémtsuch a way that the second
term is at mostZ, then the bound in Lemma 1 reducesMb < ||g|> + 2, £, + L.

This can be rewritten a/ < 2[|g||*+4>", /, which is twice the bound of the Perceptron
algorithm. The next lemma states sufficient conditiongpander which the second term
in Lemma 1 is indeed bounded B

Lemma 2. Assume that the conditions of Lemma 1 hold and that 84. If the shrinking
coefficientsp, are chosen such that,

log(B)
M
2B ’

IN

15
Z\I/tgﬁM and) log(1/®,)

tedJ teJ
then the following holds,>", ., ¥, + U2 Y, log (1/®,) < & .

In the next section, we define the specific mechanism usedeblfdigetron algorithm to
choose the shrinking coefficients. Then, we conclude our analysis by arguing that this
choice satisfies the sufficient conditions stated in Lemmad?abtain a mistake bound as
described above.

4 The Forgetron Algorithm

We are now ready to define the specific choiceppfused by the Forgetron algorithm.
On each round, the Forgetron choogeggo be the maximal value if0, 1] for which the
damage caused by the removal step is still manageable. fify @ar construction, let us
defineJ, = {i € J : i <t} andM,; = |J;|. We can now rewrite the first condition in
Lemma 2 as,

1
quftngT. (3
32
teJr

Instead of the above condition, the Forgetron enforcesat@fing stronger condition,

15
e {l,...,T U, < M, . 4
Vie{l,...,T}, t; t = 55 4

This set of constraints is enforced by the Forgetron as @lo Define, Q; =
ZtGJH U,. Leti € Jr denote a round on which the algorithm makes a predic-
tion mistake and on which an example must be removed from thigeaset. The
i'th constraint in Eq. (4) can be rewritten ds + Q; < },}—‘2) M;. The Forgetron sets
¢; to be the maximal value irf0, 1] for which this inequality holds, namelyy;, =
max {¢ € (0,1] : ¥(or,i, ¢, u;) + Qi < 33M;}. Note thatQ; does not depend on
and that¥ (o, ;, ¢, ;) is @ quadratic expression i Therefore, the value af; can be
found analytically. The pseudo-code of the Forgetron dlgoris given in Fig. 1.

Having described the Forgetron algorithm, we now turn taitalysis. To prove a mistake
bound it suffices to show that the two conditions stated intrer2 hold. The first condition

in the lemma follows immediately from the definition ¢f of the Forgetron. Using strong
induction on the size of, we can show that the second condition holds as well. Usieggth
two facts, the following theorem follows as a direct corpllaf Lemma 1 and Lemma 2.

INPUT: Mercer kernelK (-, -) ; budgetB > 0

INITIALIZE: [; =0 ; fi=0; Q1 =0; My=0

For t=1,2,...
receive an instance, ; predictits label: sighf:(x;))
receive correct labe);

If v fi(x¢) >0
setly1 =1, Quy1 = Qy, My = My—q, andVie I, seto; 111 =0y
Else
setM; = M;_1 +1
(1) setl; =L U{t}
If |I]] < B
setly1 =1, Quy1 = Qo =1, andVi € Iy seto; 141 = 04y
Else
(2) definer; = min I,
choosep; = max{¢ € (0,1]: V(o ¢, ¢, i) + Q¢ < 53 My}
seto,, =1landVi € I seto; 41 = ¢roi,
setQiy1 = Q¢ + ¥y
(3) set i1 =1\ {r:}

definef;1 = Zz‘eltﬂ oi i1yl (X,)

Figure 1: The Forgetron algorithm.

Theorem 2. Let(x1,41), - - ., (xr, yr) be a sequence of examples such tigk;, x;) < 1

for all t. Assume that this sequence is presented to the Forgetronithlign from Fig. 1 with

a budget parameteB > 84. Letg be a function inHx for which| g|| < U, whereU =
1V/B/log(B), and define/; = £(g; (x;,y:)). Then, the number of prediction mistakes
made by the Forgetron on this sequence is at most,

T
M < 2|gl* + 4> 4

t=1
5 Experiments and Discussion

In this section we present preliminary experimental ressulhich demonstrate the mer-
its of the Forgetron algorithm. We compared the performaridbe Forgetron with the
method described in [2], which we abbreviate by CKS. WhenGK& algorithm exceeds
its budget, it removes the active example whose margin woelthe largest after the re-
moval. Our experiment was performed with two standard @#tagshe MNIST dataset,
which consists of 60,000 training examples, and the cemsusne (adult) dataset, with
200,000 examples. The labels of the MNIST dataset are thégitGcthsses, while the set-
ting we consider in this paper is that of binary classificatid/e therefore generated binary
problems by splitting th&0 labels into two sets of equal size in all possible ways, liotal
(10)/2 = 126 classification problems. For each budget value, we ran thalgorithms on
aﬁ 126 binary problems and averaged the results. The lab#ie census-income dataset
are already binary, so we ran the two algorithms on 10 diffepermutations of the ex-
amples and averaged the results. Both algorithms used aléfjree non-homogeneous
polynomial kernel. The results of these experiments arensamzed in Fig. 2. The ac-
curacy of the standard Perceptron (which does not deperfd)ds marked in each plot

o

= FOrgetron = FOrgetron
=nsCKS 0.3 =usCKS
.

o
N
a

o
N

average error
=)
o i K
[o
average error

o
=)
o

1000 2000 3000 4000 5000 6000 200 400 600 800 1000 1200 1400 1600 1800
budget size - B budget size - B

Figure 2:The error of different budget algorithms as a function ofltheget sizeB on the census-
income (adult) dataset (left) and on the MNIST dataset {yighhe Perceptron’s active set reaches
a size of 14,626 for census-income and 1,886 for MNIST. Thedpron’s error is marked with an
horizontal dashed black line.

with the horizontal dashed black line. Note that the Fogetutperforms CKS on both
datasets, especially when the valuefbfs small. In fact, on the census-income dataset,
the Forgetron achieves almost the same performance of thefeon with only a fifth of
the active examples used by the Perceptron. In contrasetBdigetron, which performs
well on both datasets, the CKS algorithm performs ratherlgpam the census-income
dataset. This can be partly attributed to the differentllefelifficulty of the two classifi-
cation tasks. It turns out that the performance of CKS detatés as the classification task
becomes more difficult. In contrast, the Forgetron seemstimpnm well on both relatively
easy and difficult classification tasks.

In this paper we described the Forgetron algorithm, which kernel-based online learn-
ing algorithm with a fixed memory budget. We proved that thegetron is competitive
with any hypothesis whose norm is upper boundec% Q)ﬁB/ log(B). We further argued
that no algorithm with a budget @8 active examples can be competitive with every hy-
pothesis whose normig B + 1, on every input sequence. Bridging the small gap between
i\/B/ log(B) andy/B + 1 remains an open problem. The analysis presented in this pape
can be used to derive a family of online algorithms on a budgfethich the Forgetron is
only one special case. This family of algorithms as well awglete proofs of our formal
claims and extensive experiments will be provided in a loagion of this paper.

References

[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, anflifger. Online passive
aggressive algorithms. Technical report, The Hebrew Unitye 2005.

[2] K. Crammer, J. Kandola, and Y. Singer. Online classif@mabn a budget. INIPS
2003.

[3] C. Gentile. A new approximate maximal margin classifimatlgorithm.JMLR, 2001.

[4] J. Kivinen, A. J. Smola, and R. C. Williamson. Online Ieeng with kernels.|[EEE
Transactions on Signal Processirg2(8):2165—-2176, 2002.

[5] Y. Liand P. M. Long. The relaxed online maximum marginaithm. INNIPS 1999.

[6] F. Rosenblatt. The perceptron: A probabilistic model iftformation storage and
organization in the brairPsychological Review$5:386—407, 1958.

[7] S. Shalev-Shwartz and Y. Singer. A new perspective onldiperceptron algorithm.
In COLT'05.

[8] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.

[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline)am even tighter budget. In
Proc. of the Tenth Intl. Workshop on Artificial Intelligermed Statistics2005.

