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Online Learning of Noisy Data
Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir

Abstract—We study online learning of linear and kernel-
based predictors, when individual examples are corrupted by
random noise, and both examples and noise type can be chosen
adversarially and change over time. We begin with the setting
where some auxiliary information on the noise distribution is
provided, and we wish to learn predictors with respect to the
squared loss. Depending on the auxiliary information, we show
how one can learn linear and kernel-based predictors, usingjust
1 or 2 noisy copies of each example. We then turn to discuss a
general setting where virtually nothing is known about the noise
distribution, and one wishes to learn with respect to general losses
and using linear and kernel-based predictors. We show how this
can be achieved using a random, essentially constant numberof
noisy copies of each example. Allowing multiple copies cannot
be avoided: Indeed, we show that the setting becomes impossible
when only one noisy copy of each instance can be accessed. To
obtain our results we introduce several novel techniques, some
of which might be of independent interest.

I. I NTRODUCTION

In many machine learning applications training data are
typically collected by measuring certain physical quantities.
Examples include bioinformatics, medical tests, robotics, and
remote sensing. These measurements have errors that may be
due to several reasons: low-cost sensors, communication and
power constraints, or intrinsic physical limitations. In all such
cases, the learner trains on a distorted version of the actual
“target” data, which is where the learner’s predictive ability
is eventually evaluated. A concrete scenario matching this
setting is an automated diagnosis system based on computed-
tomography (CT) scans. In order to build a large dataset for
training the system, we might use low-dose CT scans: although
the images are noisier than those obtained through a standard-
radiation CT scan, lower exposure to radiation will persuade
more people to get a scan. On the other hand, at test time,
a patient suspected of having a serious disease will agree to
undergo a standard scan.

In this work, we investigate the extent to which a learning
algorithm for training linear and kernel-based predictorscan
achieve a good performance when the features and/or target
values of the training data are corrupted by noise. Note
that, although in the noise-free case learning with kernelsis
generally not harder than linear learning, in the noisy casethe
situation is different due to the potentially complex interaction
between the kernel and the noise distribution.
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We prove upper and lower bounds on the learner’s cumula-
tive loss in the framework of online learning, where examples
are generated by an arbitrary and possibly adversarial source.
We model the measurement error via a random zero-mean per-
turbation which affects each example observed by the learner.
The noise distribution may also be chosen adversarially, and
change for each example.

In the first part of the paper, we discuss the consequences
of being given some auxiliary information on the noise distri-
bution. This is relevant in many applications, where the noise
can be explicitly modeled, or even intentionally introduced.
For example, in order to comply with privacy issues certain
datasets can be published only after being “sanitized”, which
corresponds to perturbing each data item with enough Gaus-
sian noise —see, e.g., [1]. In this work we show how to learn
from such sanitized data.

Focusing on the squared loss, we discuss three different
settings, reflecting different levels of knowledge about the
noise distribution: known variance bound, known covariance
structure, and Gaussian noise with known covariance matrix.
Our results for these three settings can be summarized as
follows:

Known variance bound: Linear predictors can be learnt with
two independent noisy copies of each instancext (that is, two
independent realizations of the example corrupted by random
noise), and one noisy copy of each target valueyt.

Known covariance structure: Linear predictors can be learnt
with only one noisy copy ofxt andyt.

Gaussian distribution with known covariance matrix: Kernel-
based (and therefore linear) predictors can be learnt usingtwo
independent noisy copies of eachxt, and one noisy copy ofyt.
(Although we focus on Gaussian kernels, we show how this
result can be extended, in a certain sense, to general radial
kernels.)

Thus, the positive learning results get stronger the more
we can assume about the noise distribution. To obtain our
results, we use online gradient descent techniques of increasing
sophistication. The first two settings are based on constructing
unbiased gradient estimates, while the third setting involves
a novel technique based on constructingsurrogate Hilbert
spaces. The surrogate space is built such that gradient descent
on the noisy examples in that space corresponds, in an
appropriately defined manner, to gradient descent on the noise-
free examples in the original space.

In the second part of the paper we consider linear and
kernel-based learning with respect to general loss functions
(and not just the squared loss as before). Our positive results
are quite general: by assuming just a variance bound on the
noise we show how it is possible to learn functions in any
dot-product (e.g., polynomial) or radial kernel Hilbert space,
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under any analytic convex loss function. Our techniques, which
are readily extendable to other kernel types as well, require
querying a random number of independently perturbed copies
of each example. We show that this number is bounded by
a constant with high probability. This is in sharp contrast
with standard averaging techniques, which attempts to directly
estimate the noisy instance, as these require a sample whose
size depends on the scale of the problem. Moreover, the
number of queries is controlled by the user, and can be reduced
at the cost of receiving more examples overall.

Finally, we formally show in this setting that learning is
impossible when only one perturbed copy of each example
can be accessed. This holds even without kernels, and for any
reasonable loss function.

Related Work

In the machine learning literature, the problem of learning
from noisy examples, and, in particular, from noisy training
instances, has traditionally received a lot of attention —see,
for example, the recent survey [2]. On the other hand, there
are comparably few theoretically-principled studies on this
topic. Two of them focus on models quite different from
the one studied here: random attribute noise in PAC boolean
learning [3], [4], and malicious noise [5], [6]. In the first case
learning is restricted to classes of boolean functions, andthe
noise must be independent across each boolean coordinate. In
the second case an adversary is allowed to perturb a small
fraction of the training examples in an arbitrary way, making
learning impossible in a strong information-theoretic sense
unless this perturbed fraction is very small (of the order of
the desired accuracy for the predictor).

The previous work perhaps closest to the one presented here
is [7], where binary classification mistake bounds are proven
for the online Winnow algorithm in the presence of attribute
errors. Similarly to our setting, the sequence of instances
observed by the learner is chosen by an adversary. However,
in [7] the noise process is deterministic and also controlled by
the adversary, who may change the value of each attribute in
an arbitrary way. The final mistake bound, which only applies
when the noiseless data sequence is linearly separable without
kernels, depends on the sum of all adversarial perturbations.

II. FRAMEWORK AND NOTATION

We consider a setting where the goal is to predict values
y ∈ R based on instancesx ∈ R

d. We focus on predictors
which are either linear —i.e., of the formx 7→ 〈w,x〉 for some
vectorw, or kernel-based —i.e., of the formx 7→ 〈w,Ψ(x)〉
whereΨ is a feature mapping into some reproducing kernel
Hilbert space (RKHS)1 H. In the latter case, we assume there
exists a kernel functionk : R

d × R
d 7→ R that efficiently

implements inner products in that space, i.e.,k(x,x′) =
〈Ψ(x),Ψ(x′)〉 Note that in fact, linear predictors are just a
special case of kernel-based predictors: we can takeΨ(·) to be
the identity mapping and letk(x,x′) = 〈x,x′〉. Other choices

1Recall that a Hilbert space is a natural generalization of Euclidean space
to possibly infinite dimensions. More formally, it is an inner product space
which is complete with respect to the norm induced by the inner product.

of the kernel allows us to learn non-linear predictors overR
d,

while retaining much of the computational convenience and
theoretical guarantees of learning linear predictors (see[8] for
more details). In the remainder of this section, our discussion
will use the notation of kernel-based predictors, but everything
will apply to linear predictors as well.

The standard online learning protocol is defined as the
following repeated game between the learner and an adversary:
at each roundt = 1, 2, . . . , the learner picks a hypothesis
wt ∈ H. The adversary then picks an example(xt, yt),
composed of a feature vectorxt and target valueyt, and
reveals it to the learner. The loss suffered by the learner is
`(〈wt,Ψ(xt)〉 , yt), wherè is a known and fixed loss function.
The goal of the learner is to minimizeregret with respect to
a fixed convex set of hypothesesW ⊆ H, defined as

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)− min
w∈W

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt).

Typically, we wish to find a strategy for the learner, such that
no matter what is the adversary’s strategy of choosing the
sequence of examples, the expression above is sub-linear inT .
In this paper, we will focus for simplicity on a finite-horizon
setting, where the number of online roundsT is fixed and
known to the learner. All our results can easily be modified to
deal with the infinite horizon setting, where the learner needs
to achieve sub-linear regret for allT simultaneously.

We now make the following modification, which limits
the information available to the learner: In each round, the
adversary also selects a vector-valued random variablen

x
t and

a random variableny
t . Instead of receiving(xt, yt), the learner

is given access to anoracleAt, which can return independent
realizations of̃xt = xt+n

x
t andỹt = yt+ny

t . In other words,
the adversary forces the learner to see only a noisy version
of the data, where the noise distribution can be changed by
the adversary after each round. We will assume throughout
the paper thatnx

t and ny
t are zero-mean, independent, and

there is some fixed known upper bound onE
[

‖x̃t‖2
]

and
E[ỹ2t ] for all t. Note that if nx

t or ny
t are not zero-mean,

but the mean is known to the learner, we can always deduct
those means from̃xt and ỹt, thus reducing to the zero-mean
setting. The assumption thatnx

t is independent ofny
t can be

relaxed to uncorrelation or even disposed of entirely in some
of the discussed settings, at the cost of some added technical
complexity in the algorithms and proofs.

The learner may call the oracleAt more than once. In fact,
as we discuss later on, being able to callAt more than once
can be necessary for the learner to have any hope to succeed,
when nothing more is known about the noise distribution. On
the other hand, if the learner callsAt an unlimited number of
times,xt, yt can be reconstructed arbitrarily well by averaging,
and we are back to the standard learning setting. In this paper
we focus on learning algorithms that callAt only a small,
essentially constant number of times, which depends only on
our choice of loss function and kernel (rather than the horizon
T , the norm ofxt, or the variance ofnx

t , n
y
t , which happens

with naı̈ve averaging techniques).
In this setting, we wish to minimize the regret in hindsight

for any sequence of unperturbed data, and in expectation with
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respect to the noise introduced by the oracle, namely

E

[

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)
]

− min
w∈W

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt) .

(1)
Note that the stochastic quantities in the above expressionare
just w1,w2, . . . , where eachwt is a measurable function of
the previous perturbed examples

(

x̃s, ỹs
)

for s = 1, . . . , t−1.
When the noise distribution is bounded or has sub-Gaussian
tails, our techniques can also be used to bound the actual regret
with high probability, by relying on Azuma’s inequality or
variants thereof (see for example [9]). However, for simplicity
here we focus on the expected regret in Eq. (1).

The regret form in Eq. (1) is relevant where we actually
wish to learn from data, without the noise causing a hindrance.
In particular, consider the batch setting, where the examples
{(xt, yt)}Tt=1 are actually sampled i.i.d. from some unknown
distribution, and we wish to find a predictor which minimizes
the expected loss with respect to new examples(x, y). Using
standard online-to-batch conversion techniques [9], if wecan
find an online algorithm with a sublinear bound on Eq. (1),
then it is possible to construct learning algorithms for the
batch setting which are robust to noise. That is, algorithms
generating a predictorw with close to minimal expected
lossE[`(〈w,x〉 , y)] among allw ∈ W , despite getting only
noisy access to the data. In Appendix A, we briefly discuss
alternative regret measures.

In the first part of our paper, we assume that the loss
function`(〈w,Ψ(x)〉 , y) is the squared loss(〈w,Ψ(x)〉−y)2.
In the second part of the paper, we deal with more general
loss functions, which are convex inw and analytic, in the
sense that̀(a, y) for a fixedy can be written as

∑∞
n=0 γna

n,
for any a in its domain. This assumption holds for instance
for the squared loss̀(a, y) = (a − y)2, the exponential
loss `(a, y) = exp(−ya), and “smoothed” versions of loss
functions such as the absolute loss`(a, y) = |a − y| and the
hinge loss`(a, y) = max{1 − ya, 0} (we discuss examples
in more details in Subsection V-B). This assumption can be
relaxed under certain conditions, and this is further discussed
in Subsection III-C.

Turning to the issue of kernels, we note that the general
presentation of our approach is somewhat hampered by the
fact that it needs to be tailored to the kernel we use. In this
paper, we focus on two important families of kernels:

Dot Product Kernels: the kernelk(x,x′) can be written as
a function of 〈x,x′〉. Examples of such kernelsk(x,x′)
are linear kernels〈x,x′〉; homogeneous polynomial kernels
(〈x,x′〉)n; inhomogeneous polynomial kernels(1+ 〈x,x′〉)n;
exponential kernelse〈x,x′〉; binomial kernels(1+ 〈x,x′〉)−α,
and more (see for instance [8], [10]).

Radial Kernels: k(x,x′) can be written as a function of
‖x− x

′‖. A central and widely used member of this family is
the Gaussian kernel,exp(−‖x− x

′‖2 /s2) for somes2 > 0.

We emphasize that many of our techniques are extendable
to other kernel types as well.

III. T ECHNIQUES

We begin by presenting a high-level and mostly informal
overview of the techniques we use to overcome the noise
present in the data. The first technique we discuss (“stochastic”
online gradient descent) is folklore, and forms a basis for our
learning algorithms. The rest of the techniques are designed
to overcome the noise in the data, and to the best of our
knowledge, are novel to the machine learning community.
Hence, they might be of independent interest and applicable
to other learning problems with partial information on the
examples.

A. “Stochastic” Online Gradient Descent

There exists a well-developed theory, as well as efficient
algorithms, for dealing with the standard online learning set-
ting, where the example(xt, yt) is revealed after each round,
and for general convex loss functions. One of the simplest and
most well known ones is the online gradient descent algorithm
due to Zinkevich [11]. This algorithm, and its “stochastic”
extension, form a basis for our results, and we briefly survey
it below.

At the heart of the standard online gradient descent al-
gorithm is the following observation: for any set of vectors
∇1, . . . ,∇T in some Hilbert space, suppose we definew1 = 0
andwt+1 = P (wt−ηt∇t), whereP (·) is a projection operator
on a convex setW , andηt is a suitably chosen step size. Then
for anyu ∈ W , it holds that

T
∑

t=1

〈wt − u,∇t〉 = O
(
√
T
)

(2)

where theO(·) notation hides dependencies on the norm of
u and the norms of∇t. In particular, suppose that we let
∇t be the gradient of̀ (〈wt,xt〉 , yt) with respect towt

(we focus on linear predictors here for simplicity). Then by
convexity, the left-hand side of Eq. (2) is lower bounded
by
∑T

t=1 `(〈wt,xt〉 , yt) −
∑T

t=1 `(〈u,xt〉 , yt). Thus, if we
are provided with(xt, yt) after each round, we can compute
∇t, perform the update as above, and get an algorithm with
sublinear regret with respect to any predictoru of bounded
norm.

In our setting of noisy data, the algorithm described above is
inapplicable, because(xt, yt) is unknown and we cannot com-
pute∇t. However, suppose that instead of∇t, we pickrandom
vectors∇̃t with bounded variance, such thatE[∇̃t|wt] = ∇t,
and use them to updatewt. It turns out that based on Eq. (2),
one can still show that

E

[

T
∑

t=1

〈

wt − u, ∇̃t

〉

]

= O
(
√
T
)

. (3)

In our setting of noisy data, we cannot compute∇t, but
suppose we can use the noisy data that we do have, in
order to construct a random bounded-variance vector∇̃t,
such thatE[∇̃t|wt] = ∇t. In that case, the left-hand side
of Eq. (3) can be shown to equalE

[
∑T

t=1 〈wt − u,∇t〉
]

.
The expectation here is again with respect to the noisy
examples (recall thatwt is a random vector that depends on
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the noisy examples). Applying the same convexity argument
as before, we get anO(

√
T ) upper bound on the expected

regretE
[
∑T

t=1 `(〈wt,xt〉 , yt) −
∑T

t=1 `(〈u,xt〉 , yt)
]

. Thus,
by doing updates using̃∇t, we get an algorithm with a bound
on the regret which scales sublinearly withT .

The idea that one can work with random unbiased estimates
of ∇t is not new, and has been used in previous work, such
as online bandit learning (see for instance [12], [13], [14]).
Here, we use this property in a new way, in order to devise
algorithms which are robust to noise.

For linear kernels and losses such as the squared loss, con-
structing such unbiased estimates based on1 or 2 noisy copies
of each example is not too hard. However, when we discuss
non-linear kernels, constructing an unbiased estimate becomes
much more tricky: rather than a finite-dimensional vector,∇t

might exist in a high or infinite dimensional Hilbert space.
Even worse, due to the nonlinearity of virtually all feature
mappings, theunbiasedperturbationx̃t of each instancext

is mapped to abiasedand complicated perturbationΨ(x̃t) of
Ψ(xt). This leads us to the next technique.

B. “Parallel Worlds” Online Gradient Descent

The technique described here is the central one we use to
learn with kernel-based predictors and squared loss, in the
case where the noise distribution is fixed and known to be
a Gaussian. In the next subsections, we will describe our
techniques for dealing with unknown noise distribution and
more general loss functions, at the cost of more noisy copies
per example.

Unlike the “stochastic” online gradient descent approach
discussed in the previous subsection, the approach we discuss
here does not rely directly on constructing unbiased estimates
of ∇t. In a nutshell, we construct asurrogateRKHS, with a
surrogatefeature mappinĝΨ, such that for any noisy copỹxt

of xt, and any fixed instancea, it holds that

E

[

〈Ψ̂(a), Ψ̂(x̃t)〉
]

= 〈Ψ(a),Ψ(xt)〉 (4)

where the expectation is with respect to the noise. Thus,
“noisy” inner products in the surrogate RKHS correspond
(in expectation) to “noise-free” inner products in the original
RKHS. This allows us to use the noisy data in order to
construct vectorŝ∇t in the surrogate RKHSwith the following
interesting property: if we apply online gradient descent on
∇̂1, . . . , ∇̂T (using kernels), to get predictorŝw1, . . . , ŵT in
the RKHS ofΨ̂, then for anyû,

E

[

T
∑

t=1

〈

ŵt − û, ∇̂t

〉

]

= E

[

T
∑

t=1

〈wt − u,∇t〉
]

where wt and u are the images of̂wt and û according
to a certain mapping to the RKHS ofΨ, and ∇t are the
gradients with respect to the unperturbed examples(xt, yt).
Since we applied online gradient descent in the surrogate
RKHS, the left-hand side isO(

√
T ) by Eq. (3). Thus, we

get thatE
[
∑T

t=1 〈wt − u,∇t〉
]

is O(
√
T ), which implies a

sublinear regret bound forw1, . . . ,wT . We emphasize that
unlike the previous approaches, the expectation of∇̂t is not
equalto∇t. Indeed, they live in different mathematical spaces!

A technical issue which needs addressing is that the norm
of û has to be related to the norm of the actual predictoru

we compare ourselves with. While this cannot be always done,
such a relation does hold ifu is reasonably “nice”, in a sense
which will be formalized later on.

Constructing a surrogate RKHS as in Eq. (4) can be done
when the original RKHS corresponds to a Gaussian kernel.
Nevertheless, we can extend our results, in a certain sense,
to more general radial kernels. The basic tool we use is
Schoenberg’s theorem, which implies that any radial kernel
can be written as an integral of Gaussian kernels of different
widths. Using this result, we can show that one can still
construct a surrogate RKHS, which has the property of Eq. (4)
with respect to an approximate version of our original radial
kernel.

C. Unbiased Estimators for Non-Linear Functions

We now turn to discuss our techniques for dealing with the
most general setting: learning kernel-based predictors, with
general loss functions, and with only a variance bound known
on the noise distribution. At the heart of these techniques lies
an apparently little-known method from sequential estimation
theory to construct unbiased estimates of non-linear and pos-
sibly complex functions.

Suppose that we are given access to independent copies of a
real random variableX , with expectationE[X ], and some real
function f , and we wish to construct an unbiased estimate of
f(E[X ]). If f is a linear function, then this is easy: just sample
x from X , and returnf(x). By linearity,E[f(X)] = f(E[X ])
and we are done. The problem becomes less trivial whenf
is a general, non-linear function, since usuallyE[f(X)] 6=
f(E[X ]). In fact, whenX takes finitely many values andf
is not a polynomial function, one can prove that no unbiased
estimator can exist (see [15], Proposition 8 and its proof).
Nevertheless, we show how in many cases one can construct an
unbiased estimator off(E[X ]), including cases covered by the
impossibility result. There is no contradiction, because we do
not construct a “standard” estimator. Usually, an estimator is a
function from a given sample to the range of the parameter we
wish to estimate. An implicit assumption is that the size of the
sample given to it is fixed, and this is also a crucial ingredient
in the impossibility result. We circumvent this by constructing
an estimator based on a random number of samples.

Here is the key idea: supposef : R → R is
any function continuous on a bounded interval. It is well
known that one can construct a sequence of polynomials
(Qn(·))∞n=1, whereQn(·) is a polynomial of degreen, which
converges uniformly tof on the interval. If Qn(x) =
∑n

i=0 γn,ix
i, let Q′

n(x1, . . . , xn) =
∑n

i=0 γn,i
∏i

j=1 xj .
Now, consider the estimator which draws a positive inte-
ger N according to some distributionP(N = n) = pn,
samplesX for N times to get x1, x2, . . . , xN , and re-
turns 1

pN

(

Q′
N (x1, . . . , xN )−Q′

N−1(x1, . . . , xN−1)
)

, where
we assumeQ′

0 = 0. The expected value of this estimator is
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equal to:

EN,x1,...,xN

[

1

pN

(

Q′
N (x1, . . . , xN )−Q′

N−1(x1, . . . , xN−1)
)

]

=
∞
∑

n=1

pn
pn

Ex1,...,xn

[

Q′
n(x1, . . . , xn)−Q′

n−1(x1, . . . , xn−1)
]

=

∞
∑

n=1

(

Qn(E[X ])−Qn−1(E[X ])
)

= f(E[X ]).

Thus, we have an unbiased estimator off(E[X ]).
This technique was introduced in a rather obscure early

1960’s paper [16] from sequential estimation theory, and
appears to be little known. However, we believe this technique
is interesting, and expect it to have useful applications for other
problems as well.

While this may seem at first like a very general result,
the variance of this estimator must be bounded for it to be
useful. Unfortunately, this is not true for general continuous
functions. More precisely, letN be distributed according to
pn, and let θ be the value returned by the estimator of
f(E[X ]). In [17], it is shown that ifX is a Bernoulli random
variable, and ifE[θNk] < ∞ for some integerk ≥ 1, thenf
must bek times continuously differentiable. SinceE[θNk] ≤
(E[θ2]+E[N2k])/2, this means that functionsf which yield an
estimator with finite variance, while using a number of queries
with bounded variance, must be continuously differentiable.
Moreover, in case we desire the number of queries to be
essentially constant (e.g., choose a distribution forN with
exponentially decaying tails), we must haveE[Nk] < ∞ for
all k, which implies thatf should be infinitely differentiable
(in fact, in [17] it is conjectured thatf must be analytic in
such cases).

Thus, we focus in this paper on functionsf which are
analytic, i.e., they can be written asf(x) =

∑∞
i=0 γix

i for
appropriate constantsγ0, γ1, . . .. In that case,Qn can simply
be the truncated Taylor expansion off to ordern, i.e.,Qn =
∑n

i=0 γix
i. Moreover, we can pickpn ∝ 1/pn for anyp > 1.

So the estimator works as follows: we sample a nonnegative
integerN according toP(N = n) = (p − 1)/pn+1, sample
X independentlyN times to getx1, x2, . . . , xN , and return
θ = γN

pN+1

p−1 x1x2 · · ·xN where we setθ = p
p−1γ0 if N = 0.2

We have the following:

Lemma 1. For the above estimator, it holds thatE[θ] =
f(E[X ]). The expected number of samples used by the es-
timator is 1/(p − 1), and the probability of it being at least
z is p−z. Moreover, if we assume thatf+(x) =

∑∞
n=0 |γn|xn

exists for anyx in the domain of interest, then

E[θ2] ≤ p

p− 1
f2
+

(

√

pE[X2]
)

.

Proof: The fact thatE[θ] = f(E[X ]) follows from the
discussion above. The results about the number of samples

2Admittedly, the eventN = 0 should receive zero probability, as it amounts
to “skipping” the sampling altogether. However, settingP(N = 0) = 0
appears to improve the bound in this paper only in the smallerorder terms,
while making the analysis in the paper more complicated.

follow directly from properties of the geometric distribution.
As for the second moment,E[θ2] equals

EN,x1,...,xN

[

γ2
N

p2(N+1)

(p− 1)2
x2
1x

2
2 · · ·x2

N

]

=

∞
∑

n=0

(p− 1)p2(n+1)

(p− 1)2pn+1
γ2
nEx1,...,xn

[

x2
1x

2
2 · · ·x2

n

]

=
p

p− 1

∞
∑

n=0

γ2
np

n
(

E[X2]
)n

=
p

p− 1

∞
∑

n=0

(

|γn|
(

√

pE[X2]
)n)2

≤ p

p− 1

( ∞
∑

n=0

|γn|
(

√

pE[X2]
)n
)2

=
p

p− 1
f2
+

(

√

pE[X2]
)

.

The parameterp provides atradeoff between the variance
of the estimator and the number of samples needed: the larger
is p, the less samples we need, but the estimator has more
variance. In any case, the sample size distribution decays
exponentially fast.

It should be emphasized that the estimator associated with
Lemma 1 is tailored for generality, and is suboptimal in some
cases. For example, iff is a polynomial function, thenγn =
0 for sufficiently largen, and there is no reason to sample
N from a distribution supported on all nonnegative integers:
it just increases the variance. Nevertheless, in order to keep
the presentation uniform and general, we always use this type
of estimator. If needed, the estimator can be optimized for
specific cases.

We also note that this technique can be improved in various
directions, if more is known about the distribution ofX . For
instance, if we have some estimate of the expectation and
variance ofX , then we can perform a Taylor expansion around
the estimatedE[X ] rather than0, and tune the probability
distribution ofN to be different than the one we used above.
These modifications can allow us to make the variance of
the estimator arbitrarily small, if the variance ofX is small
enough. Moreover, one can take polynomial approximations
to f which are perhaps better than truncated Taylor expan-
sions. In this paper, for simplicity, we ignore these potential
improvements.

Finally, we note that a related result in [17] implies that itis
impossible to estimatef(E[X ]) in an unbiased manner when
f is discontinuous, even if we allow a number of queries and
estimator values which are infinite in expectation. Since the
derivatives of some well-known loss functions (such as the
hinge loss) are discontinuous, estimating their gradient in an
unbiased manner and arbitrary noise appears to be impossible.
While our techniques allow us to work with “smoothed”
approximate versions of such losses, the regret guarantees
degrades with the quality of approximation, and this prevents
us from saying anything non-trivial about learning with respect
to the original losses. Thus, if online learning with noise and
such loss functions is at all feasible, a rather different approach
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than ours needs to be taken.

D. Unbiasing Noise in the RKHS

The second component in our approach to deal with un-
known noise in the kernel setting involves the unbiased
estimation of Ψ(xt), when we only have unbiased noisy
copies of xt. Here again, we have a non-trivial problem,
because the feature mappingΨ is usually highly non-linear, so
E[Ψ(x̃t)] 6= Ψ(E[x̃t]) in general. Moreover,Ψ is not a scalar
function, so the technique of Subsection III-C will not work
as-is.

To tackle this problem, we construct an explicit feature
mapping, which needs to be tailored to the kernel we want to
use. To give a very simple example, suppose we use the homo-
geneous 2nd-degree polynomial kernel,k(x, a) = (〈x, a〉)2. It
is not hard to verify that the functionΨ : Rd 7→ R

d2

, defined
via Ψ(x) = (x1x1, x1x2, . . . , xdxd), is an explicit feature
mapping for this kernel. Now, if we query two independent
noisy copiesx̃, x̃′ of x, we have that the expectation of
the random vector(x̃1x̃

′
1, x̃1x̃

′
2, . . . , x̃dx̃

′
d) is nothing more

than Ψ(x). Thus, we can construct unbiased estimates of
Ψ(x) in the RKHS. Of course, this example pertains to a
very simple RKHS with a finite dimensional representation.
By a randomization technique somewhat similar to the one
in Subsection III-C, we can adapt this approach to infinite
dimensional RKHS as well. In a nutshell, we representΨ(x) as
an infinite-dimensional vector, and its noisy unbiased estimate
is a vector which is non-zero on only finitely many entries,
using finitely many noisy queries. Moreover, inner products
between these estimates can be done efficiently, allowing us
to implement the learning algorithms, and use the resulting
predictors on test instances.

IV. A UXILIARY INFORMATION ON THE NOISE

DISTRIBUTION

In the first part of the paper, we focus on the squared
loss, and discuss the implication of being provided different
levels of auxiliary information on the noise distribution in each
round.

The first setting assumes just a known upper bound on the
variance of the noise. For the specific case of linear predictors,
we show one can learn using two noisy copies of eachxt and
one noisy copy of eachyt.

The second setting assumes that the covariance structure of
the noise is known. In that case, we show that one can learn
linear predictors with only one noisy copy of bothxt andyt.

The third and most complex setting we consider is when the
noise has a fixed Gaussian distribution with known covariance
matrix. We show that one can even learn kernel-based predic-
tors, using two independent noisy copies of eachxt, and one
noisy copy ofyt. We focus on Gaussian kernels, but also show
how the result can be extended, in a certain sense, to general
radial kernels.

Throughout the rest of the paper, we letEt[·] be a
shorthand for expectation over(x̃t, x̃

′
t, ỹt) conditioned on

{(x̃i, x̃
′
i, ỹi)}t−1

i=1 .

Algorithm 1 Learning with Upper Bound on Noise Variance

PARAMETERS: η,Bw.
INITIALIZE : w1 = 0.
For t = 1, 2, . . . , T

Receive(x̃t, ỹt)
Receive another independent copyx̃

′
t

∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃
′
t

w
′ = wt − η∇̃t

wt+1 = min{1, Bw/‖w′‖}w′

A. Setting 1: Upper bound on the Variance

We begin with the simplest setting, which is when we only
know that Et

[

‖x̃t‖2
]

≤ B2
x̃

and Et

[

ỹ2t
]

≤ B2
ỹ for some

known constantsBx̃, Bỹ. Conditional expectation is used here
because we are assuming the adversary can change the noise
distribution after each round, depending on the realizations of
the past noisy examples. We present an algorithm for learning
linear predictors, using exactly two independent noisy copies
of the instancext and one noisy copy of the target valueyt. As
discussed in Sec. III, the algorithm is based on an adaptation
of online gradient descent, and the main requirement is to
construct an unbiased estimate of the gradient∇t. This follows
from the following lemma.

Lemma 2. Let ∇t = 2(〈wt,xt〉 − yt)xt be the gradient of
(〈wt,xt〉 − yt)

2 at wt. Let x̃′
t be an additional independent

copy of x̃t, and denote∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃
′
t. Under the

above assumptions, if‖wt‖ ≤ Bw, thenEt[∇̃t] = ∇t and
Et[‖∇̃t‖2] ≤ G, whereG = 4(B2

w
B2

x̃
+B2

ỹ)B
2
x̃
.

Proof: Because of the independence assumption, we have

Et[∇̃t] = 2Et[〈wt, x̃t〉−ỹt]Et[x̃
′
t] = 2(〈wt,xt〉−yt)xt = ∇t .

For the second claim, we have by the independence assump-
tion that

Et[‖∇̃t‖2] = 4Et

[

(〈wt, x̃t〉 − ỹt)
2
]

Et

[

‖x̃′
t‖

2]

= 4
(

Et

[

〈wt, x̃t〉2
]

+ Et[ỹ
2
t ]
)

Et

[

‖x̃′
t‖

2]

≤ 4
(

B2
w
B2

x̃
+B2

ỹ

)

B2
x̃
.

The following theorem provides a bound on the regret for
Algorithm 1. The proof is provided in Subsection VIII-A

Theorem 1. Let `(a, y) = (a− y)2 be the squared loss. For
all t assume thatEt[‖x̃t‖2] ≤ B2

x̃
, Et[ỹ

2
t ] ≤ B2

ỹ , and that
x̃t, x̃

′
t, ỹt are mutually independent. If we run Algorithm 1

with parametersBw, η = Bw/
√
GT (whereG is defined in

Lemma 2), then

E

[

T
∑

t=1

`(〈wt,xt〉 , yt)
]

− min
w : ‖w‖≤Bw

T
∑

t=1

`(〈w,xt〉 , yt)

≤ Bw

√
GT .
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B. Setting 2: Known Covariance

We now turn to the case where rather than an upper bound
on the variance, we actually know the covariance matrix of
the noise at each round, which we denote asΣt. We assume
that‖Σt‖ ≤ BΣ for all t, where‖·‖ denotes the spectral norm.
As to ỹt, we can still assume we only have an upper bound
B2

ỹ onEt[ỹ
2
t ] (with our algorithmic approach, knowingEt[ỹ

2
t ]

does not help much).
In this setting, we show it is possible to learn linear

predictors, using just a single noisy copy(x̃t, ỹt). This is
opposed to the previous subsection, where we needed an
additional independent copy of̃xt. The idea is that if we
use just one noisy copy in our gradient estimate, we need to
deal with bias terms. When the covariance structure is known,
we can calculate and remove these bias terms, allowing an
online gradient descent similar to Algorithm 1 to work. As
in Algorithm 1, the basic building block is a construction of
an unbiased estimate of the gradient∇t at each iteration. See
Algorithm 2 for the pseudocode.

Lemma 3. Let ∇t = 2(〈wt,xt〉 − yt)xt be the gradient of
(〈wt,xt〉 − yt)

2 at wt. Denote∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃t −
Σtwt, whereΣt is the covariance matrix of̃xt. Then under
the assumptions above, if‖wt‖ ≤ Bw, Et[‖x̃t‖2] ≤ B2

x̃
, and

Et[‖x̃t‖4] ≤ B
′4
x̃

, then Et[∇̃t] = ∇t and Et[‖∇̃‖2t ] ≤ G,
whereG = 8B2

w
B

′4
x̃
+ 8B2

ỹB
2
x̃
+ 4B2

w
B2

x̃
BΣ +B2

ΣB
2
w

.

Proof: Using the zero-mean and independence assump-
tions onnx

t , n
y
t , we have

Et

[

2(〈wt, x̃t〉 − ỹt)x̃t

]

= 2Et

[

(〈wt,xt + n
x
t 〉 − yt − ny

t )(xt + n
x
t )
]

= 2(〈wt,xt〉 − yt)xt + Et[n
x
t 〈wt,n

x
t 〉]

= ∇t +Σtwt

which implies thatEt[∇̃t] = ∇t. As to the second claim, using
the well-known inequality‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, we
have

Et[‖∇̃t‖2] = Et[‖2(〈wt, x̃t − ỹt〉)x̃t − Σtwt‖2]
= Et ‖2(〈wt, x̃t〉 − ỹt)x̃t‖2

− 4w>
t ΣtEt[(〈wt, x̃t〉 − yt)x̃t] + ‖Σtwt‖2

≤ 8Et[‖〈wt, x̃t〉 x̃t‖2] + 8Et[‖ỹtx̃t‖2]
− 4w>

t ΣtEt[〈wt, x̃t〉xt] + ‖Σtwt‖2

≤ 8 ‖wt‖2 Et[‖x̃t‖4] + 8Et[ỹ
2
t ]Et[

∥

∥x̃
2
t

∥

∥]

+ 4 ‖wt‖2 Et[‖x̃t‖2] ‖Σt‖+ ‖Σt‖2 ‖wt‖2

≤ 8B2
w
B

′4
x̃
+ 8B2

ỹB
2
x̃
+ 4B2

w
B2

x̃
BΣ +B2

ΣB
2
w
.

Theorem 2. Let `(a, y) = (a−y)2 be the squared loss. For all
t assume thatxt and yt are perturbed by independent noise
such that the known covariance matrixΣt of the noise added to
xt satisfies‖Σt‖ ≤ BΣ. Assume further thatEt[‖x̃t‖2] ≤ Bx̃,
Et[‖x̃t‖4] ≤ B

′4
x̃

, and Et[ỹ
2
t ] ≤ B2

ỹ . If we run Algorithm 2
with parametersBw andη = Bw/

√
T , whereG is defined in

Algorithm 2 Learning with Known Noise Covariance

PARAMETERS: η,Bw.
INITIALIZE : w1 = 0.
For t = 1, 2, . . . , T

Receive(x̃t, ỹt)

∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃t − Σtwt

w
′ = wt − η∇̃t

wt+1 = min{1, Bw/‖w′‖}w′

Lemma 3, then

E

[

T
∑

t=1

`(〈wt,xt〉 , yt)
]

− min
w : ‖w‖≤Bw

T
∑

t=1

`(〈w,xt〉 , yt)

≤ 1

2
(G+ 1)Bw

√
T .

The proof is similar to the proof of Thm. 1, with Lemma 3
replacing Lemma 2. We note that ifG is known (which
requires knowing a bound on the fourth moment ofx̃t), then
then by pickingη = Bw/

√
GT one can improve the bound

to Bw

√
GT .

C. Setting 3: Gaussian Distribution

The third and most complex setting we consider in this
section is when the noise is assumed to have a Gaussian
distributionN (0,Σ). Clearly, if we know the distribution, then
we can derive upper bounds on the moments ofx̃t (assuming
bounds are known on the original instancesxt). Thus, the
results of Subsection IV-B carry through to our setting, and
we can learn linear predictors. However, when we also know
the noise has a specific Gaussian distribution, we can learn
the much more powerful hypothesis class of kernel-based
predictors.

Recall that the basic premise of kernel-based learning is that
the data (originally inRd) is mapped to some reproducing
kernel Hilbert space (RKHS), via a feature mappingΨ(x),
and a linear predictor is learned in that space. In our original
space, this corresponds to learning a non-linear function.Using
the well-known kernel trick, inner products〈Ψ(x),Ψ(x′)〉 in
the RKHS (which might be infinite-dimensional) can be easily
computed via a kernel functionk(x,x′).

While there are many possible kernel functions, perhaps
the most popular one is the Gaussian kernel, defined as
k(x,x′) = exp(−‖x− x

′‖2 /s2) for somes2 > 0 (the kernel
width). This corresponds to the inner product〈Ψ(x),Ψ(x′)〉
in an appropriate RKHS. We we will show below how to learn
from noisy data with Gaussian kernels. In Subsection IV-D,
we show how this can be extended, in a certain sense, to
generalradial kernels, i.e., kernels of the formk(x,x′) =
f(‖x− x

′‖) for an appropriate real functionf .
In this subsection, we assume that the noise distribution

is fixed for all t. Hence, we may assume w.l.o.g. thatΣ
is a diagonal matrix, with elementσ2

i at row/columni. To
see why, notice that there always exists a rotation matrix
R, such thatR x̃t has a Gaussian distribution with diago-
nal covariance matrix. Therefore, instead of learning with
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respect to{(x̃t, yt)}Tt=1, we can just learn with respect to
{

(R x̃t, yt)
}T

t=1
, and predict on any instancex by pre-rotating

it using R. Since we focus here on rotationally-invariant
kernels, which depend just on the Euclidean distance between
instances, we have thatk(x,x′) = k(Rx, Rx

′) for anyx,x′.
Therefore, the data structure remains the same in the kernel
space, and all our guarantees will still hold. As toỹt, similar
to the previous settings, we will only need to assume that
Et[ỹ

2
t ] ≤ B2

ỹ for some known parameterBỹ.
The algorithm that we present (Algorithm 3) is based on

being able to receive two independent copies of each instance
x̃t, as well as a single independent copy ofỹt. As in the
linear case, the learning algorithm that we use relies upon the
online gradient descent technique due to [11], with the main
difference being that instead of using a Gaussian kernel of
width s2, we use a surrogate kernel, as discussed in Sec. III.

In order to define the surrogate kernel that we use, consider
the RKHS corresponding to the kernel

k̂(x,x′) = R2
Σ,s,d exp

(

−
d
∑

i=1

(xi − x′
i)

2

s2 − 2σ2
i

)

(5)

where we assume that2 ‖Σ‖ = 2maxi σ
2
i is less thans2 and

RΣ,s,d =

(

d
∏

i=1

s2

s2 − 2σ2
i

)1/4

.

This can be shown to be a kernel by standard results (see for
instance [8]). Note thatRΣ,s,d can be bounded by a constant
whenσi = O(1) for all i (constant noise) ands2 = Θ(d) —
plausible when the feature values of observed instancesx are
of orderΘ(1). Let Ψ̂ be the feature mapping corresponding
to this RKHS.

The pseudocode of our algorithm is presented below. For-
mally speaking, it is just applying online gradient descent,
using kernels, in the surrogate RKHS that we constructed.
However, it is crucial to note that the actual output are
elementsw1,w2, . . . in the RKHS corresponding toΨ.

Algorithm 3 Kernel Learning Algorithm with Gaussian Noise
N (0,Σ)

PARAMETERS: W, η
INITIALIZE :

αi := 0 for all i = 1, . . . , T
For t = 1, . . . , T :

Defineŵt =
∑t−1

i=1 αiΨ̂(x̃i)

Definewt =
∑t−1

i=1 αiΨ(x̃i)
Receiveỹt, x̃t, and independent copỹx′

t

Let g̃t := 2
(

∑t−1
i=1 αik̂(x̃i, x̃

′
t)− ỹt

)

//g̃t is gradient length with respect tôΨ(x̃′
t) at ŵt

Let αt := −ηg̃t
Let rt :=

∑t
i=1

∑t
j=1 αiαj k̂(x̃i, x̃j)

If rt > W 2 // If ‖ŵt‖2 > W 2, then project
Let αi := αi

W√
rt

for all i = 1, . . . , t

Before stating the bound for Algorithm 3 we need an
auxiliary definition. Suppose thatw is any element in the

RKHS ofΨ, which can be written as
∑T

t=1 atΨ(xt) for some
a1, . . . , aT ≥ 0. For example, this includes

argmin
u : ‖u‖≤Bw

T
∑

t=1

`(〈u,Ψ(xt)〉 , yt)

for anyBw > 0 by the representer theorem. Defineβw to be
the angle between

∑

t:at>0 atΨ(xt) and−∑t:at<0 atΨ(xt).
In other words, this is the angle between the component due
to positive support vectors, and the component due to the
negative support vectors. If one of the components is zero,
defineβw to beπ/2. The main theorem of this section, whose
proof is presented in Subsection VIII-B, is the following.

Theorem 3. Let `(a, y) = (a−y)2 be the squared loss. For all
t assume thatxt is perturbed by Gaussian noise with known
distributionN (0,Σ), whereΣ is diagonal, andyt is perturbed
by arbitrary independent noise withEt[ỹ

2
t ] ≤ B2

ỹ . LetBw > 0
and β ∈ (0, π/2] be fixed. If we run Algorithm 3 with the
kernel (5) such thats2 ≥ 2 ‖Σ‖, and input parameters

W ≥
√
5BwRΣ,s,d

sin(β)

and
η =

W

2RΣ,s,d

√

(

W 2R2
Σ,s,d +B2

ỹ

)

T

then

E

[

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)
]

− min
w∈W

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt)

≤ 2WRΣ,s,d

√

(

W 2R2
Σ,s,d +B2

ỹ

)

T

whereW =
{

w : ‖w‖ ≤ Bw, βw ≥ β
}

and Ψ is the
feature mapping induced by the Gaussian kernel with width
s2. In particular, if s2 = Ω(d), ‖Σ‖ = O(1), andBỹ = O(1),
then the above bound isO

(

W 2
√
T
)

.

The intuition forβw is that it measures how well separated
are the training examples: if the “positive” and “negative”
example groups are not too close together, then the angle
between

∑

t:at>0 atΨ(xt) and −∑i:at<0 atΨ(xt) will be
large, and the bound will be small. Note that in the RKHS
corresponding to a Gaussian kernel,βw is alwaysbetween0
and π/2, since the inner product between any two elements
Ψ(x) andΨ(x′) is positive. In addition,βw can be shown to be
exactly zero if and only if the positive and negative examples
exactly coincide. Overall, on realistic datasets, assuming there
exist some good predictorw with βw not too small is a pretty
mild assumption, if something interesting can be learned even
on the unperturbed data.

D. Extension to General Radial Kernels

The Gaussian kernel we discussed previously is a member of
the family of radial kernels, that is kernels onx,x′ which can
be written as a function of‖x− x

′‖. Although the Gaussian
kernel is the most popular member of this family, there are
many other radial kernels, such asexp(−‖x− x

′‖ /s) and
(1 + ‖x− x

′‖2 /m)−α for appropriate parameterss,m, α.
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Thus, a reasonable question is whether Algorithm 3 and
its analysis can be extended to general radial kernels. The
extension we are able to show is in the following sense: for
any radial kernelg(x,x′), there exists another radial kernel
k(x,x′), which approximatesg(x,x′) arbitrarily well, for
which one can extend Algorithm 3 and its analysis. Although
the approximation parameter is user-defined, the bound on
the regret depends on this parameter and deteriorates as the
approximation gets better.

Recall from Subsection III-B that the heart of our approach
is constructing a surrogate RKHS, with surrogate kernelk̂,
such thatE[k̂(a, x̃)] = k(a,x). In the Gaussian kernel case,
the required surrogate RKHS corresponds to the kernel defined
in Eq. (5). To deal with other kernels, constructing an appro-
priate surrogate kernel becomes trickier. Luckily, we can still
reduce the problem, in some sense, to the case of Gaussian
kernels. The key technical result is the following theorem due
to Schoenberg ([18], see also [19]), slightly paraphrased and
adapted to our purposes3:

Theorem 4 (Schoenberg’s Theorem). A functiong(·, ·) is a
radial kernel corresponding to a valid RKHS, if and only if
there exists a finite nonnegative measureµ on [0,∞), such
that for anyx, a ∈ R

d,

g(x, a) =

∫ ∞

u=0

exp
(

−u ‖x− a‖2
)

µ(u)du.

This result asserts that, up to normalization factors, radial
kernels can be characterized as Laplace transforms of proba-
bility measures on the positive reals. Schoenberg’s Theorem
has been used by Micchelli et al. [20] to prove universality of
radial kernels and by Scovel et al. [21] to establish approx-
imation error bounds. A related result is Bochner’s theorem
(see, e.g., [22]), which characterizes the more general class
of shift-invariant kernels as Fourier transforms of multivariate
distributions onRd.

The above theorem implies that we can write inner products
in our RKHS using the approximate kernel

k(x, a) =

∫ c

u=0

ku(x, a)µ(u)du (6)

where c > 0 is a parameter andku is the Gaussian kernel
ku(x, a) = exp(−u ‖x− a‖2) with kernel width1/u. Note
that this is a valid kernel by the reverse direction of Thm. 4.
If c is chosen not too small, thenk(x, a) is an excellent
approximation tog(x, a) for all x, a. The reason why we
must settle for approximations of the radial kernel, rather
than the kernel itself, is the following: for eachku in the
above integral, we construct a surrogate kernelk̂u such that
Ex̃[k̂u(x̃, a)] = ku(x, a). The surrogate kernel̂ku is based on
subtracting certain constants from the kernel width1/u along
each dimension, and this cannot be done ifu is larger than
those constants.

3To be precise, the theorem here is a corollary of Schoenberg’s theorem,
which discusses necessary and sufficient conditions fork(·, ·) to be positive
definite, and Mercer’s theorem (see [8]), which asserts thatsuch a function is
a kernel of a valid RKHS.

By Fubini’s theorem, we can write Eq. (6) as

k(x, a) =

∫ c

u=0

E

[

k̂u(x̃, a)
]

µ(u)du = E

[∫ c

u=0

k̂u(x̃, a)du

]

.

It turns out that the integral inside the expectation corresponds
to an inner product, in a valid RKHS, between the noisy
instancex̃ anda. This will be our surrogate kernel fork.

To provide a concrete case study, we will outline the results
for the specific radial kernel4

g(x,x′) =

(

1 +
1

d
‖x− x

′‖2
)−1

postponing the full technical details and proofs to Subsec-
tion VIII-C. Just to make our analysis simpler to present, we
assume here thatΣ = σ2I for some parameterσ2, where
σ2 = O(1) (this is a reasonable assumption to make when the
feature values of the original data isΘ(1)).

The approximate kernel we will consider is

k(x,x′) = d

∫ c/d

0

exp
(

−u ‖x− x
′‖2 − ud

)

du

= g(x,x′)

(

1− exp

(

− c

g(x,x′)

))

(7)

wherec ∈ (0, d/4σ) is a user-defined parameter, which trades
off the quality of the bound on the regret and the similarity
of k(x,x′) to g(x,x′). This is a valid kernel by the reverse
direction of Thm. 4 since

d

∫ c/d

0

exp(−ud)du = 1− exp(−c) > 0 .

Note thatg(x,x′) is always between0 and1, so

k(x,x′)

g(x,x′)
∈ [1− exp(−c), 1] .

Therefore,k(x,x′) is an excellent approximation ofg(x,x′)
for values of c not too small (see Fig. 1 for a graphical
illustration). As before, we letΨ denote the feature mapping
associated with the kernelk.

The surrogate kernel that we will pick is defined as follows:

k̂(x,x′)

= d

∫ c/d

u=0

(1− 2σu)−d/2 exp

(

−u ‖x− x
′‖2

1− 2σu
− ud

)

du .

(8)

As before, we letΨ̂ denote the feature mapping associated
with this kernel. This is a valid kernel by the reverse direction
of Thm. 4.

Our algorithm looks exactly like Algorithm 3, only that now
we use the new definitions of̂Ψ,Ψ above. To state the bound,
recall that for anyw =

∑T
t=1 atΨ(xt) for somea1, . . . , aT ,

we defineβw to be the angle between
∑

t:at>0 atΨ(xt) and
−∑t:at<0 atΨ(xt). The bound takes the following form.

Theorem 5. Let `(a, y) = (a − y)2 be the squared loss.
For all t assume thatxt is perturbed by Gaussian noise

4Note that the scaling factor1/d is the reasonable one to take, when we
assume that the attribute values in the instances are on the order ofΘ(1).
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Fig. 1. Comparison ofg(x,x′) (solid line) andk(x,x′) (dashed line) as a
function of‖x− x

′‖, for c = 2 (left) andc = 4 (right). Note that forc = 4,
the two graphs are visually indistinguishable.

with known distributionN (0, σ2I), and yt is perturbed by
arbitrary independent noise withEt[ỹ

2
t ] ≤ B2

ỹ . Let Bw > 0
and β ∈ (0, π/2] be fixed. If we run Algorithm 3 with the
kernel (7) wherec ∈ (0, d/4σ), and input parameters

W ≥
√
5Bw exp(σc)

sin(β)

and

η =
W

2 exp(σc)
√

(W 2 exp(2σc) +B2
ỹ)T

then

E

[

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)
]

− min
w∈W

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt)

≤ 2W exp(σc)
√

(W 2 exp(2σc) +B2
ỹ)T

whereW =
{

w : ‖w‖ ≤ Bw, βw ≥ β
}

andΨ is the feature
mapping induced by the kernel (7).

The proof of the theorem is provided in Subsection VIII-C.

V. UNKNOWN NOISE DISTRIBUTION

In this part of the paper, we turn to study the setting where
we wish to learn kernel-based predictors, while having no
information about the noise distribution other than an upper
bound on its variance. This is relevant in cases where the
noise is hard to model, or if it might change in an unexpected
or even adversarial manner. Moreover, we provide results with
respect to general analytic loss functions, which go beyondthe
squared loss on which we focused in Sec. IV. We emphasize
that the techniques here are substantially different than those
of Sec. IV, and do not rely on surrogate kernels. Instead,
the techniques focus on construction of unbiased gradient
estimates directly in the RKHS.

A. Algorithm

We present our algorithmic approach in a modular form. We
start by introducing the main algorithm, which contains several
subroutines. Then we prove our two main results, which bound
the regret of the algorithm, the number of queries to the oracle,
and the running time for two types of kernels: dot product and
Gaussian (our results can be extended to other kernel types as
well). In itself, the algorithm is nothing more than a standard
online gradient descent algorithm with a standardO(

√
T )

regret bound. Thus, most of the proofs are devoted to a detailed
discussion of how the subroutines are implemented (including
explicit pseudo-code). In this subsection, we describe just one
subroutine, based on the techniques discussed in Sec. III.
The other subroutines require a more detailed and technical
discussion, and thus their implementation is described as part
of the proofs in Sec. VIII. In any case, the intuition behind
the implementations and the techniques used are described in
Sec. III.

For the remainder of this subsection, we assume for simplic-
ity that ` is a classification loss; namely, it can be written as a
function of `(y 〈w,Ψ(x)〉). It is not hard to adapt the results
below to the case wherè is a regression loss (wherèis a
function of 〈w,Ψ(x)〉 − y). Another simplifying assumption
we will make, purely in the interest of clarity, is that the
noise will be restricted just to the instancext, and not to
the target valueyt. In other words, we assume that the learner
is given access toyt, and to an oracleAt which provides
noisy copies ofxt. This does not make our lives easier, since
the hard estimation problems relate toxt and notyt (e.g.,
estimating〈wt,Ψ(xt)〉 in an unbiased manner, despite the
non-linearity of the feature mappingΨ). On the other hand,
it will help to make our results more transparent, and reduce
tedious bookkeeping.

At each round, the algorithm below constructs an object
which we denote as̃Ψ(xt) (note that it has no relationship
to Ψ̂(xt) used in the previous section). This object has two
interpretations here: formally, it is an element of a reproducing
kernel Hilbert space (RKHS) corresponding to the kernel we
use, and is equal in expectation toΨ(xt). However, in terms
of implementation, it is simply a data structure consistingof a
finite set of vectors fromRd. Thus, it can be efficiently stored
in memory and handled even for infinite-dimensional RKHS.

Like Ψ̃(xt), wt+1 has also two interpretations: formally, it
is an element in the RKHS, as defined in the pseudocode. In
terms of implementation, it is defined via the data structures
Ψ̃(x1), . . . , Ψ̃(xt) and the values ofα1, . . . , αt at round t.
To apply this hypothesis on a given instancex, we compute
∑t

i=1 αt,iMult(Ψ̃(xi),x
′), whereMult(Ψ̃(xi),x

′) is a sub-

routine which returns the inner product
〈

Ψ̃(xi),Ψ(x′)
〉

(a
pseudocode is provided as part of the proofs in Sec. VIII).

We start by considering dot-product kernels; that is, kernels
k(·, ·) that can be written ask(x,x′) = Q(〈x,x′〉), where
Q(·) has a Taylor expansionQ(a) =

∑∞
n=0 βna

n such that
βn ≥ 0 for all n —see theorem 4.19 in [8]. Our first result
shows what regret bound is achievable by the algorithm for
any dot-product kernel, as well as characterize the number of
oracle queries per instance, and the overall running time of
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the algorithm. The proof is provided in Subsection VIII-E.

Algorithm 4 Kernel Learning Algorithm with Noisy Input

Parameters: Learning rateη > 0, number of roundsT ,
sample parameterp > 1

Initialize:
αi = 0 for all i = 1, . . . , T .
Ψ̃(xi) for all i = 1, . . . , T

// Ψ̃(xi) is a data structure which can store a
// variable number of vectors inRd

For t = 1 . . . T

Definewt =
∑t−1

i=1 αiΨ̃(xi)
Receive oracleAt andyt

Let Ψ̃(xt) := Map_Estimate(At, p)
// Get unbiased estimates ofΨ(xt) in the RKHS

Let g̃t := Grad_Length_Estimate(At, yt, p)
// Get unbiased estimate of`′(yt 〈wt,Ψ(xt)〉)

Let αt := −g̃tη/
√
T // Perform gradient step

Let ñt :=
∑t

i=1

∑t
j=1 αt,iαt,jProd(Ψ̃(xi), Ψ̃(xj))

// Compute squared norm, where

// Prod(Ψ̃(xi), Ψ̃(xj)) returns
〈

Ψ̃(xi), Ψ̃(xj)
〉

If ñt > Bw

Let αi := αi

√
Bw

ñt
for all i = 1, . . . , t

//If squared norm is larger thanBw, then project

Theorem 6. Assume that the loss function` has an analytic
derivative `′(a) =

∑∞
n=0 γna

n for all a in its domain, and
let `′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Pick any

dot-product kernelk(·, ·) = Q(〈·, ·〉). Finally, assume that
Et[‖x̃t‖2] ≤ Bx̃ for any x̃t returned by the oracle at round
t, for all t = 1, . . . , T . Then, for allBw > 0 and p > 1, it
is possible to implement the subroutines of Algorithm 4 such
that:

1) The expected number of queries to each oracleAt is
p

(p− 1)2
.

2) The expected running time of the algorithm is

O

(

T 3

(

1 +
dp

(p− 1)2

))

.

3) If we run Algorithm 4 with

η =
Bw√

u`′+
(√

(p− 1)u
)

where

u = Bw

(

p

p− 1

)2

Q(pBx̃)

then

E

[

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)
]

− min
w : ‖w‖≤Bw

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt)

≤ `′+
(
√

(p− 1)u
)
√
uT .

We note that the distribution of the number of oracle queries
can be specified explicitly, and it decays very rapidly —see
the proof for details.

The parameterp is user-defined, and allows one to perform
a tradeoff between the number of noisy copies required for
each example, and the total number of examples. In other
words, the regret bound will be similar whether many noisy
measurements are provided on a few examples, or just a few
noisy measurements are provided on many different examples.

The result pertaining to radial kernels is very similar, and
uses essentially the same techniques. For the sake of clarity,
we provide a more concrete result which pertains specifically
to the most important and popular radial kernel, namely the
Gaussian kernel. The proof is provided in Subsection VIII-F.

Theorem 7. Assume that the loss function` has an analytic
derivative`′(a) =

∑∞
n=0 γna

n for all a in its domain, and let
`′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Pick any Gaussian

kernel k(x,x′) = exp(−‖x− x‖2 /s2) for somes2 > 0.
Finally, assume thatEt

[

‖x̃t‖2
]

≤ Bx̃ for any x̃t returned
by the oracle at roundt, for all t = 1, . . . , T . Then for all
Bw > 0 andp > 1 it is possible to implement the subroutines
of Algorithm 4 such that

1) The expected number of queries to each oracleAt is

3p

(p− 1)2
.

2) The expected running time of the algorithm is

O

(

T 3

(

1 +
dp

(p− 1)2

))

.

3) If we run Algorithm 4 with

η =
Bw√

u`′+
(√

(p− 1)u
)

where

u = Bw

(

p

p− 1

)3

exp

(√
pBx̃ + 2p

√
Bx̃

s2

)

then

E

[

T
∑

t=1

`(〈wt,Ψ(xt〉), yt)
]

− min
w : ‖w‖≤Bw

T
∑

t=1

`(〈w,Ψ(xt〉), yt)

≤ `′+(
√

(p− 1)u)
√
uT .

As in Thm. 6, note that the number of oracle queries has
a fast decaying distribution. Also, note that with Gaussian
kernels, s2 is usually chosen to be on the order of the
example’s squared norms. Thus, if the noise added to the
examples is proportional to their original norm, we can assume
thatBx̃/s

2 = O(1), and thusu appearing in the bound is also
bounded by a constant.

As previously mentioned, most of the subroutines are
described in the proofs section, as part of the proof of
Thm. 6. Here, we only show how to implement the
Grad_Length_Estimate subroutine, which returns the
gradient length estimatẽgt. The idea is based on the technique
described in Subsection III-C. We prove thatg̃t is an unbiased
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estimate of̀ ′(yt 〈wt,Ψ(xt)〉), and boundEt[g̃
2
t ]. As discussed

earlier, we assume that`′(·) is analytic and can be written as
`′(a) =

∑∞
n=0 γna

n.

Subroutine 1 Grad_Length_Estimate(At, yt, p)

Sample nonnegative integern according toP(n) = p−1
pn+1

For j = 1, . . . , n

Let Ψ̃(xt)j := Map_Estimate(At)
// Get unbiased estimate ofΨ(xt) in the RKHS

Return

ytγn
pn+1

p− 1

n
∏

j=1

(

t−1
∑

i=1

αt−1,iProd(Ψ̃(xi), Ψ̃(xt)j)

)

Lemma 4. Assume thatEt[Ψ̃(xt)] = Ψ(xt), and that

Prod(Ψ̃(x), Ψ̃(x′)) returns
〈

Ψ̃(x), Ψ̃(x′)
〉

for all x,x′. De-
note the output of the subroutine above asg̃t, and define
`′+(a) =

∑∞
n=0 |γn|an. Then for any given

wt = αt−1,1Ψ̃(x1) + · · ·+ αt−1,t−1Ψ̃(xt−1)

it holds thatEt[g̃t] = yt`
′(yt 〈wt,Ψ(xt)〉) and

Et[g̃
2
t ] ≤

p

p− 1
`
′

+

(
√

pBwBΨ̃(x)

)2

where the expectation is with respect to the randomness of
Subroutine 1.

Proof: The result follows from Lemma 1, wherẽgt
corresponds to the estimatorθ, the functionf corresponds
to `′, and the random variableX corresponds to

〈

wt, Ψ̃(xt)
〉

(whereΨ̃(xt) is random andwt is held fixed). The termE[X2]
in Lemma 1 can be upper bounded as

Et

[

(〈

wt, Ψ̃(xt)
〉)2

]

≤ ‖wt‖2 Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

≤ BwBΨ̃(x) .

B. Loss Function Examples

Theorems 6 and 7 both deal with generic loss functions
` whose derivative can be written as

∑∞
n=0 γna

n, and the
regret bounds involve the functions̀′+(a) =

∑∞
n=0 |γn|an.

Below, we present a few examples of loss functions and their
corresponding̀ ′

+. As mentioned earlier, while the theorems
in the previous subsection are in terms of classification losses
(i.e., ` is a function ofy 〈w,Ψ(x)〉), virtually identical results
can be proven for regression losses (i.e.,` is a function of
〈w,Ψ(x)〉− y), so we will give examples from both families.
Working out the first two examples is straightforward. The
proofs of the other two appear in Subsection VIII-G. The loss
functions in the last two examples are illustrated graphically
in Fig. 2.

Example 1. For the squared loss function,`(〈w,Ψ(x)〉 , y) =
(〈w,Ψ(x)〉 − y)2, we havè ′

+

(√

(p− 1)u)
)

= 2
√

(p− 1)u.
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Fig. 2. Absolute loss, hinge loss, and analytic approximations. For the
absolute loss, the line represents the loss as a function of〈w,Ψ(x)〉−y. For
the hinge loss, the lines represent the loss as a function ofy 〈w,Ψ(x)〉

Example 2. For the exponential loss function,
`(〈w,Ψ(x)〉 , y) = ey〈w,Ψ(x)〉, we have`′+

(√

(p− 1)u
)

=

e
√

(p−1)u.

Example 3. Recall that the standard absolute loss is de-
fined as `(〈w,Ψ(x)〉 , y) = | 〈w,Ψ(x)〉 − y|. Consider a
“smoothed” absolute loss functioǹc(〈w,Ψ(x)〉 , y), defined
as an antiderivative ofErf(sa) for somec > 0 (see proof for
exact analytic form). Then we have that

`′+
(
√

(p− 1)u
)

≤ 1

2
+

1

c
√

π(p− 1)u

(

ec
2(p−1)u − 1

)

.

Example 4. Recall that the standard hinge loss is defined
as `(〈w,Ψ(x)〉 , y) = max{1 − y 〈w,Ψ(x)〉 , 0}. Consider
a “smoothed” hinge loss`c(y 〈w,Ψ(x)〉), defined as an
antiderivative of(Erf(c(a − 1)) − 1)/2 for somec > 0 (see
proof for exact analytic form). Then we have that

`′+
(
√

(p− 1)u
)

≤ 2

c
√

π(p− 1)u

(

ec
2(p−1)u−1

)

.

For any c, the loss function in the last two examples
is convex, and respectively approximate the absolute loss
∣

∣ 〈w,Ψ(x)〉− y
∣

∣ and the hinge lossmax
{

0, 1− y 〈w,Ψ(x)〉
}

arbitrarily well for large enoughc. Fig. 2 shows these loss
functions graphically forc = 1. Note thatc need not be large
in order to get a good approximation. Also, we note that both
the loss itself and its gradient are computationally easy to
evaluate.

Finally, we remind the reader that as discussed in Subsec-
tion III-C, performing an unbiased estimate of the gradient
for non-differentiable losses directly (such as the hinge loss
or absolute loss) appears to be impossible in general. On
the flip side, if one is willing to use a random number of
queries with polynomially-decaying rather than exponentially-
decaying tails, then one can achieve much better sample
complexity results, by focusing on loss functions (or approx-
imations thereof) which are only differentiable to a bounded
order, rather than fully analytic. This again demonstratesthe
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tradeoff between the number of examples, and the amount of
information that needs to be gathered on each example.

VI. A RE MULTIPLE NOISY COPIESNECESSARY?

The positive results discussed so far are mostly based on
getting more than one noisy copy per example. However, one
might wonder if this is really necessary. In some applications
this is inconvenient, and one would prefer a method which
works when just a single noisy copy of each example is made
available. Moreover, in the setting of known noise covariance
(Subsection IV-B), for linear predictors and squared loss,we
needed just one noisy copy of each example(xt, yt) in order
to learn. Perhaps a similar result can be obtained even when
the noise distribution in unknown?

In this subsection we show that, unfortunately, such a
method cannot be found. Specifically, we prove that if the
noise distribution is unknown, then under very mild assump-
tions, no method can achieve sub-linear regret, when it has
access to just a single noisy copy of each instancext (even
whenyt is known). On the other hand, for the case of squared
loss and linear kernels, we know that we can learn based on
two noisy copies of each instance (see Subsection IV-A). So
without further assumptions, the lower bound that we prove
here is indeed tight. It is an interesting open problem to show
improved lower bounds when nonlinear kernels are used, or
when the loss function is more complex.

Theorem 8. LetW be a compact convex subset ofR
d, and let

`(·, 1) : R 7→ R satisfies the following: (1) it is bounded from
below; (2) it is differentiable at0 with `′(0, 1) < 0. For any
learning algorithm which selects hypotheses fromW and is
allowed access to a single noisy copy of the instance at each
round t, there exists a strategy for the adversary such that the
sequencew1,w2, . . . of predictors output by the algorithm
satisfies

lim sup
T→∞

max
w∈W

1

T

T
∑

t=1

(

`(〈wt,xt〉 , yt)− `(〈w,xt〉 , yt)
)

> 0

with probability 1.

Note that condition (1) is satisfied by virtually any loss
function other than the linear loss, while condition (2) is
satisfied by most regression losses, and by allclassification
calibrated losses, which include all reasonable losses for
classification (see [23]).

The intuition of the proof is very simple: the adversary
chooses beforehand whether the examples are drawn i.i.d. from
a distributionD, and then perturbed by noise, or drawn i.i.d.
from some other distributionD′ without adding noise. The
distributionsD,D′ and the noise are designed so that the
examples observed by the learner are distributed in the same
way irrespective of which of the two sampling strategies the
adversary chooses. Therefore, it is impossible for the learner
accessing a single copy of each instance to be statistically
consistent with respect to both distributions simultaneously.
As a result, the adversary can always choose a distribution on
which the algorithm will be inconsistent, leading to constant
regret.

To prove the theorem, we use a more general result which
leads to non-vanishing regret, and then show that under the
assumptions of Thm. 8, the result holds. The proof of the
result is given in Subsection VIII-I.

Theorem 9. Let W be a compact convex subset ofR
d and

pick any learning algorithm which selects hypotheses fromW
and is allowed access to a single noisy copy of the instance
at each roundt. If there exists a distribution over a compact
subset ofRd such that

argmin
w∈W

E
[

`(〈w,x〉 , 1)
]

and argmin
w∈W

`
(

〈w,E[x]〉 , 1
)

(9)

are disjoint, then there exists a strategy for the adversarysuch
that the sequencew1,w2, · · · ∈ W of predictors output by the
algorithm satisfies

lim sup
T→∞

max
w∈W

1

T

T
∑

t=1

(

`(〈wt,xt〉 , yt)− `(〈w,xt〉 , yt)
)

> 0

with probability 1.

Another way to phrase this theorem is that the regret cannot
vanish, if given examples sampled i.i.d. from a distribution, the
learning problem is more complicated than just finding the
mean of the data. Indeed, the adversary’s strategy we choose
later on is simply drawing and presenting examples from such
a distribution. Below, we sketch how we use Thm. 9 in order to
prove Thm. 8. A full proof is provided in Subsection VIII-H.

We construct a very simple one-dimensional distribution,
which satisfies the conditions of Thm. 9: it is simply the
uniform distribution on{3x,−x}, where x is the vector
(1, 0, . . . , 0). Thus, it is enough to show that

argmin
w : |w|2≤Bw

`(3w, 1) + `(−w, 1) and argmin
w : |w|2≤Bw

`(w, 1)

(10)
are disjoint, for some appropriately chosenBw. Assuming the
contrary, then under the assumptions on`, we show that the
first set in Eq. (10) is inside a bounded ball around the origin,
in a way which is independent ofBw, no matter how large it
is. Thus, if we pickBw to be large enough, and assume that
the two sets in Eq. (10) are not disjoint, then there must be
somew such that both̀ (3w, 1) + `(−w, 1) and`(w, 1) have
a subgradient of zero atw. However, this can be shown to
contradict the assumptions on`, leading to the desired result.

VII. C ONCLUSIONS ANDFUTURE WORK

We have investigated the problem of learning, in an online
fashion, linear and kernel-based predictors when the observed
examples are corrupted by noise. We have shown bounds
on the expected regret of learning algorithms under various
assumptions on the noise distribution and the loss function
(squared loss, analytic losses). A key ingredient of our results
is the derivation of unbiased estimates for the loss gradients
based on the possibility of obtaining a small but random
number of independent copies of each noisy example. We also
show that accessing more than one copy of each noisy example
is a necessary condition for learning with sublinear regret.

There are several interesting research directions worth pur-
suing in the noisy learning framework introduced here. For
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instance, doing away with unbiasedness, which could lead to
the design of estimators that are applicable to more types of
loss functions, for which unbiased estimators may not even
exist. Biased estimates may also help in designing improved
estimates for kernel learning when the noise distribution is
known, but not necessarily Gaussian. Another open question
is whether our lower bound (Thm. 8) can be improved when
nonlinear kernels are used.

VIII. P ROOFS

A. Proof of Thm. 1

First, we use the following lemma that can be easily adapted
from [11].

Lemma 5. Letv1, . . . ,vT be a sequence of vectors. Letw1 =
0 and for t ≥ 1 let wt = P (wt − ηvt), whereP (·) is the
projection operator on an origin-centered ball of radiusBw.
Then, for allu such that‖u‖ ≤ Bw we have

m
∑

t=1

〈vt,wt − u〉 ≤ B2
w

2η
+

η
∑T

t=1 ‖vt‖2
2

.

Applying Lemma 5 withvt = ∇̃t as defined in Lemma 2
we obtain:

T
∑

t=1

〈

∇̃t,wt − u

〉

≤ B2
w

2η
+

η
∑T

t=1 ‖∇̃t‖2
2

.

Taking expectation of both sides and using again Lemma 2
we obtain that

E

[

T
∑

t=1

〈∇t,wt − u〉
]

≤ B2
w

2η
+

ηTG

2
.

Now, using convexity we get that

〈∇t,wt − u〉 ≥ (〈wt,xt〉 − yt)
2 − (〈wt,u〉 − yt)

2

which gives

E

[

T
∑

t=1

(〈wt,xt〉 − yt)
2

]

≤
T
∑

t=1

(〈u,xt〉−yt)
2+

B2
w

2η
+
ηTG

2
.

Picking η as in the theorem statement concludes our proof.

B. Proof of Thm. 3

To prove the theorem, we will need a few auxiliary lemmas.
In particular, Lemma 6 is a key technical lemma, which
will prove crucial in connecting the RKHS with respect
to Ψ(·), k(·, ·), and the RKHS with respect tôΨ(·), k̂(·, ·).
Lemma 8 connects between the norms of elements in the two
RKHS’s.

To state the lemmas and proofs conveniently, recall the
shorthand

RΣ,s,d =

(

d
∏

i=1

s2

s2 − 2σ2
i

)1/4

.

Lemma 6. For any a,x ∈ R
d, if we let x̃ = x + n where

n ∼ N (0,Σ) is a Gaussian random vector with covariance
matrix Σ, then it holds that

En

〈

Ψ̂(a), Ψ̂(x̃)
〉

= 〈Ψ(a),Ψ(x)〉 .

Proof: The expectation in the lemma can be written as

En

[

R2
Σ,s,d exp

(

−
d
∑

i=1

(ai − xi − ni)
2

s2 − 2σ2
i

)]

=

d
∏

i=1

R
2/d
Σ,s,d

∫

zi

(2πs2)−1/2 exp

(

− z2i
2σ2

i

− (ai − xi − zi)
2

s2 − 2σ2
i

)

dzi (11)

A purely technical integration exercise reveals that each ele-
menti in this product equalsexp(−(ai−xi)

2/s2). Therefore,
Eq. (11) equals

d
∏

i=1

exp

(

− (ai − xi)
2

s2

)

= exp

(

−‖a− x‖2
s2

)

which is exactly〈Ψ(x),Ψ(a)〉.
Lemma 7. LetΨ(·) denote a feature mapping to an arbitrary
RKHS. Letz1, z2, . . . , zT be vectors inRd, anda1, a2, . . . , aT
scalars, such that‖∑i aiΨ(zi)‖2 ≤ B2 for someB > 0. Then
it holds that

∥

∥

∥

∥

∥

∑

i:ai>0

aiΨ(zi)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∑

i:ai<0

aiΨ(zi)

∥

∥

∥

∥

∥

2

≤ 5B2

sin2(β)

where β is the angle between
∑

i:ai>0 aiΨ(zi) and
∑

i:ai<0 aiΨ(zi) in the RKHS (orβ = π/2 if one of these
elements is zero).

We remark that this bound is designed for readability —it
is not the tightest upper bound possible.

Proof: The bound trivially holds if
∑

i:ai>0 aiΨ(zi) or
∑

i:ai<0 aiΨ(zi) are zero, so we will assume w.l.o.g. that they
are both non-zero.

To simplify notation, let

w =
∑

i

aiΨ(zi)

w+ =
∑

i:ai>0

aiΨ(zi)

w− =
∑

i:ai<0

−aiΨ(zi)

and notice thatw = w+ − w−. By the cosine theorem and
the fact thatw = w+ −w−, we have that

‖w‖2 = ‖w+‖2 + ‖w−‖2 − 2 ‖w+‖ ‖w−‖ cos(β).
Solving for ‖w−‖ and taking the larger root in the resulting
quadratic equation, we have that

‖w−‖ ≤ ‖w+‖ cos(β) +
√

‖w‖2 − ‖w+‖2 sin2(β) (12)

(it is easy to verify that the term in the squared root is always
non-negative). Therefore

‖w+‖2 + ‖w−‖2

≤ ‖w+‖2 +
(

‖w+‖ cos(β) +
√

‖w‖2 − ‖w+‖2 sin2(β)
)2

≤ ‖w+‖2 + (‖w+‖ | cos(β)|+ ‖w‖)2 .
From straightforward geometric arguments, we must have
‖w+‖2 ≤ ‖w‖2 / sin2(β) (this is the same reason the term
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in the squared root in Eq. (12) is non-negative). Plugging this
into the right hand side of the inequality above, we get an
upper bound of the form

‖w‖2

sin2(β)
+

(

‖w‖
∣

∣

∣

∣

cos(β)

sin(β)

∣

∣

∣

∣

+ ‖w‖
)2

≤ ‖w‖2
(

1 +
2

| sin(β)| +
2

sin2(β)

)

where we used the fact that| cos(β)| ≤ 1. A straightforward
upper bounding leads to the lemma statement.

The following lemma is basically a corollary of Lemma 7.

Lemma 8. Let z1, z2, . . . , zT be vectors in R
d, and

a1, a2, . . . , aT scalars, such that‖∑i aiΨ(zi)‖2 ≤ B2. Then
∑

i aiΨ̂(zi) is an element in the RKHS with respect toΨ̂(·),
whose norm squared is at most

5B2

sin2(β)
R2

Σ,s,d .

Here, β is the angle between
∑

i:ai>0 aiΨ(zi) and
−∑i:ai<0 aiΨ(zi) in the RKHS (orβ = π/2 if one of the
elements is zero).

Proof: Picking somez1, z2, . . . and a1, a2, . . . as in the
lemma statement, we have
∥

∥

∥

∥

∥

∑

i

aiΨ̂(zi)

∥

∥

∥

∥

∥

2

=
∑

i,j

aiaj k̂(zi, zj) ≤
∑

i,j:aiaj>0

aiaj k̂(zi, zj)

(13)
where the last transition is by the fact thatk̂ is always positive.
Now, by definition ofk(·, ·), k̂(·, ·), it holds for anyzi, zj that

k̂(zi, zj)

k(zi, zj)
= R2

Σ,s,d exp

(

d
∑

l=1

(zi,l − zj,l)
2

s2
− (zi,l − zj,l)

2

s2 − 2σ2
l

)

which is at mostR2
Σ,s,d. Therefore, we can upper bound

Eq. (13) by
∑

i,j : aiaj>0

aiaj k̂(zi, zj) ≤ R2
Σ,s,d

∑

i,j : aiaj>0

aiajk(zi, zj) .

The lemma follows by noting that according to Lemma 7,
∑

i,j : aiaj>0

aiajk(zi, zj)

=

∥

∥

∥

∥

∥

∑

i : ai>0

aiΨ(zi)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∑

i : ai<0

aiΨ(zi)

∥

∥

∥

∥

∥

2

≤ 5B2

sin2(β)
.

With these lemmas in hand, we are now ready to prove the
main theorem.

To make the proof clearer, letαt,i denote the value ofαi

in algorithm 3 at the beginning of roundt.
The first step of the proof consists of applying Lemma 5,

since our algorithm follows the protocol outlined in that
lemma, using kernels. We therefore have that for anyû in

the RKHS corresponding tôΨ(·), such that‖û‖2 ≤ W 2, it
holds that

T
∑

t=1

〈

ŵt, g̃tΨ̂(x̃t)
〉

−
T
∑

t=1

〈

û, g̃tΨ̂(x̃t)
〉

≤ W 2

2η
+

η
∑T

t=1

∥

∥

∥g̃tΨ̂(x̃t)
∥

∥

∥

2

2
. (14)

In particular, consideru =
∑T

i=1 atΨ(xt) from the theorem’s
statement, and define

û
∗ =

T
∑

i=1

atΨ̂(xt) .

This is an element in the RKHS corresponding toΨ̂(·), but it
shares the same set of weights asu, which is an element in the
RKHS corresponding toΨ(·). Since‖u‖2 ≤ B2

w
, it follows

from Lemma 8 and the definition ofW that ‖û∗‖2 ≤ W 2.
Therefore, Eq. (14) applies, and we get

T
∑

t=1

〈

ŵt, g̃tΨ̂(x̃t)
〉

−
T
∑

t=1

〈

û
∗, g̃tΨ̂(x̃t)

〉

≤ W 2

2η
+

η
∑T

t=1

∥

∥

∥g̃tΨ̂(x̃t)
∥

∥

∥

2

2
.

This inequality holds for any{x̃t, x̃
′
t, ỹt}Tt=1. In particular, it

will remain valid if we take expectations of both sides with
respect to the Gaussian noise injected into the unperturbed
data:

E

[

T
∑

t=1

〈

ŵt, g̃tΨ̂(x̃t)
〉

−
T
∑

t=1

〈

û
∗, g̃tΨ̂(x̃t)

〉

]

≤ W 2

2η
+

1

2
E

[

η
T
∑

t=1

Et

[

∥

∥

∥g̃tΨ̂(x̃t)
∥

∥

∥

2
]

]

. (15)

Starting with the right hand side, we note that by definition
of g̃t from the algorithm’s pseudocode, and the fact that
∥

∥

∥Ψ̂(x̃t)
∥

∥

∥

2

= k̂(x̃, x̃) ≤ R2
Σ,s,d by definition of the kernel

k̂ in Eq. (5),

Et

[

∥

∥

∥g̃tΨ̂(x̃′
t)
∥

∥

∥

2
]

= 4Et

[

∥

∥

∥

(〈

ŵt, Ψ̂(x̃t)
〉

− ỹt

)

Ψ̂(x̃′
t)
∥

∥

∥

2
]

= 4Et

[

∥

∥

∥Ψ̂(x̃′
t)
∥

∥

∥

2
]

Et

[

(〈

ŵt, Ψ̂(x̃t)
〉

− ỹt

)2
]

= 4Et

[

∥

∥

∥Ψ̂(x̃′
t)
∥

∥

∥

2
]

Et

[

(〈

ŵt, Ψ̂(x̃t)
〉)2

+ ỹ2t

]

≤ 4Et

[

∥

∥

∥Ψ̂(x̃′
t)
∥

∥

∥

2
](

‖ŵt‖2 Et

[

∥

∥

∥Ψ̂(x̃t)
∥

∥

∥

2
]

+ Et[ỹ
2
t ]

)

= 4R2
Σ,s,d(W

2R2
Σ,s,d +B2

ỹ) .

Plugging this back into Eq. (15), and choosingη as in the
theorem’s statement, we finally get

E

[

T
∑

t=1

〈

ŵt, g̃tΨ̂(x̃t)
〉

−
T
∑

t=1

〈

û
∗, g̃tΨ̂(x̃t)

〉

]

≤ 2WRΣ,s,d

√

(W 2R2
Σ,s,d +B2

ỹ)T . (16)
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We now turn to analyze the more interesting left hand side
of Eq. (16). The left-hand side of Eq. (16) can be written as

E

[

T
∑

t=1

Et

[〈

ŵt, g̃tΨ̂(x̃t)
〉]

−
T
∑

t=1

Et

[〈

û
∗, g̃tΨ̂(x̃t)

〉]

]

.

(17)
In order to analyze the first sum inside the expectation, recall
thatŵt can be written as

∑t−1
i=1 αt,iΨ̂(x̃i). Therefore, we have

that

Et

[〈

ŵt, g̃tΨ̂(x̃t)
〉]

=

t−1
∑

i=1

Et

[

αt,i

〈

Ψ̂(x̃i), g̃tΨ̂(x̃t)
〉]

=

t−1
∑

i=1

Et[g̃t]Et

[

αt,i

〈

Ψ̂(x̃i), Ψ̂(x̃t)
〉]

where the last transition is by the fact thatx̃t, x̃
′
t, ỹt are

mutually independent, and thereforẽgt is independent of
Ψ̂(x̃t) conditioned on{(x̃i, x̃

′
i, ỹi)}t−1

i=1 .
We now make two crucial observations, which are really

the heart of our proof: First, by Lemma 6, we have that
t−1
∑

i=1

Et

[

αt,i

〈

Ψ̂(x̃i), Ψ̂(x̃t)
〉]

=

t−1
∑

i=1

αt,i 〈Ψ(x̃i),Ψ(xt)〉

= 〈wt,Ψ(xt)〉 .
Secondly, using Lemma 6 in a similar manner, we also have

Et[g̃t] = 2

(

t−1
∑

i=1

Et

[

αt,i

〈

Ψ̂(x̃i), Ψ̂(xt)
〉

− ỹt

]

)

= 2(〈wt,Ψ(xt)〉 − yt).

Define this expression asgt. Notice that it is exactly the
gradient ofwt with respect tò (〈wt,Ψ(xt)〉 , yt).

As a result of these two observations, we get overall that

Et

[〈

ŵt, g̃tΨ̂(x̃t)
〉]

=

t−1
∑

i=1

αt,i 〈Ψ(x̃i), gtΨ(xt)〉

= 〈wt, gtΨ(xt)〉 . (18)

Moving to the second sum in the l.h.s. of Eq. (17), recall that
there exist somea1, . . . , aT such thatû∗ =

∑T
t=1 atΨ̂(xt).

Therefore,

Et

[〈

û
∗, g̃tΨ̂(x̃t)

〉]

=
T
∑

i=1

Et

[

ai

〈

Ψ̂(xi), g̃tΨ̂(x̃t)
〉]

.

As before, we have by Lemma 6 thatEt

[〈

Ψ̂(xi), Ψ̂(x̃t)
〉]

=

〈Ψ(xi),Ψ(xt)〉, and that̃gt is conditionally independent with
expected valuegt = 2(

∑t−1
i=1 αt,ik(x̃i,xt)− yt). Substituting

this into the expression above, we get that it is equal to
T
∑

i=1

ai 〈Ψ(xi), gtΨ(xt)〉 = 〈u, gtΨ(xt)〉 .

Combining this and Eq. (18), and summing overt, we get that

E

[

T
∑

t=1

Et

[〈

ŵt, g̃tΨ̂(x̃t)
〉]

−
T
∑

t=1

Et

[〈

û
∗, g̃tΨ̂(x̃t)

〉]

]

= E

[

T
∑

t=1

〈wt, gtΨ(xt)〉 −
T
∑

t=1

〈u, gtΨ(xt)〉
]

. (19)

Remarkably, this equation links between classifiersŵt in the
RKHS corresponding toΨ(·), and the classifierswt in another
RKHS, corresponding toΨ(·).

Substituting Eq. (19) into Eq. (16), we get that

E

[

T
∑

t=1

〈wt, gtΨ(xt)〉 −
T
∑

t=1

〈u, gtΨ(xt)〉
]

≤ 2WRΣ,s,d

√

(W 2R2
Σ,s,d +B2

ỹ)T .

Now, since `(〈wt,Ψ(xt)〉 , yt) = (〈wt,Ψ(xt)〉 − yt)
2 is a

convex function ofwt, and sincegtΨ(xt) is the gradient at
wt, we can lower bound the left-hand side as

E

[

T
∑

t=1

`
(

〈wt,Ψ(xt)〉 , yt
)

]

−
T
∑

t=1

`
(

〈u,Ψ(xt)〉 , yt
)

from which the theorem follows.

C. Proof of Thm. 5

The proof follows the same lines as the proof of Thm. 3 in
the previous subsection. The changes mostly have to do with
the auxiliary lemmas, which we present below. The proof of
the theorem itself is virtually identical to the one of Thm. 3,
and is thus skipped.

The auxiliary lemmas below modify the parallel lemmas in
Subsection VIII-B, based on the new definitions of the feature
mappingΨ and the surrogate feature mappingΨ̂. But before
that, we begin with a lemma which explicitly upper bounds
‖Ψ̂(x)‖2 for any x. With Gaussian kernels, this was trivial,
but now we need to work a bit harder.

Lemma 9. For any vectorx ∈ R
d, we have

∥

∥

∥
Ψ̂(x)

∥

∥

∥

2

≤ exp(2σc) .

Proof: By Eq. (8),

∥

∥

∥Ψ̂(x)
∥

∥

∥

2

= k̂(x,x) = d

∫ c/d

u=0

(1 − 2σu)−d/2 exp(−ud)du

≤ (1− 2σc/d)−d/2

∫ c/d

u=0

d exp(−ud)du

= (1− 2σc/d)−d/2(1− exp(−c)) . (20)

Also, by a Taylor expansion of the log function, and using the
fact that2σc/d < 1/2 by the assumption thatc < d/4σ, we
get

(

1− 2σc

d

)d

= exp

(

d log

(

1− 2σc

d

))

≥ exp

(

d

(

−4 log(2)σc

d

))

= exp(−4 log(2)σc). (21)

Plugging this into Eq. (20), we get the upper bound

exp
(

2 log(2)σc
)

(1− exp(−c)) ≤ exp(2σc) .
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Lemma 10. For any a,x ∈ R
d, if we let x̃ = x + n where

n ∼ N (0,Σ) is a Gaussian random vector with covariance
matrix Σ, then it holds that

En

〈

Ψ̂(x̃), Ψ̂(a)
〉

= 〈Ψ(x),Ψ(a)〉 .

Proof: On one hand, based on the definition ofk in
Eq. (7), it can be verified that〈Ψ(x),Ψ(a)〉 equals

k(x, a) =

∫ c/d

u=0

d exp
(

−u ‖x− a‖2 − ud
)

du . (22)

On the other hand, using the proof of Lemma 6 and Fubini’s
theorem, the expectation in the lemma can be written as

En

〈

Ψ̂(x̃), Ψ̂(a)
〉

= En

[

d

∫ c/d

u=0

(1− 2σu)−d/2 exp

(

−u ‖x̃− a‖2
1− 2σu

− ud

)

du

]

=

∫ c/d

u=0

de−ud
En

[

(1− 2σu)−d/2 exp

(

−‖x̃− a‖2
1/u− 2σ

)]

du

=

∫ c/d

u=0

de−ud exp

(

−‖x− a‖2
1/u

)

du

=

∫ c/d

u=0

d exp
(

−u ‖x− a‖2 − ud
)

du .

Lemma 11. Let z1, z2, . . . , zT be vectors in R
d, and

a1, a2, . . . , aT scalars, such that‖∑i aiΨ(zi)‖2 ≤ B2. Then
∑

i aiΨ̂(zi) is an element in the RKHS with respect toΨ̂(·),
whose norm squared is at most

5B2

sin2(β)
exp(2σc) .

Here, β is the angle between
∑

i:ai>0 aiΨ(zi) and
−∑i:ai<0 aiΨ(zi) in the RKHS (orβ = π/2 is one of the
elements is zero).

Proof: Picking somez1, z2, . . . and a1, a2, . . . as in the
lemma statement, we have
∥

∥

∥

∥

∥

∑

i

aiΨ̂(zi)

∥

∥

∥

∥

∥

2

=
∑

i,j

aiaj k̂(zi, zj) ≤
∑

i,j:aiaj>0

aiaj k̂(zi, zj)

(23)
Now, by definition of k̂(·, ·) in Eq. (8), and the represen-
tation of k(·, ·) as in Eq. (22), it holds for anyzi, zj that
k̂(zi, zj)/k(zi, zj) equals

d
∫ c/d

u=0(1 − 2σu)−d/2 exp
(

−u‖zi−zj‖2

1−2σu − ud
)

du

d
∫ c/d

u=0
exp

(

−u ‖zi − zj‖2 − ud
)

du

≤ (1 − 2σc/d)−d/2

∫ c/d

u=0 exp
(

−u‖zi−zj‖2

1−2σu − ud
)

du

∫ c/d

u=0
exp

(

−u ‖zi − zj‖2 − ud
)

du

≤ (1 − 2σc/d)−d/2 ≤ e2σc

where the last transition can be verified as in Eq. (21).

Therefore, we can upper bound Eq. (23) by
∑

i,j : aiaj>0

aiaj k̂(zi, zj) ≤ e2σc
∑

i,j : aiaj>0

aiajk(zi, zj) .

The lemma follows by noting that
∑

i,j : aiaj>0

aiajk(zi, zj)

=

∥

∥

∥

∥

∥

∑

i : ai>0

aiΨ(zi)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∑

i : ai<0

aiΨ(zi)

∥

∥

∥

∥

∥

2

which according to Lemma 7 is at most5B2/ sin2(β).

D. Preliminary Result for Proving Thm. 6 and Thm. 7

To prove Thm. 6 and Thm. 7, we need a theorem which
basically states that if all subroutines in algorithm 4 behave as
they should, then one can achieve anO(

√
T ) regret bound.

This is provided in the following theorem, which is an
adaptation of a standard result of online convex optimization
(see, e.g., [11]).

Theorem 10. Assume the following conditions hold with
respect to Algorithm 4:

1) For all t, Ψ̃(xt) and g̃t are independent of each other
(as random variables induced by the randomness of
Algorithm 4) as well as independent of anyΨ̃(xi) and
g̃i for i < t.

2) For all t, Et[Ψ̃(xt)] = Ψ(xt), and there exists a constant
BΨ̃ > 0 such that

Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

≤ BΨ̃ .

3) For all t, Et[g̃t] = yt`
′(yt 〈wt,Ψ(xt)〉), and there exists

a constantBg̃ > 0 such thatEt[g̃
2
t ] ≤ Bg̃.

4) For any pair of instancesx,x′,

Prod(Ψ̃(x), Ψ̃(x′)) =
〈

Ψ̃(x), Ψ̃(x′)
〉

.

If Algorithm 4 is run withη = Bw

/√

Bg̃BΨ̃, then

E

[

T
∑

t=1

`(〈wt,Ψ(xt)〉 , yt)
]

− min
w : ‖w‖≤Bw

T
∑

t=1

`(〈w,Ψ(xt)〉 , yt)

≤ Bw

√

Bg̃BΨ̃T

Here the expectation is with respect to both the randomness
of the oracles and of the algorithm throughout its run.

Proof: Our algorithm corresponds to Zinkevich’s on-
line gradient descent algorithm [11] in a finite horizon
setting, where we assume the sequence of examples is
g̃1Ψ̃(x1), . . . , g̃T Ψ̃(xT ), the cost function is linear, and the
learning rate at roundt is η/

√
T . By a straightforward

adaptation of the standard regret bound for that algorithm (see
[11]), we have that for anyw such that‖w‖ ≤ Bw,

T
∑

t=1

〈

wt, g̃tΨ̃(xt)
〉

−
T
∑

t=1

〈

w, g̃tΨ̃(xt)
〉

≤ 1

2

(

B2
w

η
+

η

T

T
∑

t=1

∥

∥

∥g̃tΨ̃(xt)
∥

∥

∥

2
)

√
T .
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We now take expectation of both sides in the inequality above.
The expectation of the right-hand side is simply

E

[

1

2

(

B2
w

η
+

η

T

T
∑

t=1

Et

[

g̃2t
]

Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

)

√
T

]

≤ 1

2

(

B2
w

η
+ ηBg̃BΨ̃

)√
T .

As to the left-hand side, note that

E

[

T
∑

t=1

〈

wt, g̃tΨ̃(xt)
〉

]

= E

[

T
∑

t=1

Et

[〈

wt, g̃tΨ̃(xt)
〉]

]

= E

[

T
∑

t=1

〈

wt, yt`
′(yt 〈wt,Ψ(xt)〉

)

Ψ(xt)
〉

]

.

Also,

E

[

T
∑

t=1

〈

w, g̃tΨ̃(xt)
〉

]

=

T
∑

t=1

〈

w, `′
(

yt 〈w,Ψ(xt)〉
)

Ψ(xt)
〉

.

Plugging in these expectations and choosingη as in the
statement of the theorem, we get that for anyw such that
‖w‖ ≤ Bw,

E

[

T
∑

t=1

〈

wt, yt`
′(yt 〈wt,Ψ(xt)〉

)

Ψ(xt)
〉

−
T
∑

t=1

〈

w, `′
(

yt 〈wt,Ψ(xt)〉
)

Ψ(xt)
〉

]

≤ Bw

√

Bg̃BΨ̃T .

To get the theorem, we note that by convexity of`, the left-
hand side above can be lower bounded by

E

[

T
∑

t=1

`(yt 〈wt,Ψ(xt)〉)−
T
∑

t=1

`(yt 〈w,Ψ(xt)〉)
]

.

E. Proof of Thm. 6

Based on the preliminary result of Subsection VIII-D, we
present in this subsection the proof of Thm. 6. We first show
how to implement the subroutines of Algorithm 4, and prove
the relevant results on their behavior. Then, we prove the
theorem itself.

We start by constructing an explicit feature mappingΨ(·)
corresponding to the RKHS induced by our kernel. For any
x,x′, we have that

k(x,x′) =
∞
∑

n=0

βn(〈x,x′〉)n =

∞
∑

n=0

βn

(

d
∑

i=1

xix
′
i

)n

=
∞
∑

n=0

βn

d
∑

k1=1

· · ·
d
∑

kn=1

xk1
xk2

· · ·xkn
x′
k1
x′
k2

· · ·x′
kn

=

∞
∑

n=0

d
∑

k1=1

· · ·
d
∑

kn=1

(

√

βnxk1
· · ·xkn

)(

√

βnx
′
k1

· · ·x′
kn

)

.

This suggests the following feature representation: for any
x, Ψ(x) returns an infinite-dimensional vector, indexed byn

and k1, . . . , kn ∈ {1, . . . , d}, with the entry corresponding
to n, k1, . . . , kn being

√
βnxk1

· · ·xkn
. The inner product

betweenΨ(x) andΨ(x′) is similar to a standard dot product
between two vectors, and by the derivation above equals
k(x,x′) as required.

We now use a slightly more elaborate variant of our
unbiased estimate technique, to derive an unbiased estimate
of Ψ(x). First, we sampleN according toP(N = n) =
(p − 1)/pn+1. Then, we query the oracle forx for N times
to get x̃(1), . . . , x̃(N), and formally definẽΨ(x) as

Ψ̃(x) =
√

βn
pn+1

p− 1

d
∑

k1=1

· · ·
d
∑

kn=1

x̃
(1)
k1

· · · x̃(n)
kn

en,k1,...,kn

(24)
where en,k1,...,kn

represents the unit vector in the direction
indexed byn, k1, . . . , kn as explained above. Since the oracle
queries are i.i.d., the expectation of this expression is

∞
∑

n=0

p− 1

pn+1

√

βn
pn+1

p− 1

d
∑

k1=1

· · ·
d
∑

kn=1

E
[

x̃
(1)
k1

· · · x̃(n)
kn

]

en,k1,...,kn

=

∞
∑

n=0

d
∑

k1=1

· · ·
d
∑

kn=1

√

βnx
(1)
k1

· · ·x(n)
kn

en,k1,...,kn

which is exactlyΨ(x). We formalize the needed properties of
Ψ̃(x) in the following lemma.

Lemma 12. AssumingΨ̃(x) is constructed as in the discus-
sion above, it holds thatE[Ψ̃(x)] = Ψ(x) for anyx. Moreover,
if the noisy samples̃xt returned by the oracleAt satisfy
Et[‖x̃t‖2] ≤ Bx̃, then

Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

≤ p

p− 1
Q(pBx̃)

where we recall thatQ defines the kernel byk(x,x′) =
Q(〈x,x′〉).

Proof: The first part of the lemma follows from the
discussion above. As to the second part, note that by (24),

Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

= Et



βn
p2n+2

(p− 1)2

d
∑

k1...,kn=1

(

x̃
(1)
t,k1

· · · x̃(N)
t,kn

)2





= Et



βn
p2n+2

(p− 1)2

n
∏

j=1

∥

∥x̃
(j)
t

∥

∥

2





=

∞
∑

n=0

p− 1

pn+1
βn

p2n+2

(p− 1)2
(

Et

[

x̃
2
t

])n

=
p

p− 1

∞
∑

n=0

βn

(

pEt

[

x̃
2
t

])n

≤ p

p− 1

∞
∑

n=0

βn

(

pBx̃

)n
=

p

p− 1
Q(pBx̃)

where the second-to-last step used the fact thatβn ≥ 0 for all
n.

Of course, explicitly storingΨ̃(x) as defined above is
infeasible, since the number of entries is huge. Fortunately,
this is not needed: we just need to storex̃

(1)
t , . . . , x̃

(N)
t . The
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representation above is used implicitly when we calculate inner
products betweeñΨ(x) and other elements in the RKHS.
We note that whileN is a random quantity which might be
unbounded, its distribution decays exponentially fast, sothe
number of vectors to store is essentially bounded.

After the discussion above, the pseudocode for
Map_Estimate below should be self-explanatory.

Subroutine 2 Map_Estimate(At, p)

Sample nonnegative integerN according to
P(N = n) = (p− 1)/pn+1

QueryAt for N times to get̃x(1)
t , . . . , x̃

(N)
t

Returnx̃(1)
t , . . . , x̃

(N)
t as Ψ̃(xt).

We now turn to the subroutineProd, which given two ele-
mentsΨ̃(x), Ψ̃(x′)) in the RKHS, returns their inner product.

Subroutine 3 Prod(Ψ̃(x), Ψ̃(x′))

Let x(1), . . . ,x(n) be the vectors comprisingΨ(x)

Let x′(1), . . . ,x′(n′) be the vectors comprisingΨ(x′)

If n 6= n′ return0, else returnβn
p2n+2

(p− 1)2

n
∏

j=1

〈

x̃
(j), x̃′(j)

〉

Lemma 13. Prod(Ψ̃(x), Ψ̃(x′)) returns
〈

Ψ̃(x)Ψ̃(x′)
〉

.

Proof: Using the formal representation of̃Ψ(x), Ψ̃(x′)

in (24), we have that
〈

Ψ̃(x), Ψ̃(x′)
〉

is 0 whenevern 6= n′

(because then these two elements are composed of different
unit vectors with respect to an orthogonal basis). Otherwise,
we have that
〈

Ψ̃(x)Ψ̃(x′)
〉

= βn
p2n+2

(p− 1)2

d
∑

k1,...,kn=1

x̃
(1)
k1

· · · x̃(n)
kn

x̃
′(1)
k1

· · · x̃′(n)
kn

= βn
p2n+2

(p− 1)2

(

d
∑

k1=1

x̃
(1)
k1

x̃
′(1)
k1

)

· · ·
(

d
∑

kN=1

x̃
(n)
kN

x̃
′(n)
kN

)

= βn
p2n+2

(p− 1)2

N
∏

j=1

(〈

x̃
(j), x̃′(j)

〉)

which is exactly what the algorithm returns, hence the lemma
follows.

As discussed in the main text, in order to apply the learned
predictor on a new given instancex′, we present another sub-
routine Mult(Ψ̃(x),x′), which calculates the inner product
〈

Ψ̃(x),Ψ(x′)
〉

. The pseudocode is very similar to theProd
subroutine, and the proof of correctness is essentially thesame.

Subroutine 4 Mult(Ψ̃(x),x′)

Let n,x(1), . . . ,x(n) be the vectors comprisingΨ(x)

Returnβn
pn+1

p− 1

n
∏

j=1

〈

x̃
(j),x′

〉

We are now ready to prove Thm. 6. First, regarding the
expected number of queries, notice that to run Algorithm 4, we
invoke Map_Estimate and Grad_Length_Estimate
once at roundt. Map_Estimate uses a random number
B of queries distributed asP(B = n) = (p − 1)/pn+1,
and Grad_Length_Estimate invokes Map_Estimate
a random numberC of times, distributed asP(C = n) =
(p − 1)/pn+1. The total number of queries is therefore
∑C+1

j=1 Bj , whereBj for all j are i.i.d. copies ofB. The
expected value of this expression, using a standard result
on the expected value of a sum of a random number of
independent random variables, is equal to(1+E[C])E[Bj ], or
(

1 + 1
p−1

)

1
p−1 = p

(p−1)2 .
In terms of running time, we note that the expected running

time of Prod is O
(

1 + d
p−1

)

, this because it performsN
multiplications of inner products, each one with running time
O(d), and E[N ] = 1

p−1 . The expected running time of
Map_Estimate is O

(

1 + 1
p−1

)

. The expected running time
of Grad_Length_Estimate is

O

(

1 +
1

p− 1

(

1 +
1

p− 1

)

+ T

(

1 +
d

p− 1

))

= O

(

p

(p− 1)2
+ T

(

1 +
d

p− 1

))

.

Since Algorithm 4 at each ofT rounds callsMap_Estimate
once, Grad_Length_Estimate once, Prod for O(T 2)
times, and performsO(1) other operations, we get that the
overall runtime is

O

(

T

(

1 +
1

p− 1
+

p

(p− 1)2

+T

(

1 +
d

p− 1

)

+ T 2

(

1 +
d

p− 1

)))

.

Since 1
p−1 ≤ p

(p−1)2 , we can upper bound this by

O

(

T

(

1 +
p

(p− 1)2
+ T 2

(

1 +
dp

(p− 1)2

)))

= O

(

T 3

(

1 +
dp

(p− 1)2

))

.

The regret bound in the theorem follows from Thm. 10,
with the expressions for constants following from Lemma 4,
Lemma 12, and Lemma 13.

F. Proof of Thm. 7

The proof here is based on the preliminary result of Sub-
section VIII-D. The analysis in the Gaussian kernel case is
rather similar to the one for inner product kernel case (in
Subsection VIII-E), with some technical changes. Thus, we
provide the proof here mostly for completeness.

We start by constructing an explicit feature mappingΨ(·)
corresponding to the RKHS induced by our kernel. For any
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x,x′, we have that

k(x,x′) = exp

(

−‖x− x
′‖2

s2

)

= exp

(

−‖x‖2
s2

)

exp

(

−‖x′‖2
s2

)

exp

(

2 〈x,x′〉
s2

)

= exp

(

−‖x‖2
s2

)

exp

(

−‖x′‖2
s2

)( ∞
∑

n=0

(2 〈x,x′〉)n
s2nn!

)

= exp

(

−‖x‖2
s2

)

exp

(

−‖x′‖2
s2

)

×
( ∞
∑

n=0

d
∑

k1=1

· · ·
d
∑

kn=1

(2/s2)n

n!
xk1

· · ·xkn
x′
k1

· · ·x′
kn

)

.

This suggests the following feature representation: for any
x, Ψ(x) returns an infinite-dimensional vector, indexed byn
and k1, . . . , kn ∈ {1, . . . , d}, with the entry corresponding
to n, k1, . . . , kn beinge−‖x‖2/s2 (2/s2)n

n! xk1
. . . xkn

. The inner
product betweenΨ(x) andΨ(x′) is similar to a standard inner
product between two vectors, and by the derivation above
equalsk(x,x′) as required.

The idea of deriving an unbiased estimate ofΨ(x) is the
following: first, we sampleN1, N2 independently according to
P(N1 = n1) = P(N2 = n2) = (p− 1)/pn+1. Then, we query
the oracle forx for 2N1+N2 times to get̃x1, . . . , x̃(2N1+N2),
and formally definẽΨ(x) as

Ψ̃(x) =
(−1)N1pN1+N2+22N2

N1!N2!s2N1+2N2(p− 1)2

×





N1
∏

j=1

〈

x̃
(2j−1), x̃(2j)

〉





×





d
∑

k1,...,kN2
=1

x̃
(2N1+1)
k1

· · · x̃(2N1+N2)
kN2

eN2,k1,...,kN2





(25)

whereeN2,k1,...,kN2
represents the unit vector in the direction

indexed byN2, k1, . . . , kN2
as explained above. Since the

oracle calls are i.i.d., it is not hard to verify that the expectation

of the expression above is
( ∞
∑

n1=0

p− 1

pn1+1

(−1)n1pn1+1

n1!s2n1(p− 1)
(〈x,x〉)n1

)

×
( ∞
∑

n2=0

p− 1

pn2+1

pn2+12n2

n2!s2n2(p− 1)

d
∑

k1,...,kn2
=1

xk1
· · ·xkn2

en2,k1,...,kn2





=

( ∞
∑

n1=0

(−‖x‖2 /s2)n1

n1!

)

×





∞
∑

n2=0

(2/s2)n2

n2!

d
∑

k1,...,kn2
=1

xk1
· · ·xkn2

en2,k1,...,kn2





= exp

(

−‖x‖2
s2

)

×





∞
∑

n2=0

d
∑

k1,...,kn2
=1

(2/s2)n2

n2!
xk1

· · ·xkn2
en2,k1,...,kn2





which is exactlyΨ(x) as defined above.
To actually storeΨ̃(x) in memory, we simply keep and

x̃
(1), . . . , x̃(2N1+N2). The representation above is used implic-

itly when we calculate inner products betweenΨ̃(x) and other
elements in the RKHS, via the subroutineProd. We formalize
the needed properties of̃Ψ(x) in the following lemma.

Lemma 14. Assuming the construction of̃Ψ(x) as in the
discussion above, it holds thatEt[Ψ̃(x)] = Ψ(x) for all x.
Moreover, if the noisy samplẽxt returned by the oracleAt

satisfiesEt[‖x̃t‖2] ≤ Bx̃, then

Et

[

∥

∥

∥Ψ̃(xt)
∥

∥

∥

2
]

≤
(

p

p− 1

)2

exp

(√
pBx̃ + 2p

√
Bx̃

s2

)

.

Proof: The first part of the lemma follows from the
discussion above. As to the second part, note that by (25),

we have that
∥

∥

∥Ψ̃(xt)
∥

∥

∥

2

equals

p2N1+2N2+422N2

(

N1!N2!s2N1+2N2(p− 1)2
)2





N1
∏

j=1

(

〈

x̃
(2j−1), x̃(2j)

〉

)2





×





d
∑

k1,...,kN2
=1

(

x̃
(2N1+1)
k1

. . . x̃
(2N1+N2)
kN2

)2





=
p2N1+2N2+422N2

(

N1!N2!s2N1+2N2(p− 1)2
)2





N1
∏

j=1

(

〈

x̃
(2j−1), x̃(2j)

〉

)2





×





N2
∏

j=1

∥

∥

∥x̃
(N1+j)

∥

∥

∥

2





≤ p2N1+2N2+422N2

(

N1!N2!s2N1+2N2(p− 1)2
)2B

2N1

x̃
BN2

x̃
.
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The expectation of this expression overN1, N2 is equal to
( ∞
∑

n1=0

p− 1

pn1+1

p2n1+2

(n1!s2n1(p− 1))2
B2n1

x̃

)

×
( ∞
∑

n2=0

p− 1

pn2+1

p2n2+222n2

(n2!s2n2(p− 1))2
Bn2

x̃

)

=

(

p

p− 1

)2
( ∞
∑

n1=0

(pB2
x̃
)n1

(n1!s2n1)2

)( ∞
∑

n2=0

(4p2Bx̃)
n2

(n2!s2n2)2

)

=

(

p

p− 1

)2
( ∞
∑

n1=0

(

(
√
pBx̃/s

2)n1

n1!

)2
)

×
( ∞
∑

n2=0

(

(2p
√
Bx̃/s

2)n2

n2!

)2
)

≤
(

p

p− 1

)2
( ∞
∑

n1=0

(
√
pBx̃/s

2)n1

n1!

)2

×
( ∞
∑

n2=0

(2p
√
Bx̃/s

2)n2

n2!

)2

=

(

p

p− 1

)2

exp

(√
pBx̃ + 2p

√
Bx̃

s2

)

.

After the discussion above, the pseudocode for
Map_Estimate below should be self-explanatory.

Subroutine 5 Map_Estimate(At, p)

SampleN1 according toP(N1 = n1) = (p− 1)/pn1+1

SampleN2 according toP(N2 = n2) = (p− 1)/pn2+1

QueryAt for 2N1 +N2 times to get̃x(1)
t , . . . , x̃

(2N1+N2)
t

Returnx̃(1)
t , . . . , x̃

(2N1+N2)
t as Ψ̃(xt).

We now turn to the subroutineProd (Subroutine 6), which
given the two elements̃Ψ(x), Ψ̃(x′) in the RKHS, returns their
inner product.

Subroutine 6 Prod(Ψ̃(x), Ψ̃(x′))

Let x̃(n), . . . , x̃(2n1+n2) be the vectors comprising̃Ψ(x)

Let x̃′(1), . . . , x̃′(2n
′

1+n′

2) be the vectors comprising̃Ψ(x′)
If n′

2 6= n′
2 return0, else return

(−1)n1+n′

1pn1+n′

1+2n2+422n2

n1!n′
1!(n2!)2s2(n1+n′

1
+2n2)(p− 1)4

×
(

∏n1

j=1

〈

x̃
(2j−1), x̃(2j)

〉

)(

∏n′

1

j=1

〈

x̃
′(2j−1), x̃′(2j)〉

)

×
(

∏n2

j=1

〈

x̃
(2n1+j), x̃′(2n′

1+j)
〉)

The proof of the following lemma is a straightforward
algebraic exercise, similar to the proof of Lemma 13.

Lemma 15. Prod(Ψ̃(x), Ψ̃(x′)) returns
〈

Ψ̃(x), Ψ̃(x′)
〉

.

As described in the main text, when we wish to apply our
learned predictor on a given instancex′, we also need a sub-

routine to compute
〈

Ψ̃(x),Ψ(x′)
〉

, wherex′ is an explicitly
given vector. The pseudocode is described in Subroutine 7. It
is very similar to Subroutine 6, and the proof is essentiallythe
same.

Subroutine 7 Mult(Ψ̃(x),x′)

Let x(1), . . . ,x(2n1+n2) be the vectors comprising̃Ψ(x)
Return

(−1)n1pn1+n2+222n2

n1!(n2!)2s2(n1+2n2)(p− 1)2
exp

(

−‖x′‖2
s2

)

×
(

∏n1

j=1

〈

x̃
(2j−1), x̃(2j)

〉

)(

∏n2

j=1

〈

x̃
(2n1+j),x′〉

)

.

We are now ready to prove Thm. 7. First, regarding the
expected number of queries, notice that to run Algorithm 4, we
invoke Map_Estimate and Grad_Length_Estimate
once at roundt. Map_Estimate uses a random number
2B1 + B2 of queries, whereB1, B2 are independent and
distributed asP(B1 = n) = P(B2 = n) = (p − 1)/pn+1.
Grad_Length_Estimate invokes Map_Estimate a
random numberC of times, whereP(C = n) = (p−1)/pn+1.
The total number of queries is therefore

∑C+1
j=1 (2Bj,1+Bj,2),

whereBj,1, Bj,2 are i.i.d. copies ofB1, B2 respectively. The
expected value of this expression, using a standard result
on the expected value of a sum of a random number of
random variables, is equal to(1+E[C])(2E[Bj,1] +E[Bj,2]),

or
(

1 + 1
p−1

)

3
p−1 = 3p

(p−1)2 .
In terms of running time, the analysis is completely identical

to the one performed in the proof of Thm. 6, and the expected
running time is the same up to constants.

The regret bound in the theorem follows from Thm. 10,
with the expressions for constants following from Lemma 4,
Lemma 14, and Lemma 15.

G. Proof of Examples 3 and 4

Examples 3 and 4 use the error functionErf(a) in order
to construct analytic approximations of the hinge loss and the
absolute loss (see Fig. 2). The error function is useful for
our purposes, since it is analytic in all ofR, and smoothly
interpolates between−1 for a � 0 and 1 for a � 0. Thus,
it can be used to approximate derivative of losses which are
piecewise linear, such as the hinge loss`(a) = max{0, 1−a}
and the absolute loss̀(a) = |a|.

To approximate the absolute loss, we use the antiderivative
of Erf(sa). This function represents an analytic upper bound
on the absolute loss, which becomes tighter asc increases. It
can be verified that the antiderivative (with the constant free
parameter fixed so the function has the desired behavior) is

`(a) = a Erf(sa) +
1

c
√
π
exp(−c2a2) .

While this loss function may seem to have slightly complex
form, we note that our algorithm only needs to calculate
the derivative of this loss function at various points (namely
Erf(sa) for various values ofa), which can be easily done.
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By a Taylor expansion of the error function, we have that

`′(a) =
2√
π

∞
∑

n=0

(−1)n(sa)2n+1

n!(2n+ 1)
.

Therefore,̀ ′
+(a) in this case is at most

2√
π

∞
∑

n=0

(sa)2n+1

n!(2n+ 1)
≤ 2

as
√
π

∞
∑

n=0

(sa)2(n+1)

(n+ 1)!

=
2

as
√
π
exp(c2a2 − 1) .

We now turn to deal with Example 4. This time, we use the
antiderivative of(Erf(c(a−1))−1)/2. This function smoothly
interpolates between−1 for a � −1 and 0 for a � 0.
Therefore, its antiderivative with respect tox represents an
analytic upper bound on the hinge loss, which becomes tighter
asc increases. It can be verified that the antiderivative (with the
constant free parameter fixed so the function has the desired
behavior) is

`(a) =
(a− 1)(Erf(c(a− 1))− 1)

2
+

1

2
√
πc

exp(−c2(a−1)2)

By a Taylor expansion of the error function, we have that

`′(a) = −1

2
+

1√
π

∞
∑

n=0

(−1)n(c(a− 1))2n+1

n!(2n+ 1)
.

Thus,`′+(a) in this case can be upper bounded by

1

2
+

1√
π

∞
∑

n=0

(sa)2n+1

n!(2n+ 1)
≤ 1

2
+

1

as
√
π

∞
∑

n=0

(sa)2(n+1)

(n+ 1)!

≤ 1

2
+

1

as
√
π

(

exp(c2a2)− 1
)

.

H. Proof of Theorem 8

Fix a large enoughBw ≥ 1 to be specified later. Let
x = (1, 0, . . . , 0) and let D to be the uniform distribution
on {3x,−x}. To prove the result then we just need to show
that

argmin
w : |w|2≤Bw

`(3w, 1) + `(−w, 1) and argmin
w : |w|2≤Bw

`(w, 1)

(26)
are disjoint, for some appropriately chosenBw.

First, we show that the first set above is a subset of{w :
|w|2 ≤ R} for some fixedR which does not depend onBw.
We do a case-by-case analysis, depending on how`(·, 1) looks
like.

1) `(·, 1) monotonically increases inR. Impossible by
assumption (2).

2) `(·, 1) monotonically decreases inR. First, recall that
since `(·, 1) is convex, it is differentiable almost any-
where, and its derivative is monotonically increasing.
Now, since`(·, 1) is convex and bounded from below,
`′(w, 1) must tend to0 as w → ∞ (wherever`(·, 1)
is differentiable, which is almost everywhere by con-
vexity). Moreover, by assumption (2),`′(w, 1) is upper
bounded by a strictly negative constant for anyw < 0.
As a result, the gradient of̀(3w, 1) + `(−w, 1), which

equals3`′(3w, 1)−`′(−w, 1), must be positive for large
enoughw > 0, and negative for large enoughw < 0,
so the minimizers of̀ (3w, 1) + `(−w, 1) are in some
bounded subset ofR.

3) There is somes ∈ R such that`(·, 1) monotonically
decreases in(−∞, s) and monotonically increases in
(s,∞). If the function is constant in(s,∞) or in
(−∞, s), we are back to one of the two previous cases.
Otherwise, by convexity of̀ (·), we must have some
a, b, a ≤ s ≤ b, such that̀ (·, 1) is strictly decreasing
at (−∞, a), and strictly increasing at(b,∞). In that
case, it is not hard to see that`(3w, 1)+ `(−w, 1) must
be strictly increasing for anyw > max{|a|, |b|}, and
strictly decreasing for anyw < −max{|a|, |b|}. So
again, the minimizers of̀(3w, 1)+`(−w, 1) are in some
bounded subset ofR.

We are now ready to show that the two sets in (26) must
be disjoint. Suppose we pickBw large enough so that the
first set in (26) is strictly inside{w : |w|2 ≤ Bw}. Assume
on the contrary that there is somew, |w|2 < Bw, which
belongs to both sets in (26). By assumption (2) and the
fact that w minimizes `(w, 1), we may assumew > 0.
Therefore,0 ∈ ∂`(w, 1) as well as0 ∈ ∂(`(3w, 1)+`(−w, 1)),
where ∂f is the (closed and convex) subgradient set of a
convex functionf . By subgradient calculus, this means there
is some a/3 ∈ ∂`(3w, 1) and b ∈ ∂`(−w, 1) such that
a/3 − b = 0. This implies that∂`(3w, 1) ∩ ∂`(−w, 1) 6= ∅.
Now, suppose thatmax ∂`(−w, 1) < 0. This would mean that
min ∂`(3w, 1) < 0. But then`(·, 1) is strictly decreasing at
(w, 3w), and in particular̀ (w, 1) > `(3w, 1), contradicting
the assumption thatw minimizes `(·, 1). So we must have
max ∂`(−w, 1) ≥ 0. Moreover,min ∂`(−w, 1) ≤ 0 (because
w minimizes `(·, 1) and −w < w). Since the subgradient
set is closed and convex, it follows that0 ∈ ∂`(−w, 1).
Therefore, bothw and−w minimize `(·, 1). But this means
that `′(0) = 0, in contradiction to assumption (2).

I. Proof of Thm. 9

Let D be a distribution which satisfies (9). The idea of
the proof is that the learner cannot know ifD is the real
distribution (on which regret is measured) or the distribution
which includes noise. Specifically, consider the followingtwo
adversary strategies:

1) At each round, draw an example fromD, and present it
to the learner (with the label1) without adding noise.

2) At each round, pick the exampleED[x], add to it
zero-mean noise sampled fromZ − ED[x], whereZ
is distributed according toD, and present the noisy
example (with the label1) to the learner.

In both cases the examples presented to a learner appear
to come from the same distributionD. Hence, any learner
observing one copy of each example cannot know which of
the two strategies is played by the adversary. Since (9) implies
that the set of optimal learner strategies for each of the two
adversary strategies are disjoint, by picking an appropriate
strategy the adversary can force a constant regret.
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To formalize this argument, fix any learning algorithm that
observes one copy of each example and letw1,w2, . . . be the
sequence of generated predictors. Then it is sufficient to show
that at least one of the following two holds

lim sup
T→∞

max
w∈W

E

[

1

T

T
∑

t=1

`(〈wt,xt〉 , 1)− ` (〈w,xt〉 , 1)
]

> 0

(27)

lim sup
T→∞

1

T

T
∑

t=1

`(〈wt,E[x]〉 , 1)− min
w∈W

`
(

〈w,E[x]〉 , 1
)

> 0

(28)

with probability1, where in both cases the expectation is with
respect toD and “w.p. 1” refers to the randomness of the
noise. First note that (27) is implied by

lim sup
T→∞

1

T

T
∑

t=1

`(〈wt,xt〉 , 1)− min
w∈W

E

[

`(〈w,x〉 , 1)
]

> 0

(29)
with probability 1. SinceW is compact,D is assumed to be
supported on a compact subset, and` is convex and hence
continuous, theǹ(〈w,x〉 , 1) is almost surely bounded. So by
Azuma’s inequality,

∞
∑

T=1

P

(

1

T

T
∑

t=1

(

Et

[

`(〈wt,x〉 , 1)
]

− `(〈wt,xt〉 , 1)
)

≥ ε

)

is finite for all ε > 0, where the expectationEt[ · ] is
conditioned on the randomness in the previous rounds. Letting
w̄t =

1
t

∑t
s=1 ws (which belongs toW for all t since it is a

convex set), we have

1

T

T
∑

t=1

`(〈wt,xt〉 , 1) ≥
1

T

T
∑

t=1

Et[`(〈wt,x〉 , 1)]

≥ E

[

`
(

〈w̄T ,x〉 , 1
)

]

where the first inequality holds with probability 1 asT → ∞
by the Borel-Cantelli lemma, and the second one holds for
everyT becausè is convex.

Similarly,

1

T

T
∑

t=1

`(〈wt,E[x]〉 , 1) ≥ `
(

〈w̄T ,E[x]〉 , 1
)

.

Hence (28)–(29) are obtained if we show that no single
sequence of predictors̄w1, w̄2, . . . simultaneously satisfies

lim sup
T→∞

F1(w̄T ) ≤ 0 and lim sup
T→∞

F2(w̄T ) ≤ 0 (30)

where

F1(wT ) = E

[

`
(

〈w̄T ,x〉 , 1
)

]

− min
w∈W

E
[

` (〈w,x〉 , 1)
]

and

F2(wT ) = `
(

〈w̄T ,E[x]〉 , 1
)

− min
w∈W

`
(

〈w,E[x]〉 , 1
)

.

Suppose on the contrary that there was such a sequence.
Since w̄T ∈ W for all T , andW is compact, the sequence
w̄1, w̄2, . . . has at least a cluster point̄w ∈ W . Moreover, it

is easy to verify that the functionsF1 andF2 are continuous.
Indeed,`(〈·,E[x]〉 , 1) is continuous by convexity of̀ and
E[`(〈·,x〉 , 1)] is continuous by the compactness assumptions.
Hence, any cluster point of̄w1, w̄2, . . . is also a cluster point
of both F1 and F2. SinceF1, F2 ≥ 0 by construction, and
we are assuming that neitherF1(w̄) > 0 nor F1(w̄) > 0 for
any cluster pointw̄, we must haveF1(w̄) = F2(w̄) = 0.
But this means that̄w belongs to both sets appearing in (9),
in contradiction to the assumption they are disjoint. Thus,no
sequence of predictors satisfies (30), as desired.

APPENDIX

ALTERNATIVE NOTIONS OFREGRET

In the online setting, one may consider notions of regret
other than Eq. (1). One choice is

T
∑

t=1

`(〈wt,Ψ(x̃t)〉 , yt)− min
w∈W

T
∑

t=1

`(〈w,Ψ(x̃t)〉 , yt)

but this is too easy, as it reduces to standard online learning
with respect to examples which happen to be noisy. Another
kind of regret we may want to minimize is

T
∑

t=1

`(〈wt,Ψ(x̃t)〉 , yt)− min
w∈W

`(〈w,Ψ(xt)〉 , yt) . (31)

This is the kind of regret which is relevant for actually
predicting the valuesyt well based on the noisy instances.
Unfortunately, in general this is too much to hope for. To see
why, assume we deal with a linear kernel (so thatΨ(x) = x),
and assumè(w,x, y) = (〈w,x〉 − y)2. Now, suppose that
the adversary picks somew∗ 6= 0 in W , which might be even
known to the learner, and at each roundt provides the example
(

w
∗/ ‖w∗‖2 , 1

)

. It is easy to verify that Eq. (31) in this case
equals

T
∑

t=1

(〈wt, x̃t〉 − 1)
2 − 0 .

Recall that the learner chooseswt before x̃t is revealed.
Therefore, if the noise which leads tõxt has positive variance,
it will generally be impossible for the learner to choosewt

such that〈wt, x̃t〉 is arbitrarily close to1. Therefore, the
equation above cannot grow sub-linearly withT .
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