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Abstract

We present a family of margin based online learning algoritior various prediction tasks. In
particular we derive and analyze algorithms for binary andticiass categorization, regression,
uniclass prediction and sequence prediction. The updeps stf our different algorithms are all
based on analytical solutions to simple constrained op#tion problems. This unified view al-
lows us to prove worst-case loss bounds for the differerdrialyms and for the various decision
problems based on a single lemma. Our bounds on the cunailasis of the algorithms are relative
to the smallest loss that can be attained by any fixed hypistheexd as such are applicable to both
realizable and unrealizable settings. We demonstrate sbthe merits of the proposed algorithms
in a series of experiments with synthetic and real data sets.

1. Introduction

In this paper we describe and analyze several online learning taskgkhtioe same algorithmic
prism. We first introduce a simple online algorithm which we call Passiveréggive (PA) for on-
line binary classification (see also (Herbster, 2001)). We then prdapasalternative modifications
to the PA algorithm which improve the algorithm’s ability to cope with noise. We peosidnified
analysis for the three variants. Building on this unified view, we show hovet@ralize the binary
setting to various learning tasks, ranging from regression to sequesatietjpn.

The setting we focus on is that of online learning. In the online setting, a lepatgorithm ob-
serves instances in a sequential manner. After each observation,ahiéhahgpredicts an outcome.
This outcome can be as simple as a yes/Ag<) decision, as in the case of binary classification
problems, and as complex as a string over a large alphabet. Once the aidmaihmade a predic-
tion, it receives feedback indicating the correct outcome. Then, theeoalgorithm may modify
its prediction mechanism, presumably improving the chances of making aratepuediction on
subsequent rounds. Online algorithms are typically simple to implement and tiadyses often
provides tight bounds on their performance (see for instance KivindtWarmuth (1997)).
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Our learning algorithms use hypotheses from the set of linear predidgrse this class may
seem restrictive, the pioneering work of Vapnik (1998) and colleageesonstrates that by us-
ing Mercer kernels one can employ highly non-linear predictors and stértam all the formal
properties and simplicity of linear predictors. For concreteness, oseptation and analysis are
confined to the linear case which is often referred to as the primal veigapmik, 1998; Cristianini
and Shawe-Taylor, 2000; Salkopf and Smola, 2002). As in other constructions of linear kernel
machines, our paradigm also builds on the notion of margin.

Binary classification is the first setting we discuss in the paper. In this setlicty iastance
is represented by a vector and the prediction mechanism is based onrplagpewnhich divides
the instance space into two half-spaces. The margin of an example is fiwopbto the distance
between the instance and the hyperplane. The PA algorithm utilizes the mamypdiy the current
classifier. The update of the classifier is performed by solving a constrajptimization problem:
we would like the new classifier to remain as close as possible to the currentlole achieving
at least a unit margin on the most recent example. Forcing a unit margin mightutito be too
aggressive in the presence of noise. Therefore, we also descdlvetsions of our algorithm which
cast a tradeoff between the desired margin and the proximity to the culassifier.

The above formalism is motivated by the work of Warmuth and colleaguesfaritnly online
algorithms (see for instance (Kivinen and Warmuth, 1997) and the refesd¢herein). Furthermore,
an analogous optimization problem arises in support vector machines (®YMassification (Vap-
nik, 1998). Indeed, the core of our construction can be viewed asfjredsupport vector machine
based on a single example while replacing the norm constraint of SVM witbxanpity constraint
to the current classifier. The benefit of this approach is two fold. Fiesgyet a closed form solution
for the next classifier. Second, we are able to provide a unified analiyie cumulative loss for
various online algorithms used to solve different decision problems. Splgifive derive and
analyze versions for regression problems, uniclass prediction, multiplabems, and sequence
prediction tasks.

Our analysis is in the realm of relative loss bounds. In this framework, uheuative loss
suffered by an online algorithm is compared to the loss suffered by alieothesis that may be
chosen in hindsight. Our proof techniques are surprisingly simple andrtteéspare fairly short
and easy to follow. We build on numerous previous results and views. Treeidea of deriving an
update as a result of a constrained optimization problem compromising of pasing terms, has
been largely advocated by Littlestone, Warmuth, Kivinen and colleaguttegtone, 1989; Kivi-
nen and Warmuth, 1997). Online margin-based prediction algorithms arquitegrevalent. The
roots of many of the papers date back to the Perceptron algorithm (Agréd4;, Rosenblatt, 1958;
Novikoff, 1962). More modern examples include the ROMMA algorithm o&hd Long (2002),
Gentile’s ALMA algorithm (Gentile, 2001), the MIRA algorithm (Crammer andgg&in 2003b), and
the NORMA algorithm (Kivinen et al., 2002). The MIRA algorithm is closelated to the work
presented in this paper, and specifically, the MIRA algorithm for binargsdiaation is identical to
our basic PA algorithm. However, MIRA was designed $eparablebinary and multiclass prob-
lems whereas our algorithms also apply to honseparable problems. Funteeth®loss bounds
derived in Crammer and Singer (2003b) are inferior and less genarattie bounds derived in this
paper. The NORMA algorithm also shares a similar view of classification prabldrather than
projecting the current hypothesis onto the set of constraints inducecelyalst recent example,
NORMA's update rule is based on a stochastic gradient approach étignal., 2002). Of all the
work on online learning algorithms, the work by Herbster (2001) is prigtthlk closest to the work
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presented here. Herbster describes and analyzes a projection atgtritt) like MIRA, is essen-
tially the same as the basic PA algorithm for the separable case. We surfid&sakll Herbster’s

algorithm by providing bounds for both the separable and the nond#eaettings using a unified
analysis. As mentioned above we also extend the algorithmic framework aadahgsis to more

complex decision problems.

The paper is organized as follows. In Sec. 2 we formally introduce theybulassification
problem and in the next section we derive three variants of an onlineingaaigorithm for this
setting. The three variants of our algorithm are then analyzed in Sec. 4neMfeshow how to
modify these algorithms to solve regression problems (Sec. 5) and unickdistipn problems
(Sec. 6). We then shift gears to discuss and analyze more complex dagmisfidems. Specifically,
in Sec. 7 we describe a generalization of the algorithms to multiclass problenfisrdvet extend
the algorithms to cope with sequence prediction problems (Sec. 9). Wédesgperimental results
with binary and multiclass problems in Sec. 10 and conclude with a discussfotucd directions
in Sec. 11.

2. Problem Setting

As mentioned above, the paper describes and analyzes several oatimadetasks through the
same algorithmic prism. We begin with binary classification which serves as thémiklimg block
for the remainder of the paper. Online binary classification takes placecigueesce of rounds. On
each round the algorithm observes an instance and predicts its labelitodyerd or —1. After the
prediction is made, the true label is revealed and the algorithm suffenstamtaneous losshich
reflects the degree to which its prediction was wrong. At the end of eactdyohe algorithm uses
the newly obtained instance-label pair to improve its prediction rule for thed®to come.

We denote the instance presented to the algorithm on roilnydk;, and for concreteness we
assume that it is a vector R". We assume thag is associated with a unique labele {+1, —1}.
We refer to each instance-label pé¥,y;) as anexample The algorithms discussed in this paper
make predictions using a classification function which they maintain in their intereaory and
update from round to round. We restrict our discussion to classificatimetibns based on a vector
of weightsw € R", which take the form sigiw - x). The magnitudew - x| is interpreted as the
degree of confidence in this prediction. The task of the algorithm is theredoncrementally learn
the weight vectow. We denote byv; the weight vector used by the algorithm on rowndnd refer
to the termy; (w; - x;) as the (signednarginattained on rountl Whenever the margin is a positive
number then sigiw; - X;) = yt and the algorithm has made a correct prediction. However, we are not
satisfied by a positive margin value and would additionally like the algorithm wWigiresith high
confidence. Therefore, the algorithm’s goal is to achieve a margin odsit leas often as possible.
On rounds where the algorithm attains a margin less than 1 it suffers antarstans loss. This
loss is defined by the followingginge-lossunction,

0 y(w-x)>1
1-y(w-x) otherwise

£(w; (x,y)) = { (1)
Whenever the margin exceeds 1, the loss equals zero. Otherwise, I dypdifference between
the margin value and 1. We note in passing that the choice of 1 as the margimaidrbelow which
a loss is suffered is rather arbitrary. In Sec. 5 we generalize the losgdunction in the context
of regression problems, by letting the threshold be a user-defined pgarakve abbreviate the loss
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suffered on round by 4, that is, ¢ = ¢(w; (X, yt)). The algorithms presented in this paper will
be shown to attain a smatumulative squared lossver a given sequence of examples. In other
words, we will prove different bounds @1162, whereT is the length of the sequence. Notice that
whenever a prediction mistake is made tig 1 and therefore a bound on the cumulative squared
loss also bounds the number of prediction mistakes made over the seqiieramples.

3. Binary Classification Algorithms

In the previous section we described a general setting for binary otasiifi. To obtain a concrete
algorithm we must determine how to initialize the weight veetgrand we must define the update
rule used to modify the weight vector at the end of each round. In this sewtopresent three
variants of an online learning algorithm for binary classification. The g¢s@ode for the three
variants is given in Fig. 1. The vector, is initialized to(0,...,0) for all three variants, however
each variant employs a different update rule. We focus first on the strgfiehe three, which on
roundt sets the new weight vecter . ; to be the solution to the following constrained optimization
problem,
1 2

Wit = argm|n§||w—wt||

weRnN

s.t. 4(w; (X, %)) =0. 2

Geometricallyw;. 1 is set to be the projection a¥; onto the half-space of vectors which attain a
hinge-loss of zero on the current example. The resulting algorittpagsivewhenever the hinge-
loss is zero, that isw;, 1 = w; whenever/; = 0. In contrast, on those rounds where the loss is
positive, the algorithmaggressivelyforcesw; .1 to satisfy the constraint(wi,1; (X, y:)) = O re-
gardless of the step-size required. We therefore name the algdpakeive-Aggressivar PA for
short.

The motivation for this update stems from the work of Helmbold et al. (Helmbaddl ,et999)
who formalized the trade-off between the amount of progress made brr@atd and the amount
of information retained from previous rounds. On one hand, our updgtéresw; 1 to correctly
classify the current example with a sufficiently high margin and thus predggesade. On the other
hand,w;, 1 must stay as close as possibleng thus retaining the information learned on previous
rounds.

The solution to the optimization problem in Eq. (2) has a simple closed form salution

t
Wi1 = Wi +TeYiXe Where 1y = I (3)

We now show how this update is derived using standard tools from camadysis (see for instance
(Boyd and Vandenberghe, 2004)). ¢f= 0 thenwy itself satisfies the constraint in Eg. (2) and is
clearly the optimal solution. We therefore concentrate on the case hei@. First, we define the
Lagrangian of the optimization problem in Eq. (2) to be,

L(w,1) = %||w—wt||2 + T(l—yt(w-xt)), 4)

wheret > 0 is a Lagrange multiplier. The optimization problem in Eq. (2) has a convextige
function and a single feasible affine constraint. These are sufficiaeditans for Slater’s condition
to hold therefore finding the problem’s optimum is equivalent to satisfying tHresh-Khun-Tucker
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INPUT: aggressiveness parameter- 0
INITIALIZE : wy = (0,...,0)
For t=12,...

e receive instancex € R"
e predict:y; = sign(w; - X;)
e receive correct label; € {—1,+1}
o suffer loss:y = max{0, 1—y:(Wi- %)}
e update:
1. set: ,
— °t
Rl i (PA)
Tt:min{C, Hfttl\z} (PA-)
_ 4 -
T = \Ixt\|2t+% (PA-II

2. Update: Wir1 = Wt + Te Ve Xt

Figure 1: Three variants of the Passive-Aggressive algorithm farpiclassification.

conditions (Boyd and Vandenberghe, 2004). Setting the partial digggaof . with respect to the
elements ofv to zero gives,

0 = Oys(W,T) = W—W; — TV — W = W + Ty X;. (5)
Plugging the above back into Eq. (4) we get,
1o 02
£() = =P + T(L-ywi-x)).

Taking the derivative of (1) with respect ta and setting it to zero, we get,

aL (1) » 1—w(we-Xi)
0= = —T||X + (1—ve(wi - X — T=—
o1 || t” ( yt( t t)) ||Xt||2

Since we assumed thgt> 0 thent; = 1—y;(w-X;). In summary, we can state a unified update for
the case wheré = 0 and the case whefg> 0 by settingt; = 4 /||x||%.

As discussed above, the PA algorithm employs an aggressive updétgstog modifying the
weight vector by as much as needed to satisfy the constraint imposed byrteatexample. In
certain real-life situations this strategy may also result in undesirable aoesees. Consider for
instance the common phenomenon of label noise. A mislabeled example mayttwaealgo-
rithm to drastically change its weight vector in the wrong direction. A single mesdmbexample
can lead to several prediction mistakes on subsequent rounds. Tawithpguch problems, we
present two variations on the PA update that employ gentler update straté@esdopt the tech-
nique previously used to derive soft-margin classifiers (Vapnik, 1888)introduce a non-negative
slack variabl€, into the optimization problem defined in Eq. (2). This variable can be intratiunce
two different ways. First, we consider the update where the objectiveifin scales linearly with
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&, namely,

Wit = ar%gin;HW—WtHZ + C& st 4w (x,%)) <& and & > 0. (6)
Wi n

HereC is a positive parameter which controls the influence of the slack term on jbetiob func-
tion. Specifically, we will show that larger values@fimply a more aggressive update step and we
therefore refer t€ as theaggressiveness parametafrthe algorithm. We term the algorithm which
results from this updateA-1 .

Alternatively, we can have the objective function scale quadratically &itfesulting in the
following constrained optimization problem,

1
Wip1 = argminz||w—w||? + CE2 st £(w; (X, \)) < &. 7)
weRP 2

Note that the constrairg > 0 which appears in Eq. (6) is no longer necessary siide always
non-negative. We term the algorithm which results from this upBatél . As with PA-I ,Cis a
positive parameter which governs the degree to which the update ofiBAgdbressive. The updates
of PA-l and PA-II also share the simple closed fonm 1 = w; + Ty Vi X;, where

b

%t [[?

Ll (PA-II). (8)

T =min{ C
‘ { ’ % ||2 + &

} (PA-I) or Tt =
A detailed derivation of the PA-l and PA-II updates is provided in Apmerd It is worth noting
that the PA-Il update is equivalent to increasing the dimension of maftbm nto n+ T, setting
Xn+t = /1/2C, setting the remainind — 1 new coordinates to zero, and then using the simple
PA update. This technique was previously used to derive noise-tolemine algorithms in (Klas-
ner and Simon, 1995; Freund and Schapire, 1999). We do not usdgassation explicitly in this
paper, since it does not lead to a tighter analysis.

Up until now, we have restricted our discussion to linear predictors ofottme $igr{w - x). We
can easily generalize any of the algorithms presented in this section usitgiernels. Simply

note that for all three PA variants,
t—1

Wy = lethXt,
i=

t—1
Wi X = ZTth(Xi Xt)-
i=

and therefore,

The inner product on the right hand side of the above can be replated general Mercer kernel
K(xi,Xt) without otherwise changing our derivation. Additionally, the formal arialpsesented in
the next section also holds for any kernel operator.

4. Analysis

In this section we proveelativeloss bounds for the three variants of the PA algorithm presented in
the previous section. Specifically, most of the theorems in this section relaterthéative squared
loss attained by our algorithms on any sequence of examples with the losschtigiar arbitrary
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fixed classification function of the form sigm- x) on the same sequence. As previously mentioned,
the cumulative squared hinge loss upper bounds the number of predictitakesis Our bounds
essentially prove that, for any sequence of examples, our algorithmstammuch worse than the
best fixed predictor chosen in hindsight.

To simplify the presentation we use two abbreviations throughout this pasebefore we
denote by/; the instantaneous loss suffered by our algorithm on rdurd addition, we denote
by ¢ the loss suffered by the arbitrary fixed predictor to which we are congatin performance.
Formally, letu be an arbitrary vector iR", and define

b= L(We; (X, W) and 4 =0(u; (X, %)) 9

We begin with a technical lemma which facilitates the proofs in this section. With this lemma
handy, we then derive loss and mistake bounds for the variants of thigg®tlam presented in the
previous section.

Lemmal Let(x1,V1),...,(XT,yr) be a sequence of examples wheare R" and y € {+1,—1} for
allt. Lett; be as defined by either of the three PA variants given in Fig. 1. Then usngptation
given in Eq. (9), the following bound holds for any¢ R",

T

Zl'[t (2£t—rt|]xt||272€t*) < ”U”2
t=

Proof Defines; to be||w; — u|> — w1 — u|[?>. We prove the lemma by summindy over allt
in 1,...,T and bounding this sum from above and below. First note Jhat is a telescopic sum
which collapses to,

T

Z(IIWt —ul? — [[wt 1 —ul|?)
t=

= lwi— UHZ— [Wri1— UHZ-

.
&

Using the facts thatv; is defined to be the zero vector and thatr 1 — u||? is non-negative, we
can upper bound the right-hand side of the abovéuilf and conclude that,

.
A < ul. (10)
A

We now turn to boundind\; from below. If the minimum margin requirement is not violated on
roundt, i.e. ¢, = 0, thent; = 0 and thereforéy, = 0. We can therefore focus only on rounds for
which 4; > 0. Using the definitiom; 1 = Wy + Vi TeX;, we can write; as,

N o= [w—ul® = [wipg —ul?
= fwe—ul® = [lwe — U+ yeTexe |2
= [lwe — u]|® = ([|we — ul]® + 2Teye (We — U) - X + T [%)
= —2uyi(Wp —u) X — TE)|x % (11)
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Since we assumed that> 0 thené; = 1 —y;(w; - X;) or alternativelyy; (W; - ;) = 1— 4. In addition,
the definition of the hinge loss implies thét> 1 —y;(u-x), hencey(u-x;) > 1—£. Using these
two facts back in Eq. (11) gives,

A > 2t ((1—£6)— (1—4) —T2lIx ]
= 1 (26— lxl2-26). (12)

Summing/; over allt and comparing the lower bound of Eq. (12) with the upper bound in Eg. (10
proves the lemma. |

We first prove a loss bound for the PA algorithm in the separable cass.bdbnd was previ-
ously presented by Herbster (2001) and is analogous to the classic nhistaiefor the Perceptron
algorithm due to Novikoff (1962). We assume that there exists 30m&" such that;(u-x;) > 0
forallt € {1,...,T}. Without loss of generality we can assume that scaled such that that
yi(u-%;) > 1 and thereforas attains a loss of zero on all examples in the sequence. With the
vectoru at our disposal, we prove the following bound on the cumulative squassIdPA .

Theorem 2 Let(X1,¥1),...,(XT,yr) be a sequence of examples where R", y; € {+1,—1} and
IX:|| <R for allt. Assume that there exists a veai@uch tha¥; = 0for allt. Then, the cumulative
squared loss of PA on this sequence of examples is bounded by,

.
% < ||ul|’R2.
2"

Proof Since/; =0 for allt, Lemma 1 implies that,

T

Zth (26 —elx)I?) < ull*. (13)

t=

Using the definition of; for the PA algorithm in the left-hand side of the above gives,

.

2 2 2
Zlgt/HXtH <l
t=

Now using the fact thatx;||? < R? for all t, we get,

T
(/R < |ul.
&
Multiplying both sides of this inequality b? gives the desired bound. |

The remaining bounds we prove in this section do not depend on a siipasgsumption.
In contrast to the assumptions of Thm. 2, the vectavhich appears in the theorems below is an
arbitrary vector inR" and not necessarily a perfect separator. The first of the followingy¢nes
bounds the cumulative squared loss attained by the PA algorithm in the sgasgavhere all of
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the instances in the input sequence are normalized sd|%higt = 1. Although this assumption
is somewhat restrictive, it is often the case in many practical applicationagsdification that the
instances are normalized. For instance, certain kernel operatdnsastive Gaussian kernel, imply
that all input instances have a unit norm. See for example (Cristianini laagesTaylor, 2000).

Theorem 3 Let (X1,Y1),...,(XT,yr) be a sequence of examples wheare R", y; € {+1,—1} and
Ixt|| = 1 for all t. Then for any vectou € R" the cumulative squared loss of PA on this sequence
of examples is bounded from above by,

T 2
T (|u|+2\/zi_1<et*>2) .
t=

Proof In the special case whefi||? = 1, Ty and/; are equal. Therefore, Lemma 1 gives us that,

T T
2 < |ulP+25 4.
& &
Using the Cauchy-Schwartz inequality to upper bound the right-hand &ithe above inequality,

and denoting
Lr=1/3C0f  and Ur=,/30,(4)2 (14)

we get that 2 < ||u||?+ 2L7Ur. The largest value dfr for which this inequality is satisfied is the
larger of the two values for which this inequality holds with equality. That is,li@io an upper
bound onLt we need to find the largest root of the second degree polynasial2UrLt — ||u||?,

which is,
Ur +/UZ+ Ju|]2
Using the fact that/a + B < /o + \/E we conclude that
Lt < |lul|+2Ur. (15)

Taking the square of both sides of this inequality and plugging in the definiidlas andU+t from
Eq. (14) gives the desired bound. |

Next we turn to the analysis of PA-I . The following theorem does notipieo# loss bound but
rather a mistake bound for the PA-I algorithm. That is, we prove a diramidbon the number of
timesy; # sign(w; - X;) without usingy ¢? as a proxy.

Theorem 4 Let (X1,y1),. .., (XT,yT) be a sequence of examples where R", y; € {+1,—1} and
IXt|| < R for allt. Then, for any vectan € R", the number of prediction mistakes made by PA-I on
this sequence of examples is bounded from above by,

T
max{R?,1/C} | |lul[*+2C Zlet* ,
t=
where C is the aggressiveness parameter provided to PA-I (Fig. 1) .
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Proof If PA-I makes a prediction mistake on roundhen/¢; > 1. Using our assumption that
[|%¢||? < R? and the definitiorty = min{¢ /||x;||?,C}, we conclude that if a prediction mistake occurs
then it holds that,

min{1/R?,C} < Tt.

Let M denote the number of prediction mistakes made on the entire sequencert;&imcalways
non-negative, it holds that,

min{1/R2,C} M < irtet. (16)
t=

Again using the definition of;, we know thatr,/; < C¢ and thatr || || < 4. Plugging these two
inequalities into Lemma 1 gives,

T

.
wh < u?+2C 4. (17)
2 A"
Combining Eq. (16) with Eq. (17), we conclude that,
.
min{1/R?2,C} M < ||u||2+2czet*.
t=

The theorem follows from multiplying both sides of the above by fiRéx1/C}. [ |

Finally, we turn to the analysis of PA-Il . As before, the proof of the foilogvtheorem is based on
Lemma 1.

Theorem 5 Let (X1,Y1),..., (XT,¥t) be a sequence of examples where R", y; € {+1,—1} and
|x¢]|? < R2 for all t. Then for any vectou € R" it holds that the cumulative squared loss of PA-I on
this sequence of examples is bounded by,

T 1 T
£ < (R ) (IR + 25672
& 2 2
where C is the aggressiveness parameter provided to PA-Il (Fig. 1) .

Proof Recall that Lemma 1 states that,
T
ul? > Zl (2tely — T8 ||xc[|? — 21e7) -
t=

Defininga = 1/+/2C, we subtract the non-negative tefom; — £ /a)? from each summand on the
right-hand side of the above inequality, to get

.
ull® > Zl(thﬁt—r?thHZ—Zrtﬂt*—(om—et*/a)z)
t=
T
— Z(Zﬁ&—TfHXtHZ—2Tt£t*—0(2rt2+2n£t*—(Et*)z/uz)
t=
L

- 3 (enn =TIl o) (/).
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Plugging in the definition oft, we obtain the following lower bound,

T 1
ol = 5 (2= (Il ) ~20067).
t=

Using the definitiort; = 4 /(||| + 1/(2C)), we can rewrite the above as,

G

.
ull? > —t__oc)?).
tZl % [|2 + 55 t

Replacing||x;|? with its upper bound oR? and rearranging terms gives the desired bound. B

We conclude this section with a brief comparison of our bounds to previpusliished bounds
for the Perceptron algorithm. As mentioned above, the bound in Thm. 2 i$ tequee bound of
Novikoff (1962) for the Perceptron in the separable case. How&Wen, 2 bounds the cumulative
squared hinge loss of PA, whereas Novikoff's bound is on the numbprealiction mistakes.
Gentile (2002) proved a mistake bound for the Perceptron in the norddpaase which can be
compared to our mistake bound for PA-I in Thm. 4. Using our notation from.®h Gentile bounds
the number of mistakes made by the Perceptron by,

R?||u|| R2luli2 2
RE ST RISt ()

At the price of a slightly loosening this bound, we can use the inequglity-b < \/a+ v/b to get
the simpler bound,

Relull> + 316 + Rilully/3 a6

With C = 1/R?, our bound in Thm. 4 becomes,

.
Reul]2 + 2 .
&

Thus, our bound is inferior to Gentile’s whejju|| < /S, 4, and even then by a factor of at
most 2.

The loss bound for PA-11in Thm. 5 can be compared with the bound ofrfdr@md Schapire
(1999) for the Perceptron algorithm. Using the notation defined in Thm.eunérand Schapire
bound the number of incorrect predictions made by the Perceptron by,

(R||u||+\/m>2.

It can be easily verified that the bound for the PA-II algorithm given imTb exactly equals the
above bound of Freund and Schapire wikis set to||u]|/(2R\/3(¢)?). Moreover, this is the
optimal choice ofC. However, we bound the cumulative squared hinge-loss of PA-Il gdsethe

bound of Freund and Schapire is on the number of mistakes.
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5. Regression

In this section we show that the algorithms described in Sec. 3 can be modifiedltwith online
regression problems. In the regression setting, every instaniseassociated with a real target
valuey; € R, which the online algorithm tries to predict. On every round, the algorithraives
an instance; € R" and predicts a target valye € R using its internal regression function. We
focus on the class of linear regression functions, that is; W; - X; wherew is the incrementally
learned vector. After making a prediction, the algorithm is given the trueta&eduey; and suffers
an instantaneous loss. We use ghiasensitive hinge loss function:

(e (x) =

wheree is a positive parameter which controls the sensitivity to prediction mistakes.|dd1ds
zero when the predicted target deviates from the true target by lesg thaah otherwise grows
linearly with |y — yt|. At the end of every round, the algorithm usesand the exampléx;, y:) to
generate a hew weight vectar_ 1, which will be used to extend the prediction on the next round.

We now describe how the various PA algorithms from Sec. 3 can be adagdtsdn regression
problems. As in the case of classification, we initiakzgto (0,...,0). On each round, the PA
regression algorithm sets the new weight vector to be,

0 w-x—y|<e

|w-x—y|—€ otherwise ’ (18)

Wiy = argmin%HW—th2 st Le(W; (X, %)) =0, (19)
weRn

In the binary classification setting, we gave the PA update the geometric gtegrpn of projecting

w; onto the linear half-space defined by the constréﬁmt; (xt,yt)) = 0. For regression problems,

the set{w € R" : /¢(w,z) = O} is not a half-space but rather a hyper-slab of width @eomet-

rically, the PA algorithm for regression projeats onto this hyper-slab at the end of every round.

Using the shorthand = /¢ (w;; (%, ¥t)), the update given in Eq. (19) has a closed form solution

similar to that of the classification PA algorithm of the previous section, namely,

Wi41 = Wt + 3|gn(yt — yt).[txt where Tt = ft/”Xt ||2

We can also obtain the PA-1 and PA-II variants for online regression tpdncing a slack
variable into the optimization problem in Eq. (19), as we did for classificatiomir{@& and Eq. (7).
The closed form solution for these updates also comes outw@.he= w; + sign(y; — Ji ) Tt where
T; is defined as in Eq. (8). The derivations of these closed-form updeteaimost identical to that
of the classification problem in Sec. 3.

We now turn to the analysis of the three PA regression algorithms desciibgd.aWe would
like to show that the analysis given in Sec. 4 for the classification algorithroshalsls for their
regression counterparts. To do so, it suffices to show that Lemma 1 &ti#l fay regression prob-
lems. After obtaining a regression version of Lemma 1, regression versiomhm. 2 through
Thm. 5 follow as immediate corollaries.

Lemma 6 Let(x1,Y1),...,(XT,yr) be an arbitrary sequence of examples, where R" and y € R
for allt. Let1; be as defined in either of the three PA variants for regression problehen @ising
the notation given in Eq. (9), the following bound holds for any R",

;
Zth (26 —l|xc||® = 26) < [|ul®.

=
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Proof The proof of this lemma follows that of Lemma 1 and therefore subtleties whicé dis-
cussed in detail in that proof are omitted here. Again, we use the definition

By = [ —u? — [[ w1 —u?

and the same argument used in Lemma 1 implies that,

< 2
> &<
t=

We focus our attention on boundinly from below on those rounds wherfg # 0. Using the
recursive definition ofv; 1, we rewritel; as,

D = ||we—ul” = |jwe — u+sign(yt — i) Toxe |
= —sign(yt — )21t (W — U) - X — T7[|x|?

We now add and subtract the term gign- ;) 2t:y: from the right-hand side above to get the bound,

Dy > —signye — ¥o) 2T (We - Xe — Vi) + Signye — ¥) 2T (U - X — y) — T8 ||| (20)

Sincew; - Xy = Vi, we have that-sign(y: — Vi) (Wi - Xt — Yt ) = |[W¢ - Xt — Yt|. We only need to consider
the case whera; # 0, so/; = |w; - X; — yt| — € and we can rewrite the bound in Eq. (20) as,

Dy > 2t (6 +€) + sign(yr — %) 2t (U - X — Ve) — TE]%¢]|%
We also know that sigiy: — Vi) (U- Xt — ¥t) > —|u- % — ¥t| and that—|u - x; — yt| > — (¢ +€). This
enables us to further bound,

N > 2Tt(ft—|—€) — 2Tt(£r—|—€) — Tt2||XtH2 = Tt(%t —TtHXtHZ—Zg?).

Summing the above over dland comparing to the upper bound discussed in the beginning of this
proof proves the lemma. |

6. Uniclass Prediction

In this section we present PA algorithms for the uniclass prediction probldms task involves
predicting a sequence of vectyrsy», - - - wherey; € R". Uniclass prediction is fundamentally dif-
ferent than classification and regression as the algorithm makes presligfitvout first observing
any external input (such as the instamxge Specifically, the algorithm maintains in its memory a
vectorw; € R" and simply predicts the next element of the sequence g bAfter extending this
prediction, the next element in the sequence is revealed and an instastéoeois suffered. We
measure loss using the followirgginsensitive loss function:

0 lw—yl[<e

|lw—y| —& otherwise (21)

twy) = {

As in the regression settingjs a positive user-defined parameter. If the prediction is wittahthe
true sequence element then no loss is suffered. Otherwise the lossastionogl to the Euclidean
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distance between the prediction and the true vector. At the end of eawthwpis updated in order
to have a potentially more accurate prediction on where the next element iagherse will fall.
Equivalently, we can think of uniclass prediction as the task of finding tec@ointw such that as
many vectors in the sequence fall within a radius &bm w. At the end of this section we discuss
a generalization of this problem, where the radius also determined by the algorithm.

As before, we initializev; = (0,...,0). Beginning with the PA algorithm, we define the update
for the uniclass prediction algorithm to be,

.1
Wip1 = argminz||w—w[|?> st fe(w;y) =0, (22)
weR" 2

Geometricallyw; ., 1 is set to be the projection @¥; onto a ball of radiug abouty;. We now show
that the closed form solution of this optimization problem turns out to be,

S ()
Weyp = ([1———— )Wt + (| ——— ) V2. 23
v = (0 )t ()7 @9
First, we rewrite the above equation and express by,
Yt — Wt
Wi =W +Ti———, 24

wheret; = 4. In the Uniclass problem the KKT conditions are both sufficient and sacggor
optimality. Therefore, we prove that Eq. (24) is the minimizer of Eq. (22)dxfying that the KKT
conditions indeed hold. The Lagrangian of Eq. (22) is,

1
Lw,T) = Slw-w*+T(w-y -), (25)

wheret > 0 is a Lagrange multiplier. Differentiating with respect to the elementg ahd setting
these partial derivatives to zero, we get the first KKT condition, statiagahthe optimuniw, 1)
must satisfy the equality,
W—Vi
0=0Owe(W,T) = W—W +T7— . (26)
" W —yi|

In addition, an optimal solution must satisfy the conditiors 0 and,
T([lw—yt[[—¢) = 0. (27)

Clearly, 1y > 0. Therefore, to show that;; is the optimum of Eq. (22) it suffices to prove that
(Wi11,Tt) satisfies Eq. (26) and Eq. (27). These equalities trivially holg# 0 and therefore from
now on we assume thét > 0. Plugging the values = w1 andt = 1; in the right-hand side of
Eq. (26) gives,

W1 — Wt Yt — Wt W1 — Wt
Wip1 —Wi+Tf————— =T ) 28
S T t<||yt—wtr ||wt+1—ytu> (29)
Note that,
—W 1
Wi =Yt = Wt+Tt||§I_W:H Yt = (We—Wt) <1Tt|Yt—Wt||>

Wt — Yt

||Wt—Yt|| (H 1 Yt|| t) ||Wt_yt||( 1 Yt) ( )

564



ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Combining Eq. (29) with Eq. (28) we get that,

W41 — Wt 0
)

Wip1 —Wi+Tj——mMmm—— =
t+1 t+ tHWt+1*Yt||

and thus Eq. (26) holds fdmw;1,Tt). Similarly,
|Wei1—Vi||—€ = e—€ = 0,

and thus Eq. (27) also holds. In summary, we have shown that the KKT dipyirmanditions hold
for (wi11,Tt) and therefore Eq. (24) gives the desired closed-form update.

To obtain uniclass versions of PA-1 and PA-II, we add a slack variabléag¢ooptimization
problemin Eq. (22) in the same way as we did in Eq. (6) and Eq. (7) forldssification algorithms.
Namely, the update for PA-1 is defined by,

1
Wii1 = argmlnEHW—WtHZJrCE st |w—y| <e+& &>0, (30)

weRn

and the update for PA-Il is,
1
Wi = argmins||w—w||>+C&% st w—y| <e+&.
weR" 2

The closed form for these updates can be derived using the same textasiqve used for
deriving the PA update. The final outcome is that both PA-I and PA-lleskize form of update
given in Eq. (24), witht; set to be,

b

Ti=min{C, &} (PA-l) or T = oL (PA-II).

2C

We can extend the analysis of the three PA variants from Sec. 4 to thefeaselass prediction.
We do so by proving a uniclass version of Lemma 1. After proving this lemmadismiss an
additional technical difficulty which needs to be addressed so that Thnro@gh Thm. 5 carry
over smoothly to the uniclass case.

Lemma 7 Letys,...,yr be an arbitrary sequence of vectors, whgye= R" for all t. Lett; be as
defined in either of the three PA variants for uniclass prediction. Then ubmgotation given in
Eq. (9), the following bound holds for anyc R",
. 2
Tt (th — Tt — 26;) < ”U” .
2

Proof We prove this lemma in much the same way as we did Lemma 1. We again use the definition
D¢ = ||wg — ul|? — ||wg 1 — u]|?, along with the fact stated in Eq. (10) that

T
ZlAt < [|u]f®.
=
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We now focus our attention on boundifg from below on those rounds whefg # 0. Using the
recursive definition ofv; 1, we rewritel; as,

Tt Tt
R
Iwe = Wil W=l

2
_ a2 v — L S DV
- HW'[ UH H(Wt U)+ <’Wt_ytH> (yt Wt)

_ Tt N _ 12
- 2<”Wt_ytH>(Wt U) (yt Wt) Ti.

2

We now add and subtragt from the term(w; — u) above to get,

=l
_ ﬁdw—vm—2<

T
N = —2<tht> (Wt — Ve +Ye—u) - (e —wy) — ¢

L
[Iwe =y |

) (Ye—u)- (ye — W) — T
Now, using the Cauchy-Schwartz inequality on the téym-u) - (y; —w;), we can bound,
D > 2n|jwe—ye|| — 2tllye —ul| - T7.
We now add and subtract2 from the right-hand side of the above, to get,
B > 2n([lwe —yi]l —€) — 2t (|l —ul —¢) - T¢.

Since we are dealing with the case whére> 0, it holds that/; = ||w; — y;|| — €. By definition,
ZF > |lJu—yt|| — €. Using these two facts, we get,

A > 2Tt‘€t — 2Tt‘€t* —th.

Summing the above inequality over aland comparing the result to the upper bound in Eq. (10)
gives the bound stated in the lemma. [ |

As mentioned above, there remains one more technical obstacle which stahdsway of
applying Thm. 2 through Thm. 5 to the uniclass case. This difficulty stems frerfatitx; is not
defined in the uniclass whereas the tejxij2 appears in the theorems. This issue is easily resolved
by settingx; in the uniclass case to be an arbitrary vector of a unit length, naimgly = 1. This
technical modification enables us to writeas /; /||x;||? in the uniclass PA algorithm, as in the
classification case. Similarly; can be defined as in the classification case for PA-lI and PA-II .
Now Thm. 2 through Thm. 5 can be applied verbatim to the uniclass PA algorithms.

Learning the Radius of the Uniclass Predictor In the derivation above we made the simplifying
assumption that, the radius of our uniclass predictor, is fixed beforehand and thaniiveealgo-
rithm can only move its centewy. We now show that learningandw in parallel is no harder than
learningw alone. We do so by using a simple reduction argument. For technical ssagerstill
require an upper bound anwhich we denote bfB. AlthoughB is specified ahead of time, it can
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be arbitrarily large and does not appear in our analysis. Typically, wethiilk of B as being far
greater than any conceivable valueeofOur goal is now to incrementally find; ande; such that,

Iwe —yil| <, (31)

as often as possible. Additionally, we would likgto stay relatively small, since an extremely
large value of; would solve the problem in a trivial way. We do so by reducing this problee to
different uniclass problem where the radius is fixed and wigeigin R™*. That is, by adding an
additional dimension to the problem, we can leausing the same machinery developed for fixed-
radius uniclass problems. The reduction stems from the observation thé@ Bacan be written
equivalently as,

we —yi|2+ (B2 —€?) < B2 (32)

If we were to concatenate a 0 to the end of ewarythus increasing its dimension to+ 1) and
if we considered th@+ 1'th coordinate ofy; to be equivalent ta/B? — €7, then Eq. (32) simply
becomeg|w; — y;||?> < B?. Our problem has reduced to a fixed-radius uniclass problem where the
radius is set td. wy 1 Should be initialized td3, which is equivalent to initializing; = 0. On
each roundg; can be extracted fromy; by,

& = BZ*WtZ,m—l'
Sincew;; 1 n+1 is defined to be a convex combinationwaf,, 1 andy; ny1 (Where the latter equals
zero), themnw 11 is bounded in(0, B for all t and can only decrease from round to round. This
means that the radiug is always well defined and can only increase withSince the radius is
initialized to zero and is now one of the learned parameters, the algorithmrwsral tendency
to favor small radii. Let denote the center of a fixed uniclass predictor and tinote its radius.
Then the reduction described above enables us to prove loss bounds wintflase presented in
Sec. 4, with|ul|? replaced by||u||? + €2.

7. Multiclass Problems

We now address more complex decision problems. We first adapt the lulaasification algo-
rithms described in Sec. 3 to the taskmfilticlass multilabetlassification. In this setting, every
instance is associated with a set of labglsFor concreteness we assume that therék aifferent
possible labels and denote the set of all possible labels by{1, ..., k}. For every instance, the
set of relevant labely is therefore a subset of. We say that labe} is relevantto the instance; if

y € Y;. This setting is often discussed in text categorization applications (seesfanae (Schapire
and Singer, 2000)) whene represents a document avids the set of topics which are relevant to
the document and is chosen from a predefined collection of topics. Huéaspase where there
is only asinglerelevant topic for each instance is typically referred taragticlass single-label
classification or multiclass categorization for short. As discussed belaovgdaptation of the PA
variants to multiclass multilabel settings encompasses the single-label settingessah case.

As in the previous sections, the algorithm receives instarges, ... in a sequential manner
where eaclx; belongs to an instance spage Upon receiving an instance, the algorithm outputs
a score for each of thke labels iny. That is, the algorithm’s prediction is a vectoritf where
each element in the vector corresponds to the score assigned to thetivesfadel. This form
of prediction is often referred to as label ranking. Predicting a labddingns more general and

567



CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

flexible than predicting the set of relevant lab¥ls Special purpose learning algorithms such as
AdaBoost.MR (Schapire and Singer, 1998) and adaptations of swmaidr machines (Crammer
and Singer, 2003a) have been devised for the task of label rankieig Wk describe a reduction
from online label ranking to online binary classification that deems labk&ingras simple as binary
prediction. We note that in the case of multiclass single-label classificatiopyéakction of the
algorithm is simply set to be the label with the highest score.

For a pair of labels,s € o, if the score assigned by the algorithm to labéd greater than the
score assigned to labglwe say that label is rankedhigher than labes. The goal of the algorithm
is to rank every relevant label above every irrelevant label. Assunievihare provided with a set
of d featuresyy, ..., @y where each featurg; is a mapping fromx x o to the reals. We denote
by ®(x,y) = (@1(X,Y),...,@(X,Yy)) the vector formed by concatenating the outputs of the features,
when each feature is applied to the pairy). The label ranking function discussed in this section
is parameterized by a weight vector,c RY. On roundt, the prediction of the algorithm is the
k-dimensional vector,

((Wt D, 1)), (We- CD(xt,k))>.

We motivate our construction with an example from the domain of text catetjoriz&Ve describe
a variant of theTerm Frequency - Inverse Document Freque(idy-IDF) representation of docu-
ments (Rocchio, 1971; Salton and Buckley, 1988). Each fegiurerresponds to a different word,
denotedy;. Given a corpus of documenS®; for everyx € Sand for every potential topig, the
featureg;(x,y) is defined to be,

@j(x,y) = TF(u;,x)-log (DFEw>

where TRy;,x) is the number of timeg; appears ik and DHy;,y) is the number of timeg;
appears in all of the documents@which arenotlabeled byy. The valuep; grows in proportion to
the frequency ofy; in the documenx but is dampened ffi; is a frequent word for topics other than
y. In the context of this paper, the important point is that each feature isdapendent.

After making its prediction (a ranking of the labels), the algorithm receivestrect set of
relevant labeld;. We define thenarginattained by the algorithm on roundor the exampléx;, Y;)
as,

y(we (%, %)) = pg#rt]wtm(xt,r) — rsr;ngxwtm(xt,s).

This definition generalizes the definition of margin for binary classificatiahveais employed by
both single-label and multilabel learning algorithms for support vector mashi¥apnik, 1998;
Weston and Watkins, 1999; Elisseeff and Weston, 2001; Crammer andrSgtip3a). In words,
the margin is the difference between the score of the lowest ranked ntlekel and the score
of the highest ranked irrelevant label. The margin is positive only if all efrilevant labels are
ranked higher than all of the irrelevant labels. However, in the spiritradry classification, we are
not satisfied by a mere positive margin as we require the margin of evetictioa to be at least 1.
After receivingy;, we suffer an instantaneous loss defined by the following hinge-lossidun

0 y(w; (x,Y)) >1 .

1—-y(w;(x,Y)) otherwise (33)

luc (W; (X,Y)) = {
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As in the previous sections, we u&eas an abbreviation fdf,c (wt; (xt,Yt)). If an irrelevant label is
ranked higher than a relevant label, th@rattains a value greater than 1. Therefgrg,, ¢? upper
bounds the number of multiclass prediction mistakes made on rounds 1 thfough

One way of updating the weight vectex is to mimic the derivation of the PA algorithm for
binary classification defined in Sec. 3 and to set

-1
Wil = argmlnEHW—th2 S.t. Luc(W; (X, Y)) =0. (34)
weRd

Satisfying the single constraint in the optimization problem above is equivalesdtisfying the
following set of linear constraints,

Vrer vséYr wW-P(X,r)—w-Pd(x,s) > 1 (35)

However, instead of attempting to satisfy all of the| x (k— |91|) constraints above we focus only
on the single constraint which is violated the mostvy We show in the sequel that we can still
prove a cumulative loss bound for this simplified version of the update. \i¢ethat satisfying all
of these constraints simultaneously leads to the online algorithm presentadimr(@r and Singer,
2003a). Their online update is more involved and computationally expersidemoreover, their
analysis only covers the realizable case.

Formally, letr; denote the lowest ranked relevant label andsladenote the highest ranked
irrelevant label on rount That is,

re = argminwg - ®(x,r) and s = argmaxwv; - P(x,S). (36)
rey; SEYt

The single constraint that we choose to satisfy isP(x¢,rt) —w- ®(X;,&) > 1 and thusw 1 is set
to be the solution of the following simplified constrained optimization problem,

1
W1 = argmlnEHW—th2 St W (DX, ry) — P(x,s)) > 1L (37)
w

The apparent benefit of this simplification lies in the fact that Eq. (37) fdssad form solution.
To draw the connection between the multilabel setting and binary classificatoran think of the
vector d(xq,rt) — P(xt, ) as a virtual instance of a binary classification problem with a label of
-+1. With this reduction in mind, Eq. (37) becomes equivalent to Eqg. (2).€fbe, the closed form
solution of Eq. (37) is
Wir1 = Wi+ Te(P(X, ) — P(X,&))- (38)

with,

[P(xe, ) — P(xt, ) 1>
Although we are essentially neglecting all but two labels on each step of the lamstigpdate, we
can still obtain multiclass cumulative loss bounds. The key observation imalysis it that,

Tt

Oac (We; (X, 1)) = (Wi (D(Xe, ) — DX, &), +1)).

To remind the readef,on the right-hand side of the above equation is the binary classification loss
defined in Eq. (1). Using this equivalence of definitions, we can cofiien. 2 into a bound for
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the multiclass PA algorithm. To do so we need to cast the assumption that foit abblds that
|P(Xt,rt) — P(X,%)|| < R This bound can immediately be converted into a bound on the norm
of the feature set singEP(x¢, 1) — P(xt, )| < [|P(Xt,1t)]| + || P(Xt,s)||. Thus, if the norm of the
mapping®(x;,r) is bounded for alt andr then so is|P(x¢,rt) — P(x,S)||- In particular, if we
assume that®(x,r)|| < R/2 for allt andr we obtain the following corollary.

Corollary 8 Let(x1,Y1),...,(xT,Yr) be a sequence of examples witte R" and ¥ C {1,...,k}.
Let® be a mappingp : x x & — RY such that|®(x,r)|| < R/2 for all t and r. Assume that there
exists a vectou such that/(u; (x,Y;)) = O for all t. Then, the cumulative squared loss attained by
the multiclass multilabel PA algorithm is bounded from above by,

:
£ < Reul®
A"

Similarly, we can obtain multiclass versions of PA-l and PA-II by using theatgdule in Eq. (38)
but settingr; to be either,

T min{C b } or 1T b
t = : L = 7
[®0410) = ®0e, %)l [0, 1e) = (e, ) 2+ 5

respectively. The analysis of PA-I and PA-1l in Thms. 4-5 also caoies from the binary case to
the multilabel case in the same way.

Multi-prototype Classification Inthe above discussion we assumed that the feature v@¢xoy)

is label-dependent and used a single weight veatdo form the ranking function. However, in
many applications of multiclass classification this setup is somewhat unnaturay. thtees, there

is a single natural representation for every instance rather than multipledaapresentations for
each individual class. For example, in optical character recognitioplgrs (OCR) an instance
can be a gray-scale image of the character and the goal is to output teatazirthis image. In this

example, it is difficult to find a good set of label-dependent features.

The common construction in such settings is to assume that each instancetas anig¢and to
associate a different weight vector (often referred to as prototyjte)each of thek labels (Vapnik,
1998; Weston and Watkins, 1999; Crammer and Singer, 2001). Thaeimuhiclass predictor is
now parameterized by, ..., wK, wherew! € R". The output of the predictor is defined to be,

((w}-xt),...,(wfxt)).

To distinguish this setting from the previous one we refer to this setting as thepmtibitype mul-
ticlass setting and to the previous one as the single-prototype multiclass setémgpw\fescribe
a reduction from the multi-prototype setting to the single-prototype one whighlesius to use all
of the multiclass algorithms discussed above in the multi-prototype setting as weaibtdim the
desired reduction, we must define the feature vector representatios) induced by the instance
label pair(x,y). We defined(x,y) to be ak-n dimensional vector which is composedidflocks of
sizen. All blocks but they'th block of ®(x,y) are set to be the zero vector while #ith block is set
to bex. Applying a single prototype multiclass algorithm to this problem produces ahveggtor
w; € RX"on every online round. Analogous to the constructio®of, y), the vectom, is composed
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INPUT: cost functionp(y,y')
INITIALIZE : wy = (O,...,0)
For t=12...

e receive instancex; ¢ R"
o predicty; = argmaxcy, (W - P(Xt,Y))
e receive correct label; € &
e define:yy = argmaxe, (Wt-dJ(xt,r)—wt.CD(xt,yt)—i— p(Yt,r))
e define:

o — { Ji (PB)

Yt (ML)

o sufferloss:ty = wi- D(x, o) — Wi - P(Xe, i) + PV, G )
o set:T; = b

[P (xe,yt) —P(xt,01)]]2
o updatewi;1 = W+ Tt (P(Xt, ) — P(Xt, G))

Figure 2: Theprediction-based(PB) and max-loss(ML) passive-aggressive updates for cost-
sensitive multiclass problems.

of k blocks of sizen and denote block by w{. By construction, we get that; - ®(x;,r) = wy - X;.
Equipped with this construction we can use verbatim any single-prototypdthln as a proxy for
the multi-prototype variant. Namely, on routde find the pair of indices;, s which corresponds
to the largest violation of the margin constraints,

re = argminwg - d(xe,r) = argminw - X ,
reY reYy

§ = argmaxiv - d(x;,S) = argmaxn; - X;. (39)
sVt sZY;

Unraveling the single-prototype notion of margin and casting it as a multi-preaige we get that
the loss in the multi-prototype case amounts to,

0 Wit X — Wit x> 1

1—wit X +w-x; otherwise (40)

(W W (X, W) = {

Furthermore, applying the same reduction to the update scheme we get thesuhing multi-
prototype update is,
Wy =W Tk and Wi =W — T (41)

For the PA algorithm, the value af is the ratio of the loss, as given by Eq. (40), and the squared
norm of ®(x;, ry) — P(X;, ). By construction, this vector h&s- 2 blocks whose elements are zeros
and two blocks that are equalxpand—x;. Since the two non-zero blocks are non-overlapping we
get that,

1D(x¢, re) — P(xe, 8011 = [1xel| + | —xel|* = 2[/xe)|.

Finally, due to our reduction we also get multi-prototype versions of Thmd4Tém. 5.
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8. Cost-Sensitive Multiclass Classification

Cost-sensitive multiclass classification is a variant of the multiclass singlediaissification setting
discussed in the previous section. Namely, each instganiseassociated with a single correct label
y: € 9 and the prediction extended by the online algorithm is simply,

Yo = argmax(w - D(x;,y)). (42)
yey

A prediction mistake occurs ¥ # Vi, however in the cost-sensitive setting different mistakes incur
different levels of cost. Specifically, for every pair of labgJsy’) there is a cosp(y,y’) associated
with predictingy’ when the correct label iz The cost functiomp is defined by the user and takes
non-negative values. We assume thigty) = 0 for ally € 9 and thap(y,y’) > 0 whenevey #y'.
The goal of the algorithm is to minimize tleaimulative cossuffered on a sequence of examples,
namely to minimizey p(yt, ¥t).

The multiclass PA algorithms discussed above can be adapted to this task tpomating the
cost function into the online update. Recall that we began the derivatitie ofiulticlass PA update
by defining a set of margin constraints in Eq. (35), and on every rounfbaused our attention
on satisfying only one of these constraints. We repeat this idea here wtdlgorating the cost
function into the margin constraints. Specifically, on every online round weldvlike for the
following constraints to hold,

Vre{o \yt} W (X, ¥) —We- P(Xe, 1) > /P(W,T). (43)

The reason for using the square root function in the equation above evjlidtified shortly. As
mentioned above, the online update focuses on a single constraint oet|of|th 1 constraints in
Eq. (43). We will describe and analyze two different ways to choosesthgle constraint, which
lead to two different online updates for cost-sensitive classification tWbeipdate techniques are
called theprediction-basedipdate and thenax-lossupdate. Pseudo-code for these two updates is
presented in Fig. 2. They share an almost identical analysis and may segrsimilar at first,
however each update possesses unique qualities. We discuss theasiggifif each update at the
end of this section.

The prediction-based update focuses on the single constraint in Byl corresponds to
the predicted labg).” Concretely, this update setg, ; to be the solution to the following optimiza-
tion problem,

1 . —~
W1 = argmlnEHW—WtHZ St Wi P(Xe,¥t) —We - P(Xe, %) > VPV ), (44)

weRn

wherey; is defined in Eqg. (42). This update closely resembles the multiclass updaie igiv
Eq. (37). Define the cost sensitive loss for the prediction-basedelpulae,

log(W; (X,Y)) = W-D(X,¥) —W-D(X,y) +/p(Y, ). (45)

Note that this loss equals zero if and only if a correct prediction was maaecly if y; = y;. On
the other hand, if a prediction mistake occurred it meanswhatnkedy; higher thany, thus,

(Y, ¥t) < Wi - D(Xe, %) —We - P(Xe, ) + PV, ) = Loa(We; (Xt Mt))- (46)
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As in previous sections, we will prove an upper bound on the cumulativared loss attained by
our algorithm,y  £pg(W; (%, ¥t))?. The cumulative squared loss in turn bourd®(y:, ¥t) which is
the quantity we are trying to minimize. This explains the rationale behind our cbbtbe margin
constraints in Eg. (43). The update in Eq. (44) has the closed form sglutio

Werr = Wi+ T (P(Xe, 1) — P(Xe, 1)), (47)

where,
T = Cos(We; (X, W) .
DX, ) — D%, ¥t)[|2
As before, we obtain cost sensitive versions of PA-I and PA-II liyreg

(48)

. EPB(WI; (Xtayt)) }
Tt = ming C, — PA-1
t Sy SR
T = flhi G, 0)) (PAII), (49)
[P, yt) — P (X, Vo) |2+ 5¢
where in both casdS > 0 is a user-defined parameter.
The second cost sensitive update, the max-loss update, also foousatssfying a single con-

straint from Eq. (43). Ley;be the label iny defined by,

Vo = argmax(W; - P(xe,r) — Wi - D(Xe, ¥t) + v/ PV, T))- (50)
rey
¥i is the loss-maximizing label. That is, we would suffer the greatest loss o tatiwe were to
predicty;. The max-loss update focuses on the single constraint in Eq. (43) wiridsponds tg;.
Note that the online algorithm continues to predict the Igbakbefore and that only influences
the online update. Concretely, the max-loss updatevsets to be the solution to the following
optimization problem,

1 . _
W1 = arggmiHW—thz St Wi DX, ¥t) —We - P(Xe, ) > VPV N), (51)
weRP

The update in Eg. (51) has the same closed form solution given in Eqa(i7Eq. (48) withy;
replaced by~ Define the loss for the max-loss update to be,

b (W5 (X,y)) = W-D(x,§) —w-D(X,y) +/p(Y, ), (52)

whereyis defined in Eqg. (50). Note that singatfains the maximal loss of all other labels, it follows
that,

Lo(We; (X, 1)) < e (W (Xes W)

From the above inequality and Eq. (46) we conclude thats also an upper bound o p(yt, ¥).
A note-worthy difference betweefps and/,, is that/ly, (wi; (X, yt)) = 0 if and only if Eq. (43)
holds for allr € {9 \ vt }, whereas this is not the case gg.

The prediction-based and max-loss updates were previously diséud3ekkel et al. (2004a), in
the context of hierarchical classification. In that paper, a predefirdrchy over the label set was
used to induce the cost functign The basic online algorithm presented there used the prediction-
based update, whereas the max-loss update was mentioned in the coateataf learning setting.

573



CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Dekel et al. (2004a) evaluated both techniques empirically and foundtthbenhighly effective on
speech recognition and text classification tasks.

Turning to the analysis of our cost sensitive algorithms, we follow the samegyrused in the
analysis of the regression and uniclass algorithms. Namely, we begin by@rm cost sensitive
version of Lemma 1 for both the prediction-based and the max-loss updates.

Lemma 9 Let(x1,¥1),...,(XT,yr) be an arbitrary sequence of examples, where R and y € &
for allt. Letu be an arbitrary vector iR". If 1; is defined as in Eq. (48) or Eq. (49) then,

T
let (20ps(We; (e, 1t)) — T | P(Xe, V) — P(xe, o) 12— 20 (U3 (X 1)) < Julf.
t=
If T is defined as in Eq. (48) or EqQ. (49) wighreplaced by then,

T
let (26w (We; (X, 1)) — Tl P (X, W) — DX, 50117 — 26 (U5 (X, 1)) < [Jull®.

t=

Proof We prove the first statement of the lemma, which involves the prediction-lgskde rule.
The proof of the second statement is identical, exceptthiatréplaced by; and/pg(Wi; (Xt, V1)) iS

replaced byl (Wi; (Xt, %))
As in the proof of Lemma 1, we use the definitibp= ||w; — ul|?> — ||w¢, 1 — u||?> and the fact
that,

.
N < ul®. (53)
2

We focus our attention on boundidy from below. Using the recursive definition of. 1, we
rewrite/\; as,

A = |lwp—ul]®—|jwg — u+ T (DX, ) — P(xe, ) |12
= 20 (We —U) - (P(xe, Yt) — DX, ) — T P(xe, b)) — P(xe, ) ||% (54)

By definition, 4, (u; (X, t)) equals,

rgy;x(u-(dJ(xt,r)—CD(Xt,Yt))JF p(¥t,r)).

Sincely, (u; (X, ¥t)) is the maximum oveyp, it is clearly greater than - (P(x¢, %) — P(Xt,Yt)) +
P(¥t,%). This can be written as,

u- (P(xe, yt) — P, %)) > VP %) — b (U; (Xes W)

Plugging the above back into Eq. (54) we get,

O > — 21w (P(Xe, 1) — P(%e, 1)) + 2T (\/ PV, %) — b (U; (Xt,Yt))>
— I P(xt. 1) — D%, ) [I°. (55)
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Rearranging terms in the definition 6fs, we get thatw; - (P(X¢,¥t) — P(%t,%)) = /P, %) —
los(Wt; (Xt, Yt)). This enables us to rewrite Eq. (55) as,

=20 (VPO 31) — bralWei (x10) ) +
2Tt(\/ P(Yt, %) — b (U XhYt))) — TP (X, i) — P(xe, %1) |12
= Tp (2Les(We; (X, 1)) — Tl P(Xe, Vo) — P(Xe, o) (12— 26 (U5 (X6, 1)) -

Summingl; over allt and comparing this lower bound with the upper bound provided in Eqg. (53)
gives the desired bound. [ |

A"

v

This lemma can now be used to obtain cost sensitive versions of Thms. 23 fandoth
prediction-based and max-loss updates. The proof of these theomaisasessentially the same as
before, however one cosmetic change is requiiegd!? is replaced by eithef®(x;, yt) — P(x, i) |2
or ||®(xt, %) — D(xt,%)||? in each of the theorems and throughout their proofs. This provides cu-
mulative cost bounds for the PA and PA-II cost-sensitive algorithms.

Analyzing the cost-sensitive version of PA-I requires a slightly more deliadgptation of
Thm. 4. For brevity, we prove the following theorem for the max-loss vardirihe algorithm
and note that the proof for the prediction-based variant is essentiallidden

We make two simplifying assumptions: first assume figgk:, yi) — @(xt, ¥t )| is upper bounded
by 1. Second, assume thatthe aggressiveness parameter given to the PA-I algorithm, is an upper
bound on the square root of the cost functmn

Theorem 10 Let(x1,¥1),...,(XT,Yr) be asequence of examples where R", y; € 9 and ||@(x¢, ) —
@(xt,%)|| < 1forallt. Letp be a cost function fromy x 9 to R, and let C, the aggressiveness
parameter provided to the PA-I algorithm, be such tk}éﬁ(yt,f/t) < Cforallt. Then for any vector
u € R", the cumulative cost obtained by the max-loss cost sensitive versionl afrPie sequence
is bounded from above by,

le ye, %) IUI!2+EZ€ML (Xt W)

Proof We abbreviatep, = p(y;,%t) and 4 = £y (We; (X, Yt)) throughout this proof.ty > ,/pt on
every round, as discussed in this section.is defined as,

min{ 4 C}
H(P(XtaYI)_(p(Xtvyt)Hz ’ 7

and due to our assumption §m(x;,y;) — @(Xt, %t )||? we get thatr; > min{¢4,C}. Combining these
two facts gives,

Tt =

min{p:,C/pt} < Th.

Using our assumption dd, we know thaC, /p is at leasp; and therefor@; < 1¢/;. Summing over

all t we get the bound,
T

ti pr < t;tht- (56)
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Again using the definition of;, we know thatti £y, (u; (X, ¥t)) < Clw (U; (X, ¥t)) and thatte ||@(xt, vt ) —
o(xt, %) ||? < 4. Plugging these two inequalities into the second statement of Lemma 9 gives,

T T
TWh < ulP+2CS b (U; (X, 1)) (57)
2 2

Combining Eq. (57) with Eq. (56) proves the theorem. |

This concludes our analysis of the cost-sensitive PA algorithms. We vpréiggisection with a
discussion on some significant differences between the predictiod-badgethe max-loss variants
of our cost-sensitive algorithms. Both variants utilize the same predictionidmnio output the
predicted label;"however each variant follows a different update strategy and is dealweith
respect to a different loss function. The loss function used to evaluaferédiction-based variant
is a function ofy; andy;, whereas the loss function used to evaluate the max-loss update essentially
ignoresy;. In this respect, the prediction-based loss is more natural.

On the other hand, the analysis of the prediction-based variant lackegtieetics of the max-
loss analysis. The analysis of the max-loss algorithm dge® evaluate both the performance of
the algorithm and the performancewfwhile the analysis of the prediction-based algorithm uses
/e 10 evaluate the algorithm arfg, to evaluateu. The prediction-based relative bound is to some
extent like comparing apples and oranges, since the algorithnu amd not evaluated using the
same loss function. In summary, both algorithms suffer from some theordit@lvantage and
neither of them is theoretically superior to the other.

Finally, we turn our attention to an important algorithmic difference between theupdate
strategies. The prediction-based update has a great advantageeowettioss update in that the
cost functiorp does not play a role in determining the single constraint which the updatedsomn.

In some cases, this can significantly speed-up the running time requiree bylihe update. For
example, in the following section we exploit this property when devising algostior the complex

problem of sequence prediction. When reading the following section tinat¢he max-loss update
could not have been used for sequence prediction in place of the jwadiased update. This is
perhaps the most significant difference between the two cost sengitiatas.

9. Learning with Structured Output

A trendy and useful application of large margin methods is learning with stedcttoutput. In
this setting, the set of possible labels are endowed with a predefined sgrudipically, the set
of labels is very large and the structure plays a key role in constructingesffilearning and in-
ference procedures. Notable examples for structured label setsagfesdin particular trees) and
sequences (Collins, 2000; Altun et al., 2003; Taskar et al., 2003 hastaridis et al., 2004). We
now overview how the cost-sensitive learning algorithms described in tvéopis section can be
adapted to structured output settings. For concreteness, we focosadapatation for sequence pre-
diction. Our derivation however can be easily mapped to other settingsrofrigavith structured
output. In sequence prediction problems we are provided with a predefiipleabet = {1,...,k}.
Each input instance is associated with a label which is a sequencg o¥r simplicity we assume
that the output sequence is of a fixed lengithThus, on round, the learning algorithm receives an
instancex; and then predicts an output sequefice ™. Upon predicting, the algorithm receives
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the correct sequenagg that is associated witk;. As in the cost-sensitive case, the learning algo-
rithm is also provided with a cost functign: ™ x 9™ — R, . The value ofp(y,y’) represents
the cost associated with predictigginstead ofy. As before we assume thaty,y’) equals zero if
y =Y'. Apart from this requiremenp may be any computable function. Most sequence prediction
algorithms further assume thatis decomposable. Specifically, a common construction (Taskar
et al., 2003; Tsochantaridis et al., 2004) is achieved by defimifgy’) = S"1 p(Vi,y;) wherep
is any non-negative (local) cost ove&rx 9. In contrast, we revert to a general cost function over
pairs of sequences.

As in the multiclass settings discussed above, we assume that there existsf desatires
@1, ...,¢ each of which takes as its input an instar@nd a sequengeand outputs a real number.
We again denote b®(x,y) the vector of features evaluated xandy. Equipped with® andp, we
are left with the task of finding,

Yo = argmax(w; - ®(xt,Y)), (58)
yeym

on every online round. Witly; on hand, the PA update for string prediction is identical to the
prediction-based update described in the previous section. Howétaimingy; in the general
case may require as manylkdsevaluations ofv; - ®(x;,y). This problem becomes intractableras
becomes large. We must therefore impose some restrictions on the fegh@sergationb which
will enable us to findy; efficiently. A possible restriction on the feature representation is to assume
that each featurg; takes the form,

0j(%y) = Wj(y1, %) XIUEERY (59)

wherqu‘jJ andy; are any computable functions. This construction is analogous to imposirgy a fir
order Markovian structure on the output sequence. This form paeesa for an efficient infer-
ence, i.e. solving Eq. (58), using a dynamic programming procedure. Syeilaicher structures
such as dynamic Bayes nets can be imposed so long as the solution to Ecar{38) computed
efficiently. We note in passing that similar representatiop afsing efficiently computable feature
sets were proposed in (Altun et al., 2003; Taskar et al., 2003; Tstaidis et al., 2004).

The analysis of the cost-sensitive PA updates carries over verbatim seduence prediction
setting. Our algorithm for learning with structured outputs was successipfiiied to the task of
music to score alignment in (Shalev-Shwartz et al., 2004a).

10. Experiments

In this section we present experimental results that demonstrate difeespetts of our PA algo-
rithms and their accompanying analysis. In Sec. 10.1 we start with two expesinéh synthetic
data which examine the robustness of our algorithms to noise. In Sec. 1(h2estgate the effect
of the aggressiveness parameieon the performance of the PA-I and PA-II algorithms. Finally,
in Sec. 10.3, we compare our multiclass versions of the PA algorithms to otliee afgorithms
for multiclass problems (Crammer and Singer, 2003a) on natural data sets.

The synthetic data set used in our experiments was generated as folisva.l&bel was chosen
uniformly at random from{—1,+1}. For positive labeled examples, instances were chosen by
randomly sampling a two-dimensional Gaussian with m@at) and a diagonal covariance matrix
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Figure 3: The average error (left) and the average loss (right) oPRA,and PA-II as a function
of the error of the optimal fixed linear classifier, in the presence of instanise (top)
and label noise (bottom).

with (0.2,2) on its diagonal. Similarly, for negative labeled examples, instances werdeshmp
from a Gaussian with a mean 0f1,—1) and the same covariance matrix as for positive labeled
examples. To validate our results, we repeated each experiment 10 timesiwleach repetition
we generated 4,000 random examples. The results reported areealvevag the 10 repetitions.

10.1 Robustness to Noise

Our first experiments examine the robustness of our algorithms to both iastame and label
noise. To examine instance noise, we contaminated each instance with enreactor sampled
from a zero-mean Gaussian with a covariance matgtixwhereo varied from 0 to 2. We set
the paramete€ of PA-I and PA-Il to be 0001. We then ran PA, PA-I and PA-Il on the resulting
sequence of examples. To evaluate our results, we used a bruteatormical method to find
the optimal fixed linear classifier, that is, the linear classifier that makes Wesfelassification
mistakes on the entire sequence of examples. We definavidrage errorof an online learning
algorithm on a given input sequence to be the number of prediction mistakedgtbrithm makes
on that sequence normalized by the length of the sequence. Similarly, we tefiaverage loss of
an online learning algorithm on a given sequence.

In the plots at the top of Fig. 3 we depict the average error and averag®idhe three PA
variants as a function of the average error of the optimal linear classifteg. plots underscore

578



ONLINE PASSIVE-AGGRESSIVEALGORITHMS

——p=0.0
-©-p=0.1
0.6F | —B-p=0.2

0.5f

0.4r

Error
Loss

—%—p=0.0
-©-p=0.1
0.6 | &—p=0.2

0.5r

0.4r

Error
Loss

. . .
-10 -8 = -4 4 6 -10 -8 -6 -4

l0g(C) log(C)

Figure 4: The average error (left) and the average loss (right) df(®fp) and PA-Il (bottom) as a
function of log C) with different levels of label noise probabiliy.

several interesting phenomena. First note that for low levels of noisiyre# PA variants make a
similar number of errors. Our bounds from Sec. 4 suggest that as ifelaeel increases, PA-I and
PA-11 should outperform the basic PA algorithm. It is clear from the gsathfat our expectations
are met and that PA-l and PA-Il outperform the basic PA algorithm whemtise level is high.
Finally, in this experiment PA-1 and PA-II performed equally well for alldévof noise.

In our second experiment we left the instances intact and instead fligped|@bel with a
probability p, wherep was set to different values {8,0.3]. As in the previous experiment, we set
C = 0.001 for both PA-I and PA-II . The results are depicted at the bottom aof3Fidf is apparent
from the graphs that the behavior observed in the previous experimeptaated here as well.

10.2 The Effect ofC

In our second set of experiments, we examine the effect of the aggnesss paramet& on the
performance of PA-l and PA-Il . Again we flipped the label of each imstain our synthetic data
set with probabilityp, this time withp set to 0, 01 and 02. We then ran PA-I and PA-II on the
resulting sequence of examples with different values of the parai@et@ihe average error and
average loss of the algorithms as a function of the parariedee depicted in Fig. 4
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Figure 5: The average error of PA-I (left) and PA-II (right) as adiion of the number of online
rounds,T, for different values o€.

As can be seen from the graphs, the value of the parar@esegnificantly effects the results
of the algorithms. The graphs can be explained using our loss boundsrindTand Thm. 5. For
concreteness, let us focus on the loss bound of the PA-II algorithran@wvThm. 5. The bound
on the cumulative loss of the algorithm is comprised of two terms, the first depmnthe squared
norm of the competitor(||ul|?), while the second depends on the cumulative (squared) loss of
the competitor( 5, (¢)?). The paramete€ divides the first term and multiplies the second term.
Therefore, whel is small the bound is dominated by the first teifa||?) and wherC is large the
bound is dominated by the second tefFy(¢7)?). Since the label noise applied to the data effects
only the second term, we expect that for very small values thfe loss of PA-I and PA-I1 will be
high, regardless of the noise level. On the other hand, as we increasdukefC, the difference
between different noise levels becomes apparent. As a generalfstierab, C should be small
when the data is noisy.

So far, the length of the sequence of examples presented to the onlinghahgowas fixed.

In the following, we discuss the effect @fon the performance of the algorithms as a function of
sequence lengtiT). We generated a synthetic data set consisting Hexamples with label noise
probability p = 0.02. We ran the PA-1 and PA-II algorithms on the data set, once @ith100 and
once withC = 0.001. At the end of each online round we calculated the average errivreglttso
far. The results are given in Fig. 5. For both PA-I and PA-II , set@np be a small number leads
to a slow progress rate, since each online update changes the onlirtedsipdy a small amount.
On the other hand, whed is large, the error rate decreases much faster, but at the price abinfer
performance later on.

10.3 Multiclass Experiments

Our last experiment demonstrates the efficiency of the PA algorithms on mudtimlaklems. This
experiment was performed with standard multiclass data sets: the USPS a8 Mhita sets
of handwritten digits. We compared the multiclass versions of PA, PA-1 andl #Athe online
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Figure 6: The number of prediction mistakes made by different multiclass oalyueithms as a
function of the online round index, on the USPS (left) and MNIST (rightadets.

multiclass algorithms described in (Crammer and Singer, 2003a). Specifitaiymer and Singer
(2003a) present three multiclass versions of the Perceptron algorithenreew margin based online
multiclass algorithm named MIRA. As a preprocessing step, we shifted abeldsthe instances
of each data set so that its mean equals zero and its average squaliddaauaorm is 1. We
used Mercer kernels in all of the algorithms, namely, we replaced the staddaproduct with
a polynomial kerneK (xi, ;) = (a+x; -x;)9, wherea = 0 andd = 3 for the USPS data set and
a= 0.5 andd = 5 for the MNIST data set. These kernel parameters were set rathigagiyy
based on previous experience with these data sets using differentratgorWe set the parameter
C of PA-1 and PA-II to 100 (we note that similar results hold for &y 100). The parametd} of
MIRA was set to 001, following (Crammer and Singer, 2003a).

The plots in Fig. 6 depict the number of online prediction mistakes made on theatevsets by
three different algorithms: PA-I, the uniform-update version of multiclamséptron and MIRA.
The performance of PA and PA-Il is not presented in this figure, sinisevittually indistinguish-
able from that of PA-1 . For the same reason, only the uniform-updatorenf the multiclass
Perceptron is presented in the figure. It is apparent that both PAIMARE outperform the Per-
ceptron. In addition, the performance of PA-I is comparable to that of AMiRh a slight advantage
to the latter. However, while each online update of MIRA requires solvingnaptex optimization
problem, each update of PA has a simple closed-form expression and imttoh faster and easier
to implement.

11. Discussion

We described an online algorithmic framework for solving numerous predigiioblems rang-
ing from classification to sequence prediction. We derived severablmssds for our algorithms
(Thms. 2-5). The proofs of all of the bounds are based on a single lerbemanta 1). There
are several possible extensions of the work presented in this papealr¥dely conducted fur-
ther research on applications of the PA algorithmic framework for learningimaased suffix

581



CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

trees (Dekel et al., 2004b), pseudo-metrics (Shalev-Shwartz et @4ppthierarchical classifica-
tion (Dekel et al., 2004a), and segmentation of sequences (Shalert3tet al., 2004a). While
the focus of this paper is on online settings, online algorithms can also sehélding blocks in
the construction of well performing batch algorithms. Online to batch comres®f the proposed
algorithms are yet another important future research direction. Theeutaden by our algorithms
is aggressive in the sense that even a small loss forces an update gptikdsis. When using
kernels, this property often results in the use of many examples for egpiteg the learned predic-
tor. Thus, the memory requirements imposed when using kernels can be euidading. We are
currently pursuing extensions of the PA framework that operate in thm efabounded memory
constraints.
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Appendix A. Derivation of the PA-I and PA-Il Updates

As in Sec. 3, whenevef; = 0 no update occurs ang equals zero. Iy > 0 we derive these
updates by defining the Lagrangian of the respective optimization probidmaisfying the KKT
conditions. The Lagrangian of the PA-I optimization problem is,

L(W767T7)\) = %HW_WtHZ + CE- + T(l_E_yt(W'Xt)) - )\E'
= I wP o EC—TA) Ty (W), (60)

wheret > 0 andA > 0 are Lagrange multipliers. We now find the minimum of the Lagrangian with
respect to the (unconstrained) primal variableandg. As in the previously discussed PA update,
differentiating this Lagrangian with respect to the elements ahd setting these partial derivatives
to zero gives Eqg. (5) and we can write= w; + Ty;X;. Next, note that the minimum of the term
&(C—1—A) with respect tcg is zero wheneve€ —1— A = 0. If howeverC —1— A # 0 then
&(C—1—A) can be made to approaeho. Since we need to maximize the dual we can rule out the
latter case and pose the following constraint on the dual variables,

C—1-A=0 (61)

The KKT conditions confiné to be non-negative so we conclude that C. We now discuss two
possible cases: #/||x||> < C then we can plugging Eq. (61) back into Eq. (60) and we return to
the Lagrangian of the original PA algorithm (see Eq. (4)). From this penigt on, we can repeat
the same derivation as in the original PA update andtget 4 /||x>. The other case is when
¢/||%¢||? > C. This condition can be rewritten as

Clx||?> < 1—ye(we-xt). (62)

We also know that the constraint in Eq. (6) must hold at the optimum,-sg @ - x;) < §. Using
the explicit form ofw given in Eq. (5), we can rewrite this constraint as y (W - X) — T||%¢||* < €.
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Combining this inequality with the inequality in Eq. (62) gives,
Clixel® —tlix|* < &

We now use our earlier conclusion that C to obtain 0< &. Turning to the KKT complementarity
condition, we know thaiA = 0 at the optimum. Having concluded ti&is strictly positive, we get
thatA must equal zero. Plugging= 0 into Eq. (61) gives = C. Summing up, we used the KKT
conditions to show that in the case whérg||x;||> > C, it is optimal to select = C. Folding all of
the possible cases into a single equation, we defitebe,

w=min{ C, &/|[x[*}. (63)

The update of PA-I is like the update of PA clippedCat
Turning to the update of PA-II , we again recall tfat= 0 leads tor; = 0, and deal with those
rounds wheré; > 0. The Lagrangian of the optimization problem in Eq. (7) equals,

L(wW,&,1) = %HW—WtHZ + C8& + T(1-&—w(w-X)), (64)

wheret > 0 is a Lagrange multiplier. Again, differentiating this Lagrangian with respethe
elements ofw and setting these partial derivatives to zero gives Eq. (5) and we deaw=
w; + Ty;X;. Differentiating the Lagrangian with respect§@and setting that partial derivative to zero

results in,
0L (wW,&,1) B 1

Expressing, as above and replacivgin Eq. (60) withw; + Ty;X;, we rewrite the Lagrangian as,

0=

2
£(1) = —% <|]Xt||2 + 22) + T(1 =y (We-X)).

Setting the derivative of the above to zero gives,

0L (1) 2, 1 1—ye(We-xt)
0= & T<HX" toc) tEoslmex) = 2 + %
As in PA and PA-I, we can give a definition ofwhich holds in all cases,
b
IX[12 + 5
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