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Abstract

We prove two impossibility results for bud-
geted learning with linear predictors. The
first result shows that no budgeted learning
algorithm can in general learn an ε-accurate
d-dimensional linear predictor while observ-
ing less than d/ε attributes at training time.
Our second result deals with the setting stud-
ied by Greiner et al. (2002), where the learner
has all the information at training time and
at test time he has to form a prediction af-
ter observing a fixed amount of attributes per
each instance. We formally prove that while
it is possible to learn a consistent predic-
tor accessing at most two attributes of each
example at training time, it is not possible
(even with an infinite amount of training ex-
amples) to build an active classifier that uses
at most two attributes of each example at test
time, and whose error will be smaller than a
constant.

1. Preliminaries

We consider the problem of learning linear predictors
on a budget. In linear regression each example is an
instance-target pair, (x, y) ∈ Rd × R. We refer to x
as a vector of attributes and the goal of the learner
is to find a linear predictor x 7→ 〈w,x〉, where we
refer to w ∈ Rd as the predictor. To do so, the learn-
ing algorithm receives a training set of m examples,
S = (x1, y1), . . . , (xm, ym), which are assumed to be
sampled i.i.d. from an unknown distribution D over
pairs (x, y). We distinguish between four scenarios:
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• Full information: The learner receives the en-
tire training set. This is the traditional linear re-
gression setting.

• Local Budget Constraint: For each individ-
ual example, (xi, yi), the learner receives the tar-
get yi but is only allowed to see k attributes of
xi, where k is a parameter of the problem. The
learner has the freedom to actively choose which
of the attributes will be revealed, as long as at
most k of them will be given. This setting was first
proposed in (Ben-David and Dichterman, 1998),
where it is called “learning with restricted focus of
attention”, and in the context of regression it was
recently studied by (Cesa-Bianchi et al., 2010).

• Global Budget Constraint: The total number
of training attributes the learner is allowed to see
is bounded by k. As in the local budget constraint
setting, the learner has the freedom to actively
choose which of the attributes will be revealed.
In contrast to the local budget constraint setting,
the learner can choose to reveal more than k/m
attributes from specific examples as long as the
global number of attributes is bounded by k. This
setting was recently studied by several authors —
see for example (Deng et al., 2007; Kapoor and
Greiner, 2005) and the references therein.

• Prediction on a budget: The learner receives
the entire training set, however, at test time, the
predictor can see at most k attributes of each in-
stance and then must form a prediction. The pre-
dictor is allowed to actively choose which of the
attributes will be revealed. This setting was pro-
posed and studied by Greiner et al. (2002).

In all cases the goal of the of the learner is to find a
predictor with low risk, defined as the expected loss
LD(w) = E(x,y)∼D[`(〈w,x〉, y)]. For simplicity we fo-
cus on the squared loss function, `(a, b) = (a−b)2. We
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denote the training loss by LS(w) = 1
m

∑m
i=1(〈w,xi〉−

yi)2.

2. Main Results

2.1. Learning on a budget

In this section we show that any budget learning al-
gorithm (local or global) needs in general a budget of
d/ε attributes for learning a d-dimensional, ε-accurate,
linear predictor.

Theorem 1 For any ε ∈ (0, 1/16), there exists a dis-
tribution over examples and a weight vector w? ∈ Rd,
with ‖w?‖0 = 1 and ‖w?‖2 = ‖w?‖1 = 2

√
ε, such

that any learning algorithm must see Ω
(

d
ε

)
attributes

in expectation in order to learn a linear predictor w
with LD(w)− LD(w?) < ε.

The proof is given in the next section. Note that Cesa-
Bianchi et al. (2010) proved that under the assump-
tions given in Theorem 1, it is possible to learn an
ε-accurate predictor using a local budget of two at-
tributes per examples and using total O(d2/ε) training
examples. Therefore, O(d2/ε) attributes are sufficient
for learning an ε-accurate predictor in this case. That
is, we have a gap of factor d between the lower bound
and the upper bound, and it remains open to bridge
this gap.

2.2. Predicting on a budget

We now consider the “Prediction on a budget” setting.
Greiner et al. (2002) studied this setting and showed
positive results regarding (agnostic)-PAC learning of
k-active predictors, namely predictors that are re-
stricted to use at most k attributes per test example.
In particular, they show that it is possible to learn a k-
active predictor from training examples whose perfor-
mance is slightly worse than that of the best k-active
predictor.

But, how good are the predictions of the best k-active
predictor? In this section we show that even in simple
cases in which there exists a linear predictor w? with
LD(w?) = 0, the risk of the best k-active predictor
can be high.

The following theorem shows that if the only con-
straint on w? is bounded `2 norm, then the risk can
be as high as 1− k/d. We use the notation LD(A) to
denote the expected loss of the k-active predictor on a
test example.

Theorem 2 There exists a weight vector w? ∈ Rd

and a distribution D such that ‖w?‖2 = 1 and
LD(w?) = 0 while any algorithm A that gives predic-

tions A(x) while viewing only k < d attributes of each
x must have LD(A) ≥ 1− k/d.

The proof is given in the next Section. Note that the
risk of the constant prediction of zero is 1. Therefore,
the theorem tells us that no active predictor can get
an improvement over the naive predictor of more than
k/d.

It is well known that a low `1 norm of w? encourages
sparsity of the learned predictor, which naturally helps
in designing active predictors. The following theorem
shows that even if we restrict w? to have ‖w?‖1 = 1,
LD(w?) = 0, and ‖w?‖0 > k, we still have that the risk
of the best k-active predictor can be non-vanishing.

Theorem 3 There exists a weight vector w? ∈ Rd

and a distribution D such that ‖w?‖1 = 1, LD(w?) =
0, and ‖w?‖0 = ck (for c > 1) such that any al-
gorithm A that gives predictions A(x) while viewing
only k < ck ≤ d attributes of each x must have
LD(A) ≥

(
1− 1

c

)
1
ck .

The proof is given in the next Section. Two examples
are given below:

• Choose c = 2, then ‖w?‖0 = 2k and LD(A) ≥
1/(4k)

• Choose c = (k + 1)/k, then ‖w?‖0 = k + 1 and
LD(A) ≥ 1

(k+1)2

Note that if ‖w?‖0 ≤ k there is a trivial way to predict
on a budget of k attributes by always querying the
attributes corresponding to the non-zero elements of
w?.

These negative results highlight an interesting phe-
nomenon: In (Cesa-Bianchi et al., 2010) it is shown
that one can learn an arbitrarily accurate predictor w
with a local budget of k = 2. However, here we show
that even if we know the optimal w?, we might not
be able to accurately predict a new partially observed
example unless k is very large. Therefore, learning on
a budget is much easier than predicting on a budget.

3. Proofs

3.1. Proof of Theorem 1

The proof is an extension to global budget constraints
of the proof of Theorem 3 in (Cesa-Bianchi et al., 2010)
for local budget. Here we only sketch the main dif-
ferences. We define the data distribution as follows:
First, j ∈ {1, . . . , d} is drawn uniformly at random.
Then, we generate y1, y2, . . . ∈ {±1} i.i.d. according
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to P
[
yt = 1

]
= P

[
yt = −1

]
= 1

2 . Given j and yt,
xt ∈ {±1} is generated according to P

[
xt,i = yt

]
=

1
2 + 1[i=j]

√
ε. Just like in the proof of Theorem 3 of

Cesa-Bianchi et al. (2010), one can show that for this
distribution the value of j can be identified from any ε-
good predictor; that is, any w ∈ Rd whose risk LD(w?)
is strictly smaller than LD(w?) + ε, where w? is the
linear predictor with smallest risk.

We now define an instance of the multi-armed bandit
problem based on this data distribution. Each coordi-
nate i ∈ {1, . . . , d} is an arm and the reward of pulling
i at time t is 1

2

∣∣xNi,t,i + yNi,t

∣∣ ∈ {0, 1}, where Ni,t de-
notes the number of times arm i has been pulled in
the first t plays. Hence the expected reward of pulling
i is 1

2 +1[i=j]

√
ε. At the end of each round t the player

observes xNi,t,i and yNi,t
. Note that if Ni′,s = Ni,t for

some i′ 6= i and s < t, then yNi,t was already observed
at play s, but this does not provide additional informa-
tion to the player as P

[
xi,s = ys

]
= P

[
xi,s = ys | ys

]
for all s.

Now take an arbitrary learning algorithm that finds an
ε-good predictor under a global budget constraint of
k. The expected reward of the bandit player that runs
the learner for the first k rounds, and for the remaining
T−k rounds always chooses the coordinate j identified
from the learned predictor, is then at least k

2 + (T −
k)
(

1
2 +

√
ε
)

= T
2 + (T − k)

√
ε. Moreover, using the

bandit lower bound of Auer et al. (2003), this expected

reward is at most T
2 + T

√
ε
(

1
d +

√
6
dTε

)
. Combining

upper and lower bound, choosing T of order d
ε , and

solving for k gives k = Ω
(

d
ε

)
, as desired.

3.2. Proof of Theorem 2

For any d > k let w? =
(
1/
√

d, . . . , 1/
√

d
)
. Let

x ∈ {±1}d be distributed uniformly at random and
y is determined deterministically to be 〈w?,x〉. Then,
LD(w?) = 0 and ‖w?‖2 = 1. Without loss of general-
ity, suppose the prediction algorithm asks for the first
k attributes of a test example and form its prediction
to be ŷ. Since the generation of attributes is indepen-
dent, we have that the value of xk+1, . . . , xd does not

depend on x1, . . . , xk, and on ŷ. Therefore,

E
[
(ŷ − 〈w?,x〉)2

]
= E

(ŷ −
k∑

i=1

w?
i xi −

∑
i>k

w?
i xi

)2


= E

(ŷ −
k∑

i=1

w?
i xi

)2
+

∑
i>k

(w?
i )2 E[x2

i ]

≥ 0 +
d− k

d
= 1− k

d

which concludes our proof.

3.3. Proof of Theorem 3

Let

w? =

 1
ck , . . . , 1

ck︸ ︷︷ ︸
ck elements

, 0, . . . , 0


and let x ∈ {±1}d be distributed uniformly at random
and y is determined deterministically to be 〈w?,x〉.
Then, LD(w?) = 0, ‖w?‖1 = 1, and ‖w?‖0 = ck.
Without loss of generality, suppose the prediction al-
gorithm asks for the first k attributes of a test example
and form its prediction to be ŷ. Since the generation
of attributes is independent, we have that the value of
xk+1, . . . , xd does not depend on x1, . . . , xk, and on ŷ.
Therefore,

E
[
(ŷ − 〈w?,x〉)2

]
= E

(ŷ −
k∑

i=1

w?
i xi −

∑
i>k

w?
i xi

)2


= E

(ŷ −
k∑

i=1

w?
i xi

)2
+

∑
i>k

(w?
i )2 E[x2

i ]

≥ 0 +
ck − k

(ck)2

=
c− 1
c2k

=
(
1− 1

c

) 1
ck

which concludes our proof.
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