
The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,shais,singer}@cs.huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, often performs well in
online classification tasks. The Perceptron becomes especially effective
when it is used in conjunction with kernels. However, a common dif-
ficulty encountered when implementing kernel-based onlinealgorithms
is the amount of memory required to store the online hypothesis, which
may grow unboundedly. In this paper we present and analyze the For-
getron algorithm for kernel-based online learning on a fixedmemory
budget. To our knowledge, this is the first online learning algorithm
which, on one hand, maintains astrict limit on the number of exam-
ples it stores and, on the other hand, entertains a relative mistake bound.
In addition to the formal results, we also present experiments with real
datasets which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] sparked a widespread interest
in kernel methods as a means of solving (binary) classification problems. Although SVM
was initially stated as a batch-learning technique, it significantly influenced the develop-
ment of kernel methods in the online-learning setting. Online classification algorithms that
can incorporate kernels include the Perceptron [6], ROMMA [5], ALMA [3], NORMA [4],
Ballseptron [7], and the Passive-Aggressive family of algorithms [1]. Each of these algo-
rithms observes examples in a sequence of rounds, and constructs its classification function
incrementally, by storing a subset of the observed examplesin its internal memory. The
classification function is then defined by a kernel-dependent combination of the stored ex-
amples. This set of stored examples is the online equivalentof thesupport setof SVMs,
however in contrast to the support, it continually changes as learning progresses. In this
paper, we call this set theactive set, as it includes those examples that actively define the
current classifier. Typically, an example is added to the active set every time the online al-
gorithm makes a prediction mistake, or when its confidence ina prediction is inadequately
low. A rapid growth of the active set can lead to significant computational difficulties. Nat-
urally, since computing devices have bounded memory resources, there is the danger that
an online algorithm would require more memory than is physically available. This problem
becomes especially eminent in cases where the online algorithm is implemented as part of
a specialized hardware system with a small memory, such as a mobile telephone or an au-

tonomous robot. Moreover, an excessively large active set can lead to unacceptably long
running times, as the time-complexity of each online round scales linearly with the size of
the active set.

Crammer, Kandola, and Singer [2] first addressed this problem by describing an online
kernel-based modification of the Perceptron algorithm in which the active set does not ex-
ceed a predefinedbudget. Their algorithm removes redundant examples from the active set
so as to make the best use of the limited memory resource. Weston, Bordes and Bottou [9]
followed with their own online kernel machine on a budget. Both techniques work rela-
tively well in practice, however they both lack a theoretical guarantee on their prediction
accuracy. In this paper we present the Forgetron algorithm for online kernel-based classi-
fication. To the best of our knowledge, the Forgetron is the first online algorithm with a
fixed memory budget which also entertains a formal worst-case mistake bound. We name
our algorithm the Forgetron since its update builds on that of the Perceptron and since it
gradually forgets active examples as learning progresses.

This paper is organized as follows. In Sec. 2 we begin with a more formal presentation of
our problem and discuss some difficulties in proving mistakebounds for kernel-methods
on a budget. In Sec. 3 we present an algorithmic framework foronline prediction with a
predefined budget of active examples. Then in Sec. 4 we derivea specific algorithm for
this framework and analyze its performance. Formal proofs of our claims are omitted due
to the lack of space. Finally, we present an empirical evaluation of our algorithm in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutive rounds. On roundt the online
algorithm observes an instancext, which is drawn from some predefined instance domain
X . The algorithm predicts the binary label associated with that instance and is then pro-
vided with the correct labelyt ∈ {−1, +1}. At this point, the algorithm may use the
instance-label pair(xt, yt) to improve its prediction mechanism. The goal of the algorithm
is to correctly predict as many labels as possible.

The predictions of the online algorithm are determined by a function which is stored in
its internal memory and is updated from round to round. We refer to this function as
the hypothesisof the algorithm and denote the hypothesis used on roundt by ft. Our
focus in this paper is on margin based hypotheses, namely,ft is a function fromX to R

where sign(ft(xt)) constitutes the actual binary prediction and|ft(xt)| is the confidence
in this prediction. The termyf(x) is called themargin of the prediction and is positive
whenevery and sign(f(x)) agree. We can evaluate the performance of an hypothesis on
a given example(x, y) in one of two ways. First, we can check whether the hypothesis
makes a prediction mistake, namely determine whethery = sign(f(x)) or not. Throughout
this paper, we useM to denote the number of prediction mistakes made by an online
algorithm on a sequence of examples(x1, y1), . . . , (xT , yT). The second way we evaluate
the predictions of an hypothesis is by using thehinge-lossfunction, defined as,

ℓ
(

f ; (x, y)
)

=

{

0 if yf(x) ≥ 1
1 − yf(x) otherwise . (1)

The hinge-loss penalizes an hypothesis for any margin less than1. Additionally, if y 6=
sign(f(x)) thenℓ(f, (x, y)) ≥ 1 and therefore thecumulative hinge-losssuffered over a
sequence of examples upper boundsM . The algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kernel operatorK : X ×X → R which
adheres to Mercer’s positivity conditions [8]. A kernel-based hypothesis takes the form,

f(x) =
k
∑

i=1

αiK(xi,x) , (2)

wherex1, . . . ,xk are members ofX andα1, . . . , αk are real weights. To facilitate the
derivation of our algorithms and their analysis, we associate a reproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let HK be the closure of the set of all hypotheses of the form given inEq. (2). For
any two functions,f(x) =

∑k
i=1

αiK(xi,x) and g(x) =
∑l

j=1
βjK(zj ,x), define

the inner product between them to be,〈f, g〉 =
∑k

i=1

∑l
j=1

αiβjK(xi, zj). This inner-

product naturally induces a norm defined by‖f‖ = 〈f, f〉1/2 and a metric‖f − g‖ =
(〈f, f〉 − 2〈f, g〉 + 〈g, g〉)1/2. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restrict themselves to hypotheses that are
defined by some subset of the examples observed on previous rounds. That is, the hypothe-
sis used on roundt takes the form,ft(x) =

∑

i∈It
αiK(xi,x), whereIt is some subset of

1, . . . , (t-1) andxi is the example observed by the algorithm on roundi. As stated above,
It is called the active set, and we say that examplexi is activeon roundt if i ∈ It.

Perhaps the most well known online algorithm for binary classification is the Percep-
tron [6]. Stated in the form of a kernel method, the hypotheses generated by the Perceptron
take the formft(x) =

∑

i∈It
yiK(xi,x). Namely, the weight assigned to each active ex-

ample is either+1 or−1, depending on the label of the example. The Perceptron initializes
I1 to be the empty set, which implicitly setsf1 to be the zero function. It then updates its
hypothesis only on rounds where a prediction mistake is made. Concretely, on roundt, if
ft(xt) 6= yt then the indext is inserted into the active set. As a consequence, the size ofthe
active set on roundt equals the number of prediction mistakes made on previous rounds.
A relative mistake bound can be proven for the Perceptron algorithm. The bound holds
for any sequence of instance-label pairs, and compares the number of mistakes made by
the Perceptron with the cumulative hinge-loss of any fixed hypothesisg ∈ HK , even one
defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and let(x1, y1), . . . , (xT , yT) be a sequence of
examples such thatK(xt,xt) ≤ 1 for all t. Let g be an arbitrary function inHK and
defineℓ̂t = ℓ

(

g; (xt, yt)
)

. Then the number of prediction mistakes made by the Perceptron

on this sequence is bounded by,M ≤ ‖g‖2 + 2
∑T

t=1
ℓ̂t.

Although the Perceptron is guaranteed to be competitive with any fixed hypothesisg ∈
HK , the fact that its active set can grow without a bound poses a serious computational
problem. In fact, this problem is common to most kernel-based online methods that do not
explicitly monitor the size ofIt.

As discussed above, our goal is to derive and analyze an online prediction algorithm which
resolves these problems by enforcing afixedbound on the size of the active set. Formally,
let B be a positive integer, which we refer to as thebudget parameter. We would like to
devise an algorithm which enforces that|It| ≤ B on every roundt. Furthermore, we would
like to prove a relative mistake bound for this algorithm, analogous to the bound stated
in Thm. 1. Regretfully, this goal turns out to be impossible without making additional
assumptions. Concretely, foranykernel-based algorithm which is restricted by|It| ≤ B,
we can find an hypothesesg ∈ HK and an arbitrarily long sequence of examples such that
the algorithm makes a prediction mistake on every single round whereasg suffers no loss at
all. We show this inherent limitation by presenting a simplecounterexample which applies
to any online algorithm which uses a prediction function of the form given in Eq. (2), and
for which |It| ≤ B for all t. We choose the instance spaceX to be the set ofB + 1

standard unit vectors inRB+1, namelyX = {ei}B+1

i=1 whereei is the vector with1 in its
i’th coordinate and zeros elsewhere;K is set to be the standard inner-product inR

B+1, that
is K(x,x′) = x ·x′. Now for everyt, ft is a linear combination of at mostB vectors from
X . Since|X | = B +1, there exists a vectorxt ∈ X which is currently not in the active set.
Furthermore,xt is orthogonal to all of the active vectors and thereforeft(xt) = 0. Assume

without loss of generality that the online algorithm we are using predictsyt to be−1 when
ft(x) = 0. If on every round we were to present the online algorithm with the example
(xt, +1) then the online algorithm would make a prediction mistake onevery round. On
the other hand, the hypothesisḡ =

∑B+1

i=1
ei is a member ofHK and attains a zero hinge-

loss on every round. We have found a sequence of examples and afixed hypothesis (which
is indeed defined by more thanB vectors fromX) that attains a cumulative loss of zero
on this sequence, while the number of mistakes made by the online algorithm equals the
number of rounds. Clearly, a theorem along the lines of Thm. 1cannot be proven.

One way to resolve this problem is to limit the set of competing hypotheses to a subset
of HK , which would naturally excludēg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devise an online algorithm which
is competitive with every hypothesisg ∈ HK for which ‖g‖ ≤ U , for some constantU .
Our counterexample indicates that we cannot prove a relative mistake bound withU set
to

√
B + 1 or greater, since that was the norm ofḡ in our counterexample. In this paper

we come close to this upper bound by proving that our algorithms can compete with any
hypothesis with a norm bounded by1

4

√

B/ log(B).

3 A Perceptron with “Shrinking” and “Removal” Steps

The Perceptron algorithm will serve as our starting point. Recall that whenever the Per-
ceptron makes a prediction mistake, it updates its hypothesis by adding the elementt to It.
Thus, on any given round, the size of its active set equals thenumber of prediction mis-
takes it has made so far. This implies that the Perceptron mayviolate the budget constraint
|It| ≤ B. We can solve this problem by removing an example from the active set whenever
its size exceedsB. One simple strategy is to remove the oldest example in the active set
whenever|It| > B. Let t be a round on which the Perceptron makes a prediction mistake.
We apply the following two step update. First, we perform thePerceptron’s update by
addingt to It. LetI ′t = It∪{t} denote the resulting active set. If|I ′t| ≤ B we are done and
we setIt+1 = I ′t. Otherwise, we apply aremovalstep by finding the oldest example in the
active set,rt = min I ′t, and settingIt+1 = I ′t \ {rt}. The resulting algorithm is a simple
modification of the kernel Perceptron, which conforms with afixed budget constraint by
adding a removal step. While we are unable to prove a mistake bound for this modified
version, it is nonetheless an important milestone on the path to an algorithm with a fixed
budget and a formal mistake bound.

The removal of the oldest active example fromIt may significantly change the hypothesis,
and thus damage its prediction ability. One way to overcome this obstacle is to lessen the
weight of relatively old examples in the definition of the current hypothesis. By controlling
the weight of the oldest active example, we can guarantee that the removal step will not
have a devastating effect on the prediction ability of the hypothesis. More formally, we
redefine our hypothesis to be,

ft =
∑

i∈It

σi,tyiK(xi, ·) ,

where eachσi,t is a weight in(0, 1]. Clearly, the effect of removingrt from It depends on
the magnitude ofσrt,t.

Using the ideas discussed above, we are now ready to outline the Forgetron algorithm. The
Forgetron initializesI1 to be the empty set, which implicitly setsf1 to be the zero function.
On roundt, if a prediction mistake occurs, a three step update is performed. The first step
is the standard Perceptron update, namely, the indext is inserted into the active set and the
weightσt,t is set to be1. Let I ′t denote the active set which results from this update, and
let f ′

t denote the resulting hypothesis,f ′
t(x) = ft(x)+ ytK(xt,x). The second step of the

update is ashrinkingstep in which we scalef ′ by a coefficientφt ∈ (0, 1]. The concrete
value ofφt is intentionally left unspecified for now. Letf ′′

t denote the resulting hypothesis,
that is,f ′′

t = φtf
′
t. Settingσi,t+1 = φtσi,t for all i ∈ I ′t, we can write,

f ′′
t (x) =

∑

i∈I′

t

σi,t+1yiK(xi,x) .

The third and last step of the update is the removal step discussed above. That is, if the bud-
get constraint is violated and|I ′t| > B thenIt+1 is set to beI ′t \ {rt} wherert = min I ′t.
Otherwise,It+1 simply equalsI ′t. The recursive definition of the weightσi,t can be un-
raveled to give the following explicit form,σi,t =

∏

j∈It−1 ∧ j≥i φj . If the shrinking
coefficientsφt are chosen carefully, the example weightsσi,t may decrease rapidly. If the
coefficients decrease rapidly enough, the contribution of old active examples to the online
hypothesis is attenuated and the removal step cannot distort significantly the online hy-
pothesis. Alas, repeatedly shrinking the online hypothesis with every update might itself
distort the online hypothesis and thereforeφt should not be too small. The delicate bal-
ance between safe removal of the oldest example and over-aggressive scaling is our main
challenge.

To formalize this tradeoff, we must quantify the damage caused by the shrinking and re-
moval steps. We focus first on the removal step. LetJ denote the set of rounds on which
the Forgetron makes a prediction mistake and define the function,

Ψ(σ , φ , µ) = (σ φ)2 + 2 σ φ(1 − µ) .

Let t ∈ J be a round on which|It| = B. On this round, the example whose index isrt is
removed from the active set. Letµt = yrt

f ′
t(xrt

) be the signed margin attained byf ′
t on

the active example being removed. Finally, we abbreviate,

Ψt =

{

Ψ(σrt,t , φt , µt) if t ∈ J ∧ |It| = B
0 otherwise .

Lemma 1 below states that the degradation in the mistake bound caused by the removal
step on roundt is upper bounded byΨt. As expected,Ψt decreases with the weight of
the removed example,σrt,t+1. In addition, it is clear from the definition ofΨt thatµt also
plays a key role in determining whetherxrt

can be safely removed from the active set. We
note in passing that [2] used a heuristic criterion similar to µt to dynamically choose which
active example to remove on each online round.

Turning to the damage caused by the shrinking step, for everyt ∈ J we define,

Φt =







1 if ‖ft+1‖ ≥ U
φt if ‖f ′

t‖ ≤ U ∧ ‖ft+1‖ < U
φt‖f ′

t
‖

U if ‖f ′
t‖ > U ∧ ‖ft+1‖ < U

.

Lemma 1 below further implies that the mistake bound degradation caused by the shrinking
step performed on roundt is upper bounded byU2 log(1/Φt). Note that if‖ft+1‖ ≥ U
thenΦt = 1 and the damage caused by the shrinking step on roundt is 0. Intuitively, if
‖ft+1‖ ≥ U then the shrinking step on roundt does not make the current hypothesis shorter
than our competitorg, whose norm is assumed to be at mostU . In this case, it can be shown
that the shrinking step does not incur any penalty. The totalincrease in the mistake bound
due to the removal and shrinking steps of the Forgetron algorithm is summarized in the
following lemma.
Lemma 1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t and assume that this sequence is presented to the Forgetron with a budget constraint
B. Letg be a function inHK for which‖g‖ ≤ U , and definêℓt = ℓ

(

g; (xt, yt)
)

. Then,

M ≤
(

‖g‖2 + 2

T
∑

t=1

ℓ̂t

)

+

(

∑

t∈J

Ψt + U2
∑

t∈J

log (1/Φt)

)

.

Note that the first term in the bound is identical to the mistake bound of the standard Per-
ceptron, given in Thm. 1, and that the second term quantifies the degradation caused by the
additional update steps. If we set the shrinking coefficients in such a way that the second
term is at mostM

2
, then the bound in Lemma 1 reduces toM ≤ ‖g‖2 + 2

∑

t ℓ̂t + M
2

.

This can be rewritten asM ≤ 2‖g‖2 + 4
∑

t ℓ̂t which is twice the bound of the Perceptron
algorithm. The next lemma states sufficient conditions onφt under which the second term
in Lemma 1 is indeed bounded byM

2
.

Lemma 2. Assume that the conditions of Lemma 1 hold and thatB ≥ 84. If the shrinking
coefficientsφt are chosen such that,

∑

t∈J

Ψt ≤ 15

32
M and

∑

t∈J

log (1/Φt) ≤ log(B)

2B
M ,

then the following holds,
∑

t∈J Ψt + U2
∑

t∈J log (1/Φt) ≤ M
2

.

In the next section, we define the specific mechanism used by the Forgetron algorithm to
choose the shrinking coefficientsφt. Then, we conclude our analysis by arguing that this
choice satisfies the sufficient conditions stated in Lemma 2 and obtain a mistake bound as
described above.

4 The Forgetron Algorithm

We are now ready to define the specific choice ofφt used by the Forgetron algorithm.
On each round, the Forgetron choosesφt to be the maximal value in(0, 1] for which the
damage caused by the removal step is still manageable. To clarify our construction, let us
defineJt = {i ∈ J : i ≤ t} andMt = |Jt|. We can now rewrite the first condition in
Lemma 2 as,

∑

t∈JT

Ψt ≤ 15

32
MT . (3)

Instead of the above condition, the Forgetron enforces the following stronger condition,

∀i ∈ {1, . . . , T},
∑

t∈Ji

Ψt ≤ 15

32
Mi . (4)

This set of constraints is enforced by the Forgetron as follows. Define, Qi =
∑

t∈Ji−1
Ψt. Let i ∈ JT denote a round on which the algorithm makes a predic-

tion mistake and on which an example must be removed from the active set. The
i’th constraint in Eq. (4) can be rewritten asΨi + Qi ≤ 15

32
Mi. The Forgetron sets

φi to be the maximal value in(0, 1] for which this inequality holds, namely,φi =
max

{

φ ∈ (0, 1] : Ψ(σri,i , φ , µi) + Qi ≤ 15

32
Mi

}

. Note thatQi does not depend onφ
and thatΨ(σri,i, φ, µi) is a quadratic expression inφ. Therefore, the value ofφi can be
found analytically. The pseudo-code of the Forgetron algorithm is given in Fig. 1.

Having described the Forgetron algorithm, we now turn to itsanalysis. To prove a mistake
bound it suffices to show that the two conditions stated in Lemma 2 hold. The first condition
in the lemma follows immediately from the definition ofφt of the Forgetron. Using strong
induction on the size ofJ , we can show that the second condition holds as well. Using these
two facts, the following theorem follows as a direct corollary of Lemma 1 and Lemma 2.

INPUT: Mercer kernelK(·, ·) ; budgetB > 0

INITIALIZE : I1 = ∅ ; f1 ≡ 0 ; Q1 = 0 ; M0 = 0

For t = 1, 2, . . .
receive an instancext ; predict its label: sign(ft(xt))
receive correct labelyt

If ytft(xt) > 0
set It+1 = It, Qt+1 = Qt, Mt = Mt−1, and ∀i ∈ It set σi,t+1 = σi,t

Else
setMt = Mt−1 + 1

(1) setI ′t = It ∪ {t}
If |I ′t| ≤ B

set It+1 = I ′t, Qt+1 = Qt, σt,t = 1, and ∀i ∈ It+1 set σi,t+1 = σi,t

Else
(2) definert = min It

chooseφt = max{φ ∈ (0, 1] : Ψ(σrt,t , φ , µt) + Qt ≤ 15

32
Mt}

set σt,t = 1 and∀i ∈ I ′t set σi,t+1 = φt σi,t

setQt+1 = Qt + Ψt

(3) set It+1 = I ′t \ {rt}
defineft+1 =

∑

i∈It+1
σi,t+1yiK(xi, ·)

Figure 1: The Forgetron algorithm.

Theorem 2. Let(x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t. Assume that this sequence is presented to the Forgetron algorithm from Fig. 1 with
a budget parameterB ≥ 84. Let g be a function inHK for which‖g‖ ≤ U , whereU =
1

4

√

B/ log(B), and definêℓt = ℓ
(

g; (xt, yt)
)

. Then, the number of prediction mistakes
made by the Forgetron on this sequence is at most,

M ≤ 2 ‖g‖2 + 4

T
∑

t=1

ℓ̂t

5 Experiments and Discussion

In this section we present preliminary experimental results which demonstrate the mer-
its of the Forgetron algorithm. We compared the performanceof the Forgetron with the
method described in [2], which we abbreviate by CKS. When theCKS algorithm exceeds
its budget, it removes the active example whose margin wouldbe the largest after the re-
moval. Our experiment was performed with two standard datasets: the MNIST dataset,
which consists of 60,000 training examples, and the census-income (adult) dataset, with
200,000 examples. The labels of the MNIST dataset are the 10 digit classes, while the set-
ting we consider in this paper is that of binary classification. We therefore generated binary
problems by splitting the10 labels into two sets of equal size in all possible ways, totalling
(

10

5

)

/2 = 126 classification problems. For each budget value, we ran the two algorithms on
all 126 binary problems and averaged the results. The labelsin the census-income dataset
are already binary, so we ran the two algorithms on 10 different permutations of the ex-
amples and averaged the results. Both algorithms used a fifthdegree non-homogeneous
polynomial kernel. The results of these experiments are summarized in Fig. 2. The ac-
curacy of the standard Perceptron (which does not depend onB) is marked in each plot

1000 2000 3000 4000 5000 6000

0.05

0.1

0.15

0.2

0.25

0.3

budget size − B

av
er

ag
e

er
ro

r

Forgetron
CKS

200 400 600 800 1000 1200 1400 1600 1800

0.05

0.1

0.15

0.2

0.25

0.3

budget size − B

av
er

ag
e

er
ro

r

Forgetron
CKS

Figure 2:The error of different budget algorithms as a function of thebudget sizeB on the census-
income (adult) dataset (left) and on the MNIST dataset (right). The Perceptron’s active set reaches
a size of 14,626 for census-income and 1,886 for MNIST. The Perceptron’s error is marked with an
horizontal dashed black line.

with the horizontal dashed black line. Note that the Forgetron outperforms CKS on both
datasets, especially when the value ofB is small. In fact, on the census-income dataset,
the Forgetron achieves almost the same performance of the Perceptron with only a fifth of
the active examples used by the Perceptron. In contrast to the Forgetron, which performs
well on both datasets, the CKS algorithm performs rather poorly on the census-income
dataset. This can be partly attributed to the different level of difficulty of the two classifi-
cation tasks. It turns out that the performance of CKS deteriorates as the classification task
becomes more difficult. In contrast, the Forgetron seems to perform well on both relatively
easy and difficult classification tasks.

In this paper we described the Forgetron algorithm, which isa kernel-based online learn-
ing algorithm with a fixed memory budget. We proved that the Forgetron is competitive
with any hypothesis whose norm is upper bounded by1

4

√

B/ log(B). We further argued
that no algorithm with a budget ofB active examples can be competitive with every hy-
pothesis whose norm is

√
B + 1, on every input sequence. Bridging the small gap between

1

4

√

B/ log(B) and
√

B + 1 remains an open problem. The analysis presented in this paper
can be used to derive a family of online algorithms on a budget, of which the Forgetron is
only one special case. This family of algorithms as well as complete proofs of our formal
claims and extensive experiments will be provided in a long version of this paper.

References

[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Technical report, The Hebrew University, 2005.

[2] K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. InNIPS,
2003.

[3] C. Gentile. A new approximate maximal margin classification algorithm.JMLR, 2001.
[4] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE

Transactions on Signal Processing, 52(8):2165–2176, 2002.
[5] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. InNIPS, 1999.
[6] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain.Psychological Review, 65:386–407, 1958.
[7] S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron algorithm.

In COLT’05.
[8] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget. In

Proc. of the Tenth Intl. Workshop on Artificial Intelligenceand Statistics, 2005.

