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Abstract

Prediction suffix trees (PST) provide a popular and effedtiol for tasks
such as compression, classification, and language modéiirthis pa-
per we take a decision theoretic view of PSTs for the task gisace
prediction. Generalizing the notion of margin to PSTs, wespnt an on-
line PST learning algorithm and derive a loss bound for ite @epth of
the PST generated by this algorithm scales linearly witHehgth of the
input. We then describe a self-bounded enhancement of arnitey al-
gorithm which automatically growstzounded-deptRST. We also prove
an analogous mistake-bound for the self-bounded algoritfime result
is an efficient algorithm that neither relies on a-prioriamgtions on the
shape or maximal depth of the target PST nor does it requirearam-
eters. To our knowledge, this is the first provably-corre®TRearning
algorithm which generates a bounded-depth PST while besngpeti-
tive with any fixed PST determined in hindsight.

1 Introduction

Prediction suffix trees are elegant, effective, and weltligth models for tasks such as
compression, temporal classification, and probabilisiceling of sequences (see for in-
stance [13, 11, 7, 10, 2]). Different scientific communiti@se different names to variants
of prediction suffix trees such as context tree weightind Ht&1 variable length Markov
models [11, 2]. A PST receives an input sequence of symbokssgmbol at a time, and
predicts the identity of the next symbol in the sequence dasethe most recently ob-
served symbols. Techniques for finding a good predictioa inelude online Bayesian
mixtures [13], tree growing based on PAC-learning [11], tne@ pruning based on struc-
tural risk minimization [8]. All of these algorithms eithassume a@a-priori bound on the
maximal number of previous symbols which may be used to expeadictions or use a
pre-definedemplate-tree beyond which the learned tree cannot grovtivited by statis-
tical modeling of biological sequences, Apostolico andeBajo [1] showed that the bound
on the maximal depth can be removed by devising a smart matiificof Ron et. al’s al-
gorithm [11] (and in fact many other variants), yielding dgaaithm with time and space
requirements that are linear in the length of the input. Hexevhen modeling very long
sequences, both the a-priori bound and the linear spacdioatitin might impose serious
computational problems.



In this paper we describe a variant of prediction trees for 0
which we are able to devise a learning algorithm that grows
bounded-depth trees, while remaining competitive with any ¥ N
fixed prediction tree chosen in hindsight. The resulting 9
time and space requirements of our algorithm are bounded

and scale polynomially with the complexity of the best pre-
diction tree. Thus, we are able to sidestep the pitfalls ef pr
vious algorithms. The setting we employ is slightly more
general than context-based sequence modeling as we as-
sume that we are provided with both an input stream and an
output stream. For concreteness, we assume that the input
stream is a sequence of vectars x», ... (x; € R™) and )
the output stream is a sequence of symhglsy,,... over ~ Figure 1: An illustration
a finite alphabed). We denote a sub-sequenge...,y;  ©f the prediction process in-

of the output stream by and the set of all possible se- idnutche;g e%u?wgs ?;:Tri Eontext
guences by*. We denote the length of a sequenrchy

|s|. Our goal is to correctly predict each symbol in the out-

put streamyy, yo, . . .. On each time-stepwe predict the symba}; based on an arbitrarily
long context of previously observed output stream symlydts, and based on the current
input vectorx;. For simplicity, we focus on the binary prediction case veiglf = 2 and
for convenience we usg = {—1,+1} (or {—, +} for short) as our output alphabet. Our
algorithms and analysis can be adapted to larger outpudbéib using ideas from [5].

The hypotheses we use are confidence-rated and are of thé foiirk J* — R where the
sign ofh is the predicted symbol and the magnitudé dd the confidence in this prediction.
Each hypothesis is parameterized by a triptet 7, g) wherew € R”, 7 is a suffix-closed
subset ofy* andg is acontext functiorfrom 7 into R (7 is suffix closed ifvs € 7 it
holds that all of the suffixes af are also in7"). The prediction extended by a hypothesis
h = (w,T,g) for thet'th symbol is,

hxeyl) = wexe + Y 2P g(yi) 1)
iiytleT

t-1

In words, the prediction is the sum of an inner product betwbe current input vector
x; with the weight vectow and the application of the functignto all the suffixes of the
output stream observed thus far that also belorfj.t&ince7 is a suffix-closed set, it can
be described as a rooted tree whose nodes are the sequemstitsitiog? . The children of
anodes € 7 are all the sequences € 7 (o € )). Following the terminology of [11], we
use the ternprediction suffix treéPST) for7 and refer tas € 7 as a sequence and a node
interchangeably. We denote the length of the longest seguiary by depth(7). Given

g, each node € 7 is associated with a valugs). Note that in the prediction process, the
contribution of each context’:! is multiplied by a factor which is exponentially decreasing
in the length ofy!:l. This type of demotion of long suffixes is common to most PST-
based approaches[13, 7, 10] and reflects the a-priori aggamtipat statistical correlations
tend to decrease as the time between events increases. uimation of a PST where
7T = {e,—,+,+—,++,— ++,+++}, with the associated prediction fgg given the
contexty} = ——+-++ is shown in Fig. 1. The predicted value g@f in the example is
sign(w-x; +271/2 x (=1)+27! x44273/2 x 7). GivenT andg we define the extension
of g to all strings ove®y* by settingg(s) = 0 for s ¢ 7. Using this extension, Eg. (1) can
be simplified to,

t—1
h(xeyT') = wexi + > 27 g(yi) - )
=1

We use the online learning loss-bound model to analyze ggarihms. In the online
model, learning takes place in rounds. On each round, aarioek; is presented to the



online algorithm, which in return predicts the next outpgrmbol. The predicted symbol,
denotedj, is defined to be the sign &f, (x;, y%!). Then, the correct symbgj is revealed
and with the new input-output pak,, y:) on hand, a new hypothesis_, is generated
which will be used to predict the next output symbgl, ;. In our setting, the hypotheses
h: we generate are of the form given by Eg. (2). Most previous R&ihing algorithms
employed probabilistic approaches for learning. In caifrave use a decision theoretic
approach by adapting the notionmfrginto our setting. In the context of PSTs, this ap-
proach was first suggested by Eskin in [6]. We define the mati@med by the hypothesis
hs to bey:hy(x;, yi ™). Whenever the current symbgl and the output of the hypothesis
agree in their sign, the margin is positive. We would like oaline algorithm to correctly
predict the output streamy, . .., yr with a sufficiently large margin of at least This
construction is common to many online and batch learningrélyms for classification
[12, 4]. Specifically, we use the hinge loss as our margiretdésss function which serves
as a proxy for the prediction error. Formally, the hinge latsained on roundis defined as,

6 = max {0,1— y;hy (x,¥5") }. The hinge-loss equals zero when the margin exceeds
1 and otherwise grows linearly as the margin gets smaller.ohltiae algorithms discussed
in this paper are designed to suffer small cumulative hilogs-

Our algorithms are analyzed by comparing their cumulativgydrlosses and prediction
errors with those of any fixed hypothegis = (w*, 7*, g*) which can be chosen in hind-
sight, after observing the entire input and output stredmderiving our loss and mistake
bounds we take into account the complexity:of Informally, the largefZ * and the bigger

the coefficients of*(s), the more difficult it is to compete with*. The squared norm of
the context functiory is defined as,

gl = > (9(s))* - @)

s€T

The complexity of a hypothesis(andh* in particular) is defined as the sum jp&||? and
llg|?. Using the extension gf to J* we can evaluatég||? by summing over als € V*.

We present two online algorithms for learning large-maR8Ts. The first incrementally
constructs a PST which grows linearly with the length of thguit and output sequences,
and thus can be arbitrarily large. While this constructisrgiite standard and similar
methods were employed by previous PST-learning algoritlinpsovides us with an in-
frastructure for our second algorithm which grows boundegth PSTs. We derive an
explicit bound on the maximal depth of the PSTs generatedhigyaigorithm. We prove
that both algorithms are competitive with any fixed PST cartsed in hindsight. To our
knowledge, this is the first provably correct constructiba BST-learning algorithm whose
space complexity does not depend on the length of the inpytbsequences.

2 Learning PSTs of Unbounded Depth

Having described the online prediction paradigm and thenfof hypotheses used, we
are left with the task of defining the initial hypothesis and the hypothesis update rule.
To facilitate our presentation, we assume that all of th&aimses presented to the online
algorithm have a bounded Euclidean norm, namigty]| < 1. First, we define the initial
hypothesis to bé; = 0. We do so by settingv; = (0,...,0), 7; = {¢} andg;(:) = 0.
As a consequence, the first prediction always incurs a usst Idext, we define the updates
applied to the weight vector, and to the PST at the end of routdThe weight vector is
updated byw; .1 = w; + y;7¢x;, wherer, = £;/(||x¢||*> + 3). Note that if the margin
attained on this round is at leasthen?, = 0 and thusw;,; = w;. This type of update
is common to other online learning algorithms (e.g. [3]). Wuld like to note in passing
that the operationv, - x; in Eqg. (2) can be replaced with an inner product defined via a

Mercer kernel. To see this, note that can be rewritten explicitly agﬁ;} ¥ %; and



initialize: w1 = (0,...,0), 71 = {e}, g1(s) = 0 Vs € V",
fort=1,2,...do
Receive an instance; s.t. ||x¢]| <1
Define:j = max{i : yi} € T;}
Calculate:h; (x, yi') = we-x¢e + 30_, 272 g, (yi)
Predict:g; = sign (ht (xt, yﬁ’l))
Receivey; and suffer losst; = max {0,1 — yihs (x4, y1") }
Setiry = £/ (||x¢||*+3) and di=t—1

if (¢, < 1/2) then 83
Set:s =0, P, = P,—1, d; = 0, and continue to the next iteration gz
QD

else % z
=}

Set:d, = max {j , [2 log, (27) — 2log, (\/Pf_l ¥l — Pt.lﬂ} <3
» &

Set: P, = P1 + 2Tt2_dt/2 §' g
g

Update weight vectorw; 1 = w¢ + y: e Xy
Update tree:

)4y 22 if se{ytti1<i<d}
ge(s) otherwise

Figure 2: The online algorithms for learning a PST. The cadside the boxes defines the
base algorithm for learning unbounded-depth PSTs. Inectuthie pseudocode inside the
boxes gives the self-bounded version.

thereforew, -x; = >, v;7; x; - x¢. Using a kernel operatdt simply amounts to replacing
the latter expression with ", ;7 K (x;, x¢).

The update applied to the context functignalso depends on the scaling facter How-
ever,g, is updated only on those strings which participated in theljotion ofy,, namely
strings of the formy!! for 1 < i < t. Formally, forl < i < ¢ our update takes the form
ge1(yED) = gi(yth) + i 27/ 7,. For any other string, g:+1(s) = g:(s). The pseudo-
code of our algorithm is given in Fig. 2. The following thepretates that the algorithm
in Fig. 2 is2-competitive with any fixed hypothesis for which ||g*|| is finite.

Theorem 1. Letxy,...,xr be an input stream and lef, . .., yr be an output stream,
where everyk; € R”, ||x¢]] < 1 and everyy, € {-1,1}. Leth* = (w*,7*,¢*) be an
arbitrary hypothesis such thdy*|| < co and which attains the loss valués, ... ., ¢4 on

the input-output streams. Lét,...,¢r be the sequence of loss values attained by the
unbounded-depth algorithm in Fig. 2 on the input-outputatns. Then it holds that,

T T
S8 < AW+ gt + 2Y ()
t=1 t=1

In particular, the above bounds the number of predictiontakies made by the algorithm.

Proof. Foreveryt = 1,...,T defineA; = ||w; — w*||? — ||wsr1 — w*|? and,
. IRT R
Ay = Z (9¢(s) = g%(s))” — Z (ge+1(s) — g*(s))” . 4)
seEY* %

Note that||g;||? is finite for any value of and that]|g*|? is finite due to our assumption,
thereforeA; is finite and well-defined. We prove the theorem by devisingar@and lower



bounds o), (A + A), beginning with the upper boundy ", A; is a telescopic sum
which collapses tgjw; — w*||? — ||w;1 — w*||%. Similarly,

T
YA = Y (0 -0'e) — X () —g's) - (5)

sEY* sey*

Omitting negative terms and using the facts twat= (0,...,0) andg; () = 0, we get,

T
S (AHA) < WP+ Y (@ = IWE g1 ©

t=1 sey*

Having proven an upper bound 91, (A; + At), we turn to the lower bound. Firsty; can
be rewritten ag\; = [|w; — w*||2 — || (W1 — w¢) + (w; —w*)||? and by expansion of the
right-hand term we get that; = —||w;y1 — wy||? — 2(Wi1 — wy) - (wy — w*). Using the
value ofw,; as defined in the update rule of the algorithey (; = w; + y:7+x¢) gives,

At = *TEHXtHQ — 2yt Tt X¢ * (Wt *W*) . (7)

Next, we use similar manipulations to rewrile. Unifying the two sums that make uj;
in Eq. (4) and adding null terms of the fortin= g;(s) — ¢:(s), we obtain,

A= Yy [0 - 06)” — ((arls) — 08)) + (snls) — 9°(s)) ) |
= Deey [* (ge+1(s) — gt(S))2 - 2<(gt+1(s) — gu(s)) (ge(s) — g*(s)))} )

Letd; =t — 1 as defined in Fig. 2. Using the fact that ; differs fromg, only on strings
of the formy*:}, whereg,1 (yi}) = g (y%}) + :27%/%7;, we can writeA, as,

A, = i —2%72 — 2 iyt 27/2 7, (gt (Y,tgzl) -9 (ygzl)) : (8)
i=1 i=1
Summing Egs. (7-8) gives,
At A = (Il T 27) = 2mw(wex o+ S 2720, (vED)
+ 27 Yy (W* “Xg + 2?21 2/ g (yizl)) : ©)

Using Zf;l 2~% < 1 with the definitions of; andh* from Eq. (2), we get that,
A+ A > —2(Ixe? 1) — 27 ye he (xe,¥77') + 2nwh* (x,y07") . (10)

Denote the right-hand side of Eq. (10) Byand recall that the loss is definedrasx{0, 1 —
yihe(x¢,y01)}. Therefore, ift, > 0then—y,h,(x;,yit) = ¢, — 1. Multiplying both sides
of this equality byr givesfnytht(xt,yﬁfl) = 1¢(¢; — 1). Now note that this equality
also holds wherf; = 0 since thenr; = 0 and both sides of the equality simply equal
zero. Similarly, we have thath* (x;, y%!) > 1 — ¢;. Plugging these two inequalities into
Eq. (10) gives that,

Ft Z —Tt2(HXt||2+1)+2Tt(€t—1)+27’t(1—€:) ,

which in turn equals-72(||x¢||* + 1) + 27 ¢, — 27 £;. The lower bound oi; still holds
if we subtract from it the non-negative terf®'/ %, — 2-1/2¢7)?, yielding,

Ly > —r2(Ix)®>+ 1) +2m 6 — 21 ) — (217 — 21} + (£7)%/2)
= (x> +3) + 2n b — (67)%/2 .



Using the definition of-, and using the assumption tHat; || < 1, we get,

(er)? b W S ey eep. qy

Iy > — 71l + 27l — =
t = (22" e 9 <2 +3 9

Since Eq. (10) implies thak,; + A, > Ty, summingA; + A, over all values of gives,

Combining the bound above with Eq. (6) gives the bound staydte theorem. Finally, we
obtain a mistake bound by noting that whenever a predictiistake occurs(; > 1. O

We would like to note that the algorithm for learning unboeddiepth PSTs constructs a
sequence of PSTqy, ..., 77, such thatlepth(7;) may equat. Furthermore, the number
of new nodes added to the tree on roun on the order of, resulting in7; having
O(t?) nodes. However, PST implementation tricks in [1] can be dsedduce the space
complexity of the algorithm from quadratic to lineartin

3 Self-Bounded Learning of PSTs

The online learning algorithm presented in the previousigedias one major drawback,
the PSTs it generates can keep growing with each online rodedhow describe a mod-
ification to the algorithm which casts a limit on the depthlod PST that is learned. Our
technique does not rely on arbitrary assumptions on thetsirel of the tree (e.g. maxi-
mal tree depth) nor does it require any parameters. Theitigodetermines the depth to
which the PST should be updated automatically, and is thexefamed theelf-bounded

algorithm for PST learning. The self-bounded algorithmhsained from the original un-

bounded algorithm by adding the lines enclosed in boxesgnZi

A new variabled, is calculated on every online iteration. On rounds wherefatate takes
place, the algorithm updates the PST up to depthadding nodes if necessary. Below
this depth, no nodes are added and the context function imndtfied. The definition
of d; is slightly involved, however it enables us to prove that emain competitive with
any fixed hypothesis (Thm. 2) while maintaining a boundepttl®ST (Thm. 3). A point
worth noting is that the criterion for performing updates ladso changed. Before, the
online hypothesis was modified whenever> 0. Now, an update occurs only when
¢; > 1/2, tolerating small values of loss. Intuitively, this relaxenargin requirement is
what enables us to avoid deepening the tree. The algorithitviged to predict with lower
confidence and in exchange the PST can be kept small. Thedffdetween PST size
and confidence of prediction is adjusted automaticallygmaing ideas from [9]. While the
following theorem provides a loss bound, this bound can meexdiately used to bound the
number of prediction mistakes made by the algorithm.

Theorem 2. Letxy,...,xr be an input stream and lef, . . ., yr be an output stream,
where evernk; € R”, ||x¢]] < 1 and everyy; € {-1,1}. Leth* = (w*,7*,¢*) be an
arbitrary hypothesis such thdty*|| < oo and which attains the loss valués, . . ., ¢%. on

the input-output streams. Lét, ..., /7 be the sequence of loss values attained by the self-
bounded algorithm in Fig. 2 on the input-output streams. Mt sum of squared-losses
attained on those rounds whefg> 1/2 is bounded by,

&< (a+vEIgl + 20w+ (2 iW)W ) -

t:€t>% t=1



Proof. We defineA; and A, as in the proof of Thm. 1. First note that the inequality in

Eqg. (9) in the proof of Thm. 1 still holds. Using the fact th@f;l 27t < 1 with the
definitions ofh; andh* from Eq. (2), Eq. (9) becomes,

Ar+ Ay > —72(|Ixe]?+1) = 27y he (Xtvyli_l) + 21y Y (%0, ¥y 1)
— 2Ty ZE;;t-l,-l 1/2 (ytz) .

Using the Cauchy-Schwartz inequality we get that

$ ) < (X ) (X @) < e

i=ds+1 i=d;+1 1=d;+1

(12)

Plugging the above into Eq. (12) and using the definitiod’ ofrom the proof of Thm. 1
givesA, + A, > I'; — 21,294/ || g*||. Using the upper bound dny from Eq. (11) gives,

Av+ Ay > 7l — ()22 — 27,2472 || g*|| (13)
For everyl < t < T, defineL; = Y!_, nf; andP, = ' 7;,21-%/2 and letP, =
Lo = 0. Summing Eg. (13) overand comparing to the upper bound in Eq. (6) we get,

T

Lr < |lg"I> + Iw*I* + (1/2) Y (6)° + lg”ll Pr - (14)
t=1

We now use an inductive argument to prove tiat< /L; forall 0 < ¢t < T. This
inequality trivially holds fort = 0. Assume thaP? ; < L,_;. ExpandingP; we get that

2
PP = (Poy4m2 /%) = P24 Py 22 g 92k (1)

We therefore need to show that the right-hand side of Eq.i¢l&)mostl;. The definition
of d; implies that2=%/2 is at most((P2 , + m¢;)/? — P,_1) /(27;). Plugging this fact
into the right-hand side of Eq. (15) gives thidt cannot exceed’? , + 7:/;. Using the
inductive assumptio®? ; < L, ; we get thatP? < L;_; + 7:¢; = L; and the induc-
tive argument is proven. In particular, we have shown fat< /L. Combining this
inequality with Eq. (14) we get that

T

(VE) ~ 'l VI — g1 — Iw*I> = (1/2) 3(e)

t=1

The above equation is a quadratic inequality/th, from which it follows that\/L; can
be at most as large as the positive root of this equation, lyame

1 T
VIr < 5 (gl + Glgtl? +4lw? +2 Y)*)"™ ) -

t=1

Using the the fact tha¥/a? 4+ b2 < (a + b) (a,b > 0) we get that,

T
VIr < BB e+ (3 S R) (16)

t=1

If ¢, < 1/2thenr¢; = 0 and otherwise ¢, > ¢7/4. Therefore, the sum of? over the
rounds for whick/; > 1/2 is less thant L., which yields the bound of the theorem. O



Note that if there exists a fixed hypothesis wjiJt|| < oo which attains a margin af on
the entire input sequence, then the bound of Thm. 2 redueesdnstant. Our next theorem
states that the algorithm indeed produces bounded-defth PIS proof is omitted due to
the lack of space.

Theorem 3. Under the conditions of Thm. 2, 1€, ..., 77 be the sequence of PSTs gen-
erated by the algorithm in Fig. 2. Then, forall< ¢ < T,

T
1
depth(T;) < 9 + 2log2(2 g™l + [lw* || + (5 Z(z;ﬁ)mﬂ) _

t=1

The bound on tree depth given in Thm. 3 becomes particulatdyesting when there exists
some fixed hypothests* for which 3", (¢;)? is finite and independent of the total length of
the output sequence, denotedlyin this case, Thm. 3 guarantees that the depth of the PST
generated by the self-bounded algorithm is smaller thamataat which does not depend
onT. We also would like to emphasize that our algorithm is cortigeteven with a PST
which is deeper than the PST constructed by the algorithns ddn be accomplished by
allowing the algorithm’s predictions to attain lower cormicte than the predictions made
by the fixed PST with which it is competing.
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