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Online Learning of Noisy Data

Nicoldo Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shami

Abstract—We study online learning of linear and kernel- We prove upper and lower bounds on the learner’'s cumula-
based predictors, when individual examples are corrupted $ tive loss in the framework of online learning, where exaraple
random noise, and both examples and noise type can be chosenyre generated by an arbitrary and possibly adversariatsour
adversarially and change over time. We begin with the settig -
where some auxiliary information on the noise distribution is We mF’de' th_e measurement error via a random zero-mean per-
provided, and we wish to learn predictors with respect to the turbation which affects each example observed by the learne
squared loss. Depending on the auxiliary information, we sbw  The noise distribution may also be chosen adversarially, an
how one can learn linear and kernel-based predictors, usingust  change for each example.

1 or 2 noisy copies of each example. We then turn to discuss a In the first part of the paper, we discuss the consequences

general setting where virtually nothing is known about the roise f bei . i inf i th ise dist
distribution, and one wishes to learn with respect to generdosses of being given some auxiliary information on theé noise aistr

and using linear and kerel-based predictors. We show how s bution. This is relevant in many applications, where theseoi
can be achieved using a random, essentially constant numbef can be explicitly modeled, or even intentionally introddce

noisy copies of each example. Allowing multiple copies caoh For example, in order to comply with privacy issues certain
be avoided: Indeed, we show that the setting becomes impdsil = y5t55ets can be published only after being “sanitized” ctwhi
when only one noisy copy of each instance can be accessed. TQ . - .
obtain our results we introduce several novel techniques,osne C,O”eSp,O”dS to perturbing eaCh_ data item with enough Gaus-
of which might be of independent interest. sian noise —see, e.g., [1]. In this work we show how to learn
from such sanitized data.
Focusing on the squared loss, we discuss three different
. INTRODUCTION settings, reflecting different levels of knowledge about th
In many machine learning applications training data afP'se distribution: knc_>wn variance bound, knowq covareanc
typically collected by measuring certain physical quait structure, and Gaussian noise W|_th known covariance matrix
Examples include bioinformatics, medical tests, robotrsd Our results for these three settings can be summarized as
remote sensing. These measurements have errors that ma@g WS:
due to several reasons: low-cost sensors, communicatin &nown variance boundLinear predictors can be learnt with
power constraints, or intrinsic physical limitations. llhsuch two independent noisy copies of each instargéthat is, two
cases, the learner trains on a distorted version of the lactiglependent realizations of the example corrupted by nando
“target” data, which is where the learner’s predictive ipil Noise), and one noisy copy of each target vajue
is eventually evaluated. A concrete scenario matching th$iown covariance structureLinear predictors can be learnt
setting is an automated diagnosis system based on compuigith only one noisy copy ok; andy;.

tomography (CT) scans. In order to build a large dataset féraussian distribution with known covariance matriernel-

training the system, we might use low-dose CT scans: althoug, seq (and therefore linear) predictors can be learnt usiog
the images are noisier than those obtained through a Smnd?rﬁdependent noisy copies of eagh and one noisy copy of;
radiation CT scan, lower exposure to radiation will perw‘?‘?Although we focus on Gaussian kernels, we show how this

more people to get a scan. On the other hand, at test tifey 1 can be extended, in a certain sense, to general radial

a patient suspected of having a serious disease will agreekégneb_)
undergo a standard scan. Thus. th itive | : It t st th
In this work, we investigate the extent to which a learnin us, the posilive fearning results get stronger the more

algorithm for training linear and kernel-based predictoas V¢ Can assume about the noise distribution. To obtain our

achieve a good performance when the features and/or tark aul_ts,_we_use onlln_e gradient d_escent techniques ofas_n:rg
values of the training data are corrupted by noise. No é)phlsncatlon. The first two settings are based on cortatgic

that, although in the noise-free case learning with kermlsunb'asﬁdtgrﬁd.'em estlm?jtes, wh|Ietthet.th|rd Settt";glb] atsl
generally not harder than linear learning, in the noisy ¢hse a novel technique based on constructisgrogate Hiiber
situation is different due to the potentially complex imtetion spaces. The surrogate space is built such that gradiergrtesc

between the kernel and the noise distribution. on the noisy e>_<amp|es inthat space corresponds, in an
appropriately defined manner, to gradient descent on theenoi
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under any analytic convex loss function. Our techniques;ivh of the kernel allows us to learn non-linear predictors dRér

are readily extendable to other kernel types as well, requirhile retaining much of the computational convenience and

querying a random number of independently perturbed copiBeoretical guarantees of learning linear predictors [8kfor

of each example. We show that this number is bounded more details). In the remainder of this section, our discmss

a constant with high probability. This is in sharp contrastill use the notation of kernel-based predictors, but etreng

with standard averaging techniques, which attempts tatljre will apply to linear predictors as well.

estimate the noisy instance, as these require a sample whosghe standard online learning protocol is defined as the

size depends on the scale of the problem. Moreover, tflowing repeated game between the learner and an adyersar

number of queries is controlled by the user, and can be redueg each round = 1,2,..., the learner picks a hypothesis

at the cost of receiving more examples overall. w; € H. The adversary then picks an examgle;,y;),
Finally, we formally show in this setting that learning iscomposed of a feature vector, and target valuey, and

impossible when only one perturbed copy of each examplveals it to the learner. The loss suffered by the learner is

can be accessed. This holds even without kernels, and for &fw., ¥(x:)) , y:), where/ is a known and fixed loss function.

reasonable loss function. The goal of the learner is to minimizegret with respect to
a fixed convex set of hypothes®® C #, defined as
Related Work T T

In the machine learning literature, the problem of learning Z’MW& U(xe)),yt) — Vgéiyv;ﬂ(<wa U(xt)) s ye)-

from noisy examples, and, in particular, from noisy tragnin = ) !
instances, has traditionally received a lot of attentionee;s Typically, we wish to find a strategy for the learner, suclt tha

for example, the recent survey [2]. On the other hand, thef@ matter what is the adversary’s. strategy 9f choqsing .the
are comparably few theoretically-principled studies ors thSeduence of examplles, the exprgsspn.above |s.s_ub-l|n§.“ar|n
topic. Two of them focus on models quite different fronin this paper, we will focus for simplicity on a finite-horiao

the one studied here: random attribute noise in PAC boole%%tting' where the number of online rouniT_sis fixed a.lr.]d
learning [3], [4], and malicious noise [5], [6]. In the firsase known to the learner. All our results can easily be modified to

learning is restricted to classes of boolean functions, taed deal with the infinite horizon setting, where the learnerdsee

noise must be independent across each boolean coordinatd® |achieve sub-linear regret f_or afl S'”?‘_“tafﬁeous'y-_ -
the second case an adversary is allowed to perturb a smﬁll e how make the following mod|f|cf';1t|on, which limits
fraction of the training examples in an arbitrary way, m@kint e information available to the learner: In each .round, the
learning impossible in a strong information-theoretic sgen adversary also selects a vector-valued random variabiend

unless this perturbed fraction is very small (of the order &ra_ndom variable;'. Instead of re_celvmgxt,yt), _the learner
the desired accuracy for the predictor). IS given access to amracle A;, which can return independent

i i _ T ~ Yy
The previous work perhaps closest to the one presented h lizations ofk; = x; + nj’ andg, =y, +n;. In other words,
e adversary forces the learner to see only a noisy version

is [7], wh bi lassificati istake bound &
's [7], where binary classification mistake bounds are pmov f the data, where the noise distribution can be changed by

for the online Winnow algorithm in the presence of attribut )
g b e adversary after each round. We will assume throughout

errors. Similarly to our setting, the sequence of instanc tham? and n? d dent. and
observed by the learner is chosen by an adversary. Howe\; f paper thah; andn; are zero-mean, inoependgent, an

, . ~ 12
in [7] the noise process is deterministic and also contidbg t e~r2e is some fixed know_n lipper lt;ound Erﬁ”XtH } and
the adversary, who may change the value of each attributeIEI[%] for all t'. Note that if nj or n; are not zero-mean,
an arbitrary way. The final mistake bound, which only appli ut the mean is anown t? the Iearner,.we can always deduct
when the noiseless data sequence is linearly separableualvitht 0S€ means frong, and Y thu_s _reducmg to the yzero-mean
kernels, depends on the sum of all adversarial perturtmtionsett'ng' The assumpt_|on thaf is m_dependent Oh? can be
relaxed to uncorrelation or even disposed of entirely in som
of the discussed settings, at the cost of some added tethnica
complexity in the algorithms and proofs.

We consider a setting where the goal is to predict valuesThe |earner may call the oracké, more than once. In fact,
y € R based on instances € R?. We focus on predictors a5 we discuss later on, being able to call more than once
which are either linear —i.e., of the form— (w,x) for some  ¢can pe necessary for the learner to have any hope to succeed,
vectorw, or kernel-based —i.e., of the forma— (w, ¥(x)) when nothing more is known about the noise distribution. On
where ¥ is a feature mapping into some reproducing kerngle other hand, if the learner calls an unlimited number of
Hilbert space (RKHS)#. In the latter case, we assume therimes x,, v, can be reconstructed arbitrarily well by averaging,
exists a kernel functiork : R? x R? — R that efficiently and we are back to the standard learning setting. In thisrpape
implements inner products in that space, iB(x,x’) = e focus on learning algorithms that call, only a small,
(W(x), ¥(x')) Note that in fact, linear predictors are just &ssentially constant number of times, which depends only on
special case of kernel-based predictors: we cangkpto be our choice of loss function and kernel (rather than the fooriz
the identity mapping and lét(x, x’) = (x,x’). Other choices 7 the norm ofx,, or the variance oh?,nY, which happens

1 . . - _ with naive averaging techniques).
Recall that a Hilbert space is a natural generalization dfliiean space In thi . ish S h in hindsiah
to possibly infinite dimensions. More formally, it is an imngroduct space n this setting, we wish to minimize the regret in hindsight

which is complete with respect to the norm induced by the rimreduct. for any sequence of unperturbed data, and in expectatidn wit

Il. FRAMEWORK AND NOTATION
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respect to the noise introduced by the oracle, namely I1l. TECHNIQUES

We begin by presenting a high-level and mostly informal
& overview of the techniques we use to overcome the noise
E Zg«wt’ W) ye) | = V{,%%mev W(xt))»yt) - presentin the data. The first technique we discuss (“sttichas
=1 =1 1)y online gradient descent) is folklore, and forms a basis tor o

Note that the stochastic quantities in the above expressien learning algorithms. The rest of the techniques are dedigne
just w1, wo, ..., where eachw, is a measurable function ofto overcome the noise in the data, and to the best of our

the previous perturbed examplgs,, ;) for s = 1,...,t— 1. knowledge, are novel to_the machine_ learning comml_mity.
When the noise distribution is bounded or has sub-Gaussfagnce. they might be of independent interest and applicable
tails, our techniques can also be used to bound the actuatred® Other learning problems with partial information on the
with high probability, by relying on Azuma’s inequality or€x@mples.

variants thereof (see for example [9]). However, for simipfi

here we focus on the expected regret in Eq. (1). A. “Stochastic” Online Gradient Descent

The regret form in Eq. (1) is relevant where we actually There exists a well-developed theory, as well as efficient
wish to learn from data, without the noise causing a hindfa”%llgorithms, for dealing with the standard online learnieg s
In particular, consider the batch setting, where the exampling, where the exampléx,, ;) is revealed after each round,
{(x¢,y¢)}{_, are actually sampled i.i.d. from some unknowRng for general convex loss functions. One of the simplest an
distribution, and we wish to find a predictor which minimizegygst well known ones is the online gradient descent algorith
the expected loss with respect to new examgles). Using que to Zinkevich [11]. This algorithm, and its “stochastic”
standard online-to-batch conversion techniques [9], ifoa® extensjon, form a basis for our results, and we briefly survey
find an online algorithm with a sublinear bound on Eq. (1} pelow.
then it is possible to construct learning algorithms for the at the heart of the standard online gradient descent al-
batch setting which are robust to noise. That is, algorithmagyithm is the following observation: for any set of vectors
generating a predictow with close to minimal expectedy, v, in some Hilbert space, suppose we define= 0
loss E[(((w, x) ,y)] among allw € W, despite getting only andw,,, = P(w,—n,V,), whereP(-) is a projection operator
noisy access to the data. In Appendix A, we briefly discugs a convex serV, andr, is a suitably chosen step size. Then

T

alternative regret measures. for anyu € W, it holds that
In the first part of our paper, we assume that the loss T
function/((w, ¥(x)) ,y) is the squared losgw, ¥ (x)) —y)>. Z (Wi —u,V3) = O(\/T) @)

In the second part of the paper, we deal with more general
loss functions, which are convex iw and analytic, in the
sense that(a, y) for a fixedy can be written a3~ , v,a",
for any a in its domain. This assumption holds for instanc
for the squared los€(a,y) = (a — y)?, the exponential ! \ ' ESl
loss ¢(a,y) = exp(—ya), and “smoothed” versions of loss (We foqus on linear predlqtors here for 3|mpI|C|ty). Then by
functions such as the absolute 1€, y) = |a — y| and the conve:I)glty, the left-hand S|d$ of Eq. (2) is lower t_)ounded
hinge losst(a,y) = max{1 — ya,0} (we discuss examplesPY =1 (((We X0) ye) = 32—y €({u, x1) ,y,). Thus, if we

in more details in Subsection V-B). This assumption can K€ Provided with(x;,y;) after each round, we can compute

relaxed under certain conditions, and this is further dised V¢ Perform the update as above, and get an algorithm with
in Subsection IlI-C. sublinear regret with respect to any predictorof bounded

Turning to the issue of kerels, we note that the genefdl -

9 ! g In our setting of noisy data, the algorithm described abeve i
presentation of our approach is somewhat hampered by mg licable, becausex,, ;) is unknown and we cannot com-
fact that it needs to be tailored to the kernel we use. In this PP ' b Yt

X . i puteV,. However, suppose that instead\of, we pickrandom
paper, we focus on two important families of kernels: vectors¥, with bounded variance, such thIY, |w,] — V,,

Dot Product Kernelsthe kernelk(x,x’) can be written as and use them to update;. It turns out that based on Eq. (2),
a function of (x,x’). Examples of such kernelé(x,x’) one can still show that

t=1

where theO(-) notation hides dependencies on the norm of
g and the norms ofV;. In particular, suppose that we let
V. be the gradient of/({(w;,x;),y:) with respect tow,

are linear kernelgx,x’); homogeneous polynomial kernels T
({(x,x’))™; inhomogeneous polynomial kerndls+ (x,x’))™; E Z <wt —u, ?t> = O(\/T) . (3)
exponential kernels®*); binomial kernelg1 + (x,x’)) ", t=1
and more (see for instance [8], [10]). In our setting of noisy data, we cannot compufe, but

suppose we can use the noisy data that we do have, in

Radial Kernels k(x,x’) can be written as a function of der t ruct q bounded i &
| x — x'||. A central and widely used member of this family i o' 0 CORSIUCt a random bounded-variance vestor

; h thatE[V,|w;] = V,. In that case, the left-hand side
the Gaussian kernetxp(— ||x — x'||* /s2) for somes? > 0. >4C N e ¢
*p(= [l =" /5%) s of Eqg. (3) can be shown to equﬁ][ztll (wy —u, V).
We emphasize that many of our techniques are extendablee expectation here is again with respect to the noisy
to other kernel types as well. examples (recall thatv; is a random vector that depends on
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the noisy examples). Applying the same convexity argumentA technical issue which needs addressing is that the norm
as before, we get a®(v/T) upper bound on the expectedof @ has to be related to the norm of the actual predietor
regretIE[ZtT:1 L((We, Xe) ,Yt) — Zthl (({u,x¢),y:)]. Thus, we compare ourselves with. While this cannot be always done,

by doing updates using;, we get an algorithm with a boundsuch a relation does hold if is reasonably “nice”, in a sense
on the regret which scales sublinearly with which will be formalized later on.

The idea that one can work with random unbiased estimatesConstructing a surrogate RKHS as in Eq. (4) can be done
of V; is not new, and has been used in previous work, sugihen the original RKHS corresponds to a Gaussian kernel.
as online bandit learning (see for instance [12], [13], J14]Nevertheless, we can extend our results, in a certain sense,
Here, we use this property in a new way, in order to devis¢ more general radial kernels. The basic tool we use is
algorithms which are robust to noise. Schoenberg’s theorem, which implies that any radial kernel

For linear kernels and losses such as the squared loss, &fh be written as an integral of Gaussian kernels of difteren
structing such unbiased estimates based on2 noisy copies widths. Using this result, we can show that one can still
of each example is not too hard. However, when we discugsnstruct a surrogate RKHS, which has the property of Eq. (4)

non-linear kernels, constructing an unbiased estimaterbes \ith respect to an approximate version of our original radia
much more tricky: rather than a finite-dimensional vec®r, kernel.

might exist in a high or infinite dimensional Hilbert space.
Even worse, due to the nonlinearity of virtually all feature
mappings, theunbiasedperturbationx,; of each instancex;
is mapped to diasedand complicated perturbatioh(x,) of

; - C. Unbiased Estimators for Non-Linear Functions
U(x;). This leads us to the next technique.

“ R . . We now turn to discuss our techniques for dealing with the

B. “Parallel Worlds” Online Gradient Descent most general setting: learning kernel-based predictoith w
The technique described here is the central one we usegitheral loss functions, and with only a variance bound known

learn with kernel-based predictors and squared loss, in # the noise distribution. At the heart of these techniqiess |

case where the noise distribution is fixed and known to kg apparently little-known method from sequential estiomat

a Gaussian. In the next subsections, we will describe oeory to construct unbiased estimates of non-linear arsd po

techniques for dealing with unknown noise distribution angibly complex functions.

more general loss functions, at the cost of more noisy COpieSSuppose that we are given access to independent copies of a

per example. real random variablé(, with expectatior[ X ], and some real

_Unlike the “stochastic” online gradient descent approagf tion f, and we wish to construct an unbiased estimate of
discussed in the previous subsection, the approach wes@scy(]E[X])_ If f is a linear function, then this is easy: just sample

here does not rely directly on constructing unbiased gwmax from X, and returnf(z). By linearity, E[f(X)] = f(E[X])
of V¢. In a nutshell, we cpnstructmrrogateRKH_S, W'th~a and we are done. The problem becomes less trivial when
surrogatefeaturg mapplnglf, suph that for any noisy copy; 5 5 general, non-linear function, since usualyf(X)] #
of x;, and any fixed instanca, it holds that f(E[X]). In fact, whenX takes finitely many values anfl

E [@(a)’ \i/(it)>:| = (U(a), T(x;)) (4) is qot a polynomif';ll function, one can prove that no unbiased

estimator can exist (see [15], Proposition 8 and its proof).

where the expectation is with respect to the noise. Thusevertheless, we show how in many cases one can construct an
“noisy” inner products in the surrogate RKHS correspongnbiased estimator gf(E[X]), including cases covered by the
(in expectation) to “noise-free” inner products in the @ar@ impossibility result. There is no contradiction, becausede
RKHS. This allows us to use the noisy data in order taot construct a “standard” estimator. Usually, an estimiata
construct vector¥, in the surrogate RKH%®iith the following  function from a given sample to the range of the parameter we
interesting property: if we apply online gradient descent awish to estimate. An implicit assumption is that the sizehef t
Vi,...,Vr (using kernels), to get predictofe,, ..., wr in  sample given to it is fixed, and this is also a crucial ingratie
the RKHS of¥, then for anya, in the impossibility result. We circumvent this by consting
T T an estimator based on a random number of samples.
Z <‘?Vt -1, Vt> Z (Wi —u, Vy) Here is the key idea: suppos¢g : R — R is
t=1 t=1 any function continuous on a bounded interval. It is well
where w; and u are the images ofv, and i according known that one can construct a sequence of polynomials
to a certain mapping to the RKHS of, and V; are the (Q,(:))22,, where@,(-) is a polynomial of degree, which
gradients with respect to the unperturbed examgigsy;). converges uniformly tof on the interval. If Q,(z) =
Since we applied online gradient descent in the surrogdt€ , vn2', let Q(z1,....2n) = > o [lj=) 25
RKHS, the left-hand side i©)(v/T) by Eq. (3). Thus, we Now, consider the estimator which draws a positive inte-
get thatIE[ZtT:1 (wy —u,Vy)| is O(\/T), which implies a ger N according to some distributio(N = n) = p,,
sublinear regret bound fow,...,wr. We emphasize that samples X for N times to getzi,zs,...,zn, and re-
unlike the previous approaches, the expectatioiVefis not turns 1% (Q(21,...,28) — Qy_1(21,...,on-1)) , Where
equalto V.. Indeed, they live in different mathematical spacesie assume); = 0. The expected value of this estimator is

E =E
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equal to: follow directly from properties of the geometric distribari.
) As for the second momeng|[§?] equals
]:EN-,:EI7"",:EN |:_ (Q?V(Ila-'-v'rN)_Q/]Vfl(xlv'--v'erl)) 9 p2(N+1) 9 9 9
. PN EN,zl ..... TN [Vmela:Q.”xN
=3 By (@0 (@1, w0) = Q21,01 > (p — 1)p2(n+D)
iy, T L " N =Dt s 2,2 2
= 3" (Qu(BIX]) — Qu-1(BIX])) = F(E[X]). P
n=1 = 1 Z%P (E[X ])
Thus, we have an unbiased estimatorfoE[X]). nfoo 2
This technique was introduced in a rather obscure early = Z (I%I (\/pE[XQ]) )
1960’s paper [16] from sequential estimation theory, and p-1:=
appears to be little known. However, we believe this techaiq o0 2\ 2
is interesting, and expect it to have useful application®ther < Ll (Z [Vnl ( pE[XQ]) )
problems as well. L
While this may seem at first like a very general result, __P J2r( pE[XQ]).
the variance of this estimator must be bounded for it to be p—1
useful. Unfortunately, this is not true for general contins [ ]

functions. More precisely, lelV be distributed according to The parametep provides atradeoff between the variance
pn, and letd be the value returned by the estimator obf the estimator and the number of samples needed: the larger
F(E[X]). In [17], it is shown that ifX is a Bernoulli random is p, the less samples we need, but the estimator has more
variable, and ifE[0N*] < oo for some integek > 1, thenf variance. In any case, the sample size distribution decays
must bek times continuously differentiable. Sin&§0N*] <  exponentially fast.

(E[6?]+E[N?*])/2, this means that functionswhich yield an It should be emphasized that the estimator associated with
estimator with finite variance, while using a number of gegri Lemma 1 is tailored for generality, and is suboptimal in some
with bounded variance, must be continuously differendablcases. For example, jf is a polynomial function, ther,, =
Moreover, in case we desire the number of queries to befor sufficiently largen, and there is no reason to sample
essentially constant (e.g., choose a distribution forwith ¥ from a distribution supported on all nonnegative integers:
exponentially decaying tails), we must hall@V*] < oo for it just increases the variance. Nevertheless, in order &p ke
all £, which implies thatf should be infinitely differentiable the presentation uniform and general, we always use this typ
(in fact, in [17] it is conjectured thaf must be analytic in of estimator. If needed, the estimator can be optimized for
such cases). specific cases.

Thus, we focus in this paper on functiorfs which are We also note that this technique can be improved in various
analytic, i.e., they can be written agz) = >, v;2* for directions, if more is known about the distribution &f. For
appropriate constantg, 1, . ... In that case(,, can simply instance, if we have some estimate of the expectation and
be the truncated Taylor expansion pto ordern, i.e.,Q,, = variance ofX, then we can perform a Taylor expansion around
> o vix'. Moreover, we can picl,, o 1/p" for anyp > 1. the estimatedE[X] rather than0, and tune the probability
So the estimator works as follows: we sample a nonnegatidistribution of N to be different than the one we used above.
integer N according toP(N = n) = (p — 1)/p"*!, sample These modifications can allow us to make the variance of

X indeplgpldentlyN times to getry,xs,...,zn, and return the estimator arbitrarily small, if the variance &f is small

9 = 7NPPTIJMIQ .-.xn where we se) = 1%70 if N =02 enough. Moreover, one can take polynomial approximations

We have the following: to f which are perhaps better than truncated Taylor expan-
sions. In this paper, for simplicity, we ignore these patdnt

Lemma 1. For the above estimator, it holds th&[d] = improvements.
F(E[X]). The expected number of samples used by the eSFinaIIy, we note that a related result in [17] implies thasit

“”.‘at"_r Is1/(p — 1)’. and the probability of it beéiong at least impossible to estimat¢(E[X]) in an unbiased manner when
2 isp~*. Moreover, if we assume thalt. («) = 3_, 7 [7l2" 1 s discontinuous, even if we allow a number of queries and
exists for anyz in the domain of interest, then estimator values which are infinite in expectation. Since th
9 D .o o5 derivatives of some well-known loss functions (such as the
E[6°] < Efﬂ“ ( pE[XQ]) ‘ hinge loss) are discontinuous, estimating their gradierdri
unbiased manner and arbitrary noise appears to be impessibl
Proof: The fact thatE[f] = f(E[X]) follows from the \hijle our techniques allow us to work with “smoothed”
discussion above. The results about the number of Sampé?ﬁoroximate versions of such losses, the regret guarantees
degrades with the quality of approximation, and this préven
%Ad_mit_tedly, the eventV = 0 should receive zero probability, as it amountsg from saying anything non-trivial about learning withpest
o "skipping the sampling altogether. However, Settiigh = 0) — to the original losses. Thus, if online learning with noisel a

appears to improve the bound in this paper only in the smalider terms, ) . - ]
while making the analysis in the paper more complicated. such loss functions is at all feasible, a rather differeprapch
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than ours needs to be taken. Algorithm 1 Learning with Upper Bound on Noise Variance

PARAMETERS: 7, By,
.. L INITIALIZE : wy = 0.
D. Unbiasing Noise in the RKHS Fort—1.2 . ...T

The second component in our approach to deal with un-  Receive(x;, ;)
known noise in the kernel setting involves the unbiased Receive another independent cagly
estimation of ¥(x;), when we only have unbiased noisy vV, = 2((wy, X;) — )X,
copies of x;. Here again,_ we have a _non-triviall problem, w = w, — nV;
because the feature mappitrgs usually hlghl)_/ non-linear, so W1 = min{1, By/||W||} W
E[¥(x:)] # V(E[%:]) in general. Moreovery is not a scalar
function, so the technique of Subsection III-C will not work
as-is.

To tackle this problem, we construct an explicit feature i i
mapping, which needs to be tailored to the kernel we wantfb Setting 1: Upper bound on the Variance
use. To give a very simple example, suppose we use the homowe begin with the simplest setting, which is when we only
geneous 2nd-degree polynomial kerrigl. a) = ((x,a))%. It know thatE, [||%,|*] < B2 and E,[j?] < B2 for some
is not hard to verify that the functio : R? — R*", defined known constants3z, B;. Conditional expectation is used here
via ¥(x) = (z171,2122,...,7424), iS an explicit feature pecause we are assuming the adversary can change the noise
mapping for this kernel. Now, if we query two independendistribution after each round, depending on the realinatiof
noisy copiesx,x’ of x, we have that the expectation ofthe past noisy examples. We present an algorithm for legrnin
the random vectolz 7, 7175, ..., T4¥,;) iS nothing more linear predictors, using exactly two independent noisyiesp
than ¥(x). Thus, we can construct unbiased estimates gfthe instancex; and one noisy copy of the target valye As
U(x) in the RKHS. Of course, this example pertains to giscussed in Sec. Ill, the algorithm is based on an adaptatio
very simple RKHS with a finite dimensional representationf online gradient descent, and the main requirement is to
By a randomization technique somewhat similar to the om®nstruct an unbiased estimate of the gradigntThis follows
in Subsection 11I-C, we can adapt this approach to infinif®om the following lemma.
dimensional RKHS as well. In a nutshell, we represkft) as )
an infinite-dimensional vector, and its noisy unbiasedneste Lemma 2. Let V; = 2({w, x;) — y;)x; be the gradient of
is a vector which is non-zero on only finitely many entries(We: %) —¢)* at w;. Letx; be an additional independent
using finitely many noisy queries. Moreover, inner producfPPY 0fx:, and denoteV; = 2({w, x;) — g)x;. Under the
between these estimates can be done efficiently, allowing Ve assumptions, ffw;| < Bw, thenE,;[V,] = V, and
to implement the learning algorithms, and use the resultifigll|Vell’] < G, whereG = 4(BZ, B} + B3) B3.

predictors on test instances. Proof: Because of the independence assumption, we have

IV. AUXILIARY INFORMATION ON THE NOISE Ei[Ve] = 2B [(wy, %) — 3] Be[X)] = 2((We, x¢) )% = Vi .

DISTRIBUTION _ )
i For the second claim, we have by the independence assump-
In the first part of the paper, we focus on the squargg that

loss, and discuss the implication of being provided différe
levels of auxiliary information on the noise distributionéach g, 17, 12]
round.

The first setting assumes just a known upper bound on the
variance of the noise. For the specific case of linear predict
we show one can learn using two noisy copies of egchnd
one noisy copy of each;.

The second setting assumes that the covariance structure
the noise is known. In that case, we show that one can Ie%
linear predictors with only one noisy copy of bath andy;.

The third and most complex setting we consider is when tfideorem 1. Let ¢(a,y) = (a — y)* be the squared loss. For
noise has a fixed Gaussian distribution with known covaganall ¢ assume thaff,[|%||*] < B2, E,[§?] < Bz, and that
matrix. We show that one can even learn kernel-based predig; X}, §: are mutually independent. If we run Algorithm 1
tors, using two independent noisy copies of eaghand one with parametersBy, 7 = Bw /v GT (WhereG is defined in
noisy copy ofy,. We focus on Gaussian kernels, but also sholsemma 2), then
how the result can be extended, in a certain sense, to general .
radial kernels.

Throughout the rest of the paper, we I&[] be a = ;é(<wt’xt> ’yt)] R ;é(<w’xt> )

. LR ! = -
shorthand fg{lexpectatlon oveik,, X}, ;) conditioned on < BLVGT .

{(ii’i;vgi) i=1"

4K, [(<Wt,5<t> - gt)ﬂ E; [”5(15”2}
4 (B [(we, %)) + Balg]) Ed[I%41°]
4 (B} B; + B?) B;.

IN

QIfhe following theorem provides a bound on the regret for
féorithm 1. The proof is provided in Subsection VIII-A

S
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B. Setting 2: Known Covariance Algorithm 2 Learning with Known Noise Covariance

CrARAMETERSZ 7, Bw-
NITIALIZE : wy = 0.
Fort=1,2,...,T

Receive(xy, 3;)

Vi =2((We, Xe) — 3e)Xe — Lewy

We now turn to the case where rather than an upper boun
on the variance, we actually know the covariance matrix of
the noise at each round, which we denoteXasWe assume
that||X;|| < By for all ¢, where||-|| denotes the spectral norm.
As to g, we can still assume we only have an upper bound !
B onE,[g7] (with our algorithmic approach, knowirig; 47 wo=w - nVi ) )
does not help much). wi1 = min{1, B /||W'[[} w

In this setting, we show it is possible to learn linear
predictors, using just a single noisy cop:,y:). This is
opposed to the previous subsection, where we needed an
additional independent copy af,. The idea is that if we Lemma 3, then
use just one noisy copy in our gradient estimate, we need to [ T ] T

deal with bias terms. When the covariance structure is known E Z€(<Wt,xt> s Yt) min Z€(<W,Xt>  Yt)
we can calculate and remove these bias terms, allowing an Li=1 wilwil<Buw
online gradient descent similar to Algorithm 1 to work. As < }(GJF 1)Bwﬁ .

in Algorithm 1, the basic building block is a construction of -2

an unbiased estimate of the gradi&ht at each iteration. See  The proof is similar to the proof of Thm. 1, with Lemma 3
Algorithm 2 for the pseudocode. replacing Lemma 2. We note that & is known (which

requires knowing a bound on the fourth momentkgf, then

Lemma 3. Let Vi = 2({wy, x:) — y:)x; be the grz%dn?nt o then by pickingn = By /v/GT one can improve the bound
(<Wt,Xt> — yt)2 at w;. DenoteV; = 2(<Wt,Xt> — yt)xt ~ t0B \/ﬁ
Y, w;, whereY, is the covariance maitrix ok;. Then under w '
the assumptions above, |jw;|| < By, Et[HitHQ] < B2, and ] ) S
E[|%|"] < B, thenE,[V,] = V, and E,[|V[?] < G, C. Setting 3: Gaussian Distribution
whereG = 83&3;(4 4 SB§B§ 4 43&3)2{32 + BLBZ. The third and most complex setting we consider in this
] ) section is when the noise is assumed to have a Gaussian
_ Proof: Using the zero-mean and independence assumsyributionA’(0, ). Clearly, if we know the distribution, then
tions onny, n/, we have we can derive upper bounds on the moment& ofassuming
- o~ bounds are known on the original instanceg. Thus, the
Eo[2((we, %) = §o)%i] results of Subsection IV-B carry through to our setting, and

t=1

= 2E; [((We, x¢ +nf) — g — nf)(x; + nj)] we can learn linear predictors. However, when we also know

= 2((wy, x¢) — y)x¢ + Ei[nf (W, nf)] the noise has a specific Gaussian distribution, we can learn

=V, 4+ 2w, the much more powerful hypothesis class of kernel-based
predictors.

which implies thaff,[V;] = V. As to the second claim, using Recall that the basic premise of kernel-based learningais th
the well-known inequality|a + b||*> < 2||al|* + 2|/b||>, we the data (originally inR9) is mapped to some reproducing
have kernel Hilbert space (RKHS), via a feature mappifigx),
and a linear predictor is learned in that space. In our caigin
Eo[| Vi) = Eo[l|2((we, K¢ — 5))%e — Sewe||] space, this corresponds to learning a non-linear functising
— R, [2((we, %) — 0% the weII—knowr_1 kernel trick3 ir_m_er produc(_sif(x)7 T(x')) in _
- ~ ~ 9 the RKHS (which might be infinite-dimensional) can be easily
—Aw, BB [((we, Xe) = ye)Xe] + [[Zewe | computed via a kernel functiol(x, x’).
< 8B [|[(wi, %) %) 7] + SB[ Ge%e]|*] While there are many possible kernel functions, perhaps
AW S B [(wy, %) %] + HZtWtHQ zhe m/osj popular one/ |23 tr;e Gaussmn2 kernel, defined as
) Y ~2 Y (x,x") = exp(— ||x — x'||” /s*) for somes* > 0 (the kernel
< 8wl " Eefl|%]"] + SEq [77 B [[| 7 || width). This corresponds to the inner prodygt(x), ¥ (x’))
+ 4| welP e[| 1S ]| + 112 [ we|? in an appropriate RKHS. We we will show below how to learn
9 4 92 9 52 2 9 from noisy data with Gaussian kernels. In Subsection IV-D,
< 8By By + 8B B + 4B, By By + BBy, we show how this can be extended, in a certain sense, to
m deneralradial kernels, i.e., kernels of the forrm(x, x’) =
f(|lx = x'||) for an appropriate real functiofi.
Theorem 2. Let/(a,y) = (a—y)* be the squared loss. Forall |n this subsection, we assume that the noise distribution
t assume thak; andy; are perturbed by independent noisés fixed for all . Hence, we may assume w.l.o.g. that
such that the known covariance matkix of the noise added to is a diagonal matrix, with element? at row/columni. To
x; satisfies|S;|| < Bx. Assume further tha,[||%,|*] < Bz, see why, notice that there always exists a rotation maitrix
Eq[||I%:]|"] < B, and E,[3?] < B2. If we run Algorithm 2 R, such thatR%, has a Gaussian distribution with diago-
with parametersB,, andn = By, /v/T, whereG is defined in nal covariance matrix. Therefore, instead of learning with
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respect to{(X:,y:)}._,, we can just learn with respect toRKHS of ¥, which can be written agtll a; ¥ (x;) for some

{(R%, yt)};f:l, and predict on any instaneeby pre-rotating a1, ...,ar > 0. For example, this includes
it using R. Since we focus here on rotationally-invariant T
kernels, which depend just on the Euclidean distance betwee argmin 0((w, U(xy)) ,y1)
instances, we have tha(x,x’) = k(Rx, Rx’) for any x, x’. u:|[ul|<Bw 1=

Therefore, the data structure remains the same in the kerfb‘?lanyB > 0 by the representer theorem. Defifig to be

space, and all our guarantees will still hold. Asitg similar the angle betweely,, _, a;¥(x,) and— 3, _,a;¥(x;).
. . . n ay
to the previous settings, we will only need to assume thgf ger words, this is the angle between the component due

~2 2 . .
E:lyi] < B; for some known parameteByl. ) to positive support vectors, and the component due to the
The algorithm that we present (Algorithm 3) is based ofoqaiive support vectors. If one of the components is zero,

being able to receive two independent copies of each irmarb‘éfineﬁw to ber /2. The main theorem of this section, whose

x;, as well as a single independent copy if As in the .t s hresented in Subsection VIII-B, is the following.
linear case, the learning algorithm that we use relies upen t

online gradient descent technique due to [11], with the mafmeorem 3. Let/(a,y) = (a—y)* be the squared loss. For all
difference being that instead of using a Gaussian kernel fofissume thak; is perturbed by Gaussian noise with known
width s2, we use a surrogate kernel, as discussed in Sec. MWistribution (0, X), whereX. is diagonal, andy; is perturbed

In order to define the surrogate kernel that we use, consid®rarbitrary independent noise withy[57] < B}. Let By, > 0

the RKHS corresponding to the kernel and 8 € (0,7/2] be fixed. If we run Algorithm 3 with the
kernel (5) such that? > 2|3, and input parameters
) 2 - (x; — )
/ ? [
k(x,x") = Rs5, ; gexp | — Z: 2207 %) W V5B Ry .4
= = ()
where we assume that|X|| = 2max; o7 is less thans® and |
Reca=|]]—s 2R W2R2 _, + B2)T
S,s,d = H 2 952 . ,s,d ( $.s.d + ﬂ)
i=1 g
then

This can be shown to be a kernel by standard results (see T0F
instance [8]). Note thaRsy ; ; can be bounded by a constant
whena; = O(1) for all i (constant noise) ang? = ©(d) —
plausible when the feature values of observed instarca®

of order©(1). Let U be the feature mapping corresponding < 2Wngs,d\/(W2R22,s7d + Bg)T

to this RKHS. .

The pseudocode of our algorithm is presented below. FYhere W = {W 2wl < Bw, fw = 5} and ¥ is the
mally speaking, it is just applying online gradient descerfeature mapping induced by the Gaussian kernel with width
using kernels, in the surrogate RKHS that we constructed IN particular, if s* = Q(d), | ]| = O(1), and B; = O(1),
However, it is crucial to note that the actual output arfen the above bound ©(W>VT).
elementswy, wy, ... in the RKHS corresponding td'. The intuition for 3, is that it measures how well separated
are the training examples: if the “positive” and “negative”

Algorithm 3 Kernel Learning Algorithm with Gaussian NOiseexampIe groups are not too close together, then the angle

E

T
D e((wi, W(xy)) ,yt)] - VgrgngMw, V() ye)

N, %) betweeny,.. _oa:¥(x;) and — 3., _oa:¥(x;) will be
PARAMETERS. W, n large, and the bound will be small. Note that in the RKHS
INITIALIZE : corresponding to a Gaussian kerng), is alwaysbetween0

a;:=0foralli=1,...,T and 7 /2, since the inner product between any two elements
Fort=1,...,T: ¥ (x) and¥(x’) is positive. In additiong,, can be shown to be
Definew, = Zf;i ai\i!(fci) exactly zero if and only if the positive and negative example
Definew, = ZE;} ;U (X;) exactly coincide. Overall, on realistic datasets, assgrttiere
Receivej;, X;, and independent copy, exist some good predictev with 5y, not too small is a pretty
o t=1 oo o - mild assumption, if something interesting can be learnashev
Let g, =2 (Zi:l Qik(Xi Xt) = B on the unpe?rturbed data. ’ °

I3, is gradient length with respect (%)) at w,

Let oy := —ng . .
k ?gt t S D. Extension to General Radial Kernels
Letr; := Zi:l Zj:l aiajk(xi, Xj) h . K | di q . Vi b ¢
fr,>W?2 /] If HVAVtHQ > W2, then project The Qaussmn_ ernel we discussed previously is a member o
o w . the family ofradial kernels that is kernels ox, x’ which can
Leta; :=a;,—=foralli=1,...,¢t . . , .
Ve be written as a function ofx — x’||. Although the Gaussian

kernel is the most popular member of this family, there are
Before stating the bound for Algorithm 3 we need amany other radial kernels, such asp(— ||x —x'|| /s) and
auxiliary definition. Suppose thay is any element in the (1 + ||x—x'|\2/m)_“ for appropriate parameters m, a.
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Thus, a reasonable question is whether Algorithm 3 andBy Fubini's theorem, we can write Eq. (6) as
its analysis can be extended to general radial kernels. The c A

extension we are able to show is in the following sense: féfx,a) = / E [ku(i,a)} wu)du =E [/
any radial kernely(x,x’), there exists another radial kernel u=0 u
k(x,x'), which approximatesy(x,x’) arbitrarily well, for It turns out that the integral inside the expectation cqoesis
which one can extend Algorithm 3 and its analysis. Althougl® an inner product, in a valid RKHS, between the noisy
the approximation parameter is user-defined, the bound idatancex anda. This will be our surrogate kernel far.

the regret depends on this parameter and deteriorates as the® provide a concrete case study, we will outline the results

ko (%, a)du] .
=0

approximation gets better. for the specific radial kerngl
Recall from Subsection I1I-B that the heart of our approach 1 2\
is constructing a surrogate RKHS, with surrogate kernel g(x,x') = <1 + p Ix — x'|| >

such thatE[k(a,x)] = k(a,x). In the Gaussian kernel case,

the required surrogate RKHS corresponds to the kernel defirf@@stponing the full technical details and proofs to Subsec-
in Eq. (5). To deal with other kernels, constructing an apprgon VIII-C. Just to make our analysis simpler to present, we
priate surrogate kernel becomes trickier. Luckily, we clh s assume here thaf = oI for some parametesr?, where
reduce the problem, in some sense, to the case of Gaussiarr O(1) (this is a reasonable assumption to make when the
kernels. The key technical result is the following theoreme d feature values of the original data @(1)).

to Schoenberg ([18], see also [19]), slightly paraphrasetl a The approximate kernel we will consider is

adapted to our purposes c/d
i , k(x,x') = d/ exp (—uHx—x/H2 —ud) du
Theorem 4 (Schoenberg’s TheoremA functiong(-,-) is a 0

radial kernel corresponding to a valid RKHS, if and only if , c
there exists a finite nonnegative measpren [0, o), such = gbxx){1—exp T g%, x) ™

that for anyx,a € R9, . . .
yx.a wherec € (0,d/40) is a user-defined parameter, which trades

o0 5 off the quality of the bound on the regret and the similarity
9(x,a) = /70 exp (_“ [Ix — all )/‘(“)du' of k(x,x’) to g(x,x’). This is a valid kernel by the reverse
“ direction of Thm. 4 since
This result asserts that, up to normalization factors,aladi c/d
kernels can be characterized as Laplace transforms of proba d/ exp(—ud)du =1 — exp(—c) >0 .
bility measures on the positive reals. Schoenberg’s Timeore 0
has been used by Micchelli et al. [20] to prove universality dNote thatg(x,x’) is always betweed and 1, so
radial kernels and by Scovel et al. [21] to establish approx- k(x, x')
imation error bounds. A related result is Bochner’s theorem S
(see, e.g., [22]), which characterizes the more generakcla 9(x, %)
of shift-invariant kernels as Fourier transforms of mutiate Thereforek(x,x’) is an excellent approximation ef(x, x’)

€[l —exp(—c),1] .

distributions onR¢<. for values of ¢ not too small (see Fig. 1 for a graphical
The above theorem implies that we can write inner produdtistration). As before, we le” denote the feature mapping
in our RKHS using the approximate kernel associated with the kernél S
The surrogate kernel that we will pick is defined as follows:
k(x,a) = / I (3, @) () 6 h(x.x)
u=0 d 2

. . . </ —d/2 ullx — x|
wherec > 0 is a parameter and, is the Gaussian kernel =d (1 —20u) eXp| -5 ud | du .
ky(x,a) = exp(—u||x — al|*) with kernel width1/u. Note u=0 8
that this is a valid kernel by the reverse direction of Thm. 4. (8)

If ¢ is chosen not too small, theh(x,a) is an excellent As pefore, we letd denote the feature mapping associated
approximation tog(x,a) for all x,a. The reason why we yith this kernel. This is a valid kernel by the reverse dii@tt
must settle for approximations of the radial kernel, rathef Thm. 4.

than the kernel itself, is the following: for eadh, in the  oyr algorithm looks exactly like Algorithm 3, only that now
above integral, we construct a surrogate kemglsuch that e use the new definitions af, & above. To state the bound,
Ex[ku(x,a)] = ku(x,a). The surrogate kernd, is based on recall that for anyw = 3"~ | a,¥(x,) for someas, ..., ar,
subtracting certain constants from the kernel witith along e defines,, to be the angle betweeR,., -, a:¥(x;) and

each dimension, and this cannot be done: ifs larger than _ > toas <0 4¢P (x¢). The bound takes the following form.
those constants. o
Theorem 5. Let 4(a,y) = (a — y)? be the squared loss.
3To be precise, the theorem here is a corollary of Schoenbengorem, FOr all ¢ assume thatx, is perturbed by Gaussian noise
which discusses necessary and sufficient conditiong:far-) to be positive
definite, and Mercer’s theorem (see [8]), which assertsghah a function is “Note that the scaling factor/d is the reasonable one to take, when we
a kernel of a valid RKHS. assume that the attribute values in the instances are orrdee of ©(1).
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A. Algorithm

0.9p We present our algorithmic approach in a modular form. We

start by introducing the main algorithm, which containsesaV/
subroutines. Then we prove our two main results, which bound
the regret of the algorithm, the number of queries to thelerac
and the running time for two types of kernels: dot product and
Gaussian (our results can be extended to other kernel types a
well). In itself, the algorithm is nothing more than a stamba
online gradient descent algorithm with a stand&@y/T)
regret bound. Thus, most of the proofs are devoted to a ddtail
discussion of how the subroutines are implemented (inotydi
o 1 2 3 a4 s T explicit pseudo-code). In this subsection, we describegoe
subroutine, based on the techniques discussed in Sec. lll.
The other subroutines require a more detailed and technical
Fig. 1. Comparison ofi(x,x’) (solid line) andk(x,x’) (dashed line) as a discussion, and thus their implementation is describedaass p
function of ||x — x|}, for c = 2 (left) andc = 4 (right). Note that forc = 4, of the proofs in Sec. VIII. In any case, the intuition behind
the two graphs are visually indistinguishable. the implementations and the techniques used are described i
Sec. lll.

For the remainder of this subsection, we assume for simplic-
ity that ¢ is a classification loss; namely, it can be written as a
function of ¢(y (w, ¥(x))). It is not hard to adapt the results
below to the case wheréis a regression loss (whereis a
function of (w, ¥(x)) — y). Another simplifying assumption
we will make, purely in the interest of clarity, is that the

0.8f

0.7r

061

0.5f

0.4r

0.3r

021

0.1f

with known distribution\ (0, 021), and vy, is perturbed by
arbitrary independent noise witfi; [j7] < BZ. Let By,
and 8 € (0,7/2] be fixed. If we run Algorlthm 3 Wlth th
kernel (7) where: € (0,d/40), and input parameters

W > M noise will be restricted just to the instansg, and not to
sin(f3) the target valuey,. In other words, we assume that the learner
and is given access tag;, and to an oracled; which provides
W noisy copies ofk;. This does not make our lives easier, since
n= the hard estimation problems relate %9 and noty; (e.g.,
2€XP(UC)\/(W2 exp(20¢) + B2)T estimating (w,, ¥(x,)) in an unbiased manner, despite the
non-linearity of the feature mapping). On the other hand,
then it will help to make our results more transparent, and reduce
tedious bookkeeping.
d = At each round, the algorithm below constructs an object
E ;£(<wt,\11(xt)) 1) —varé%zmw,th» Y) " \which we denote ad (x;) (note that it has no relationship

to \i/(xt) used in the previous section). This object has two
<2w eXp(Uc)\/(W2 exp(20¢) + B)T interpretations here: formally, it is an element of a repizitg
kernel Hilbert space (RKHS) corresponding to the kernel we
whereW = {w : |w|| < Bw, Bw > 3} and ¥ is the feature use, and is equal in expectation ¥qx,). However, in terms
mapping induced by the kernel (7). of implementation, it is simply a data structure consistifig
_ _ ) i finite set of vectors fronR?. Thus, it can be efficiently stored
The proof of the theorem is provided in Subsection V-G, memory and handled even for infinite-dimensional RKHS.
Like \Tf(xt), w;11 has also two interpretations: formally, it
is an element in the RKHS, as defined in the pseudocode. In
terms of implementation, it is defined via the data structure

In this part of the paper, we turn to study the setting whetg(x1), ... ¥(x;) and the values oy, ..., a; at roundt.

we wish to learn kernel-based predictors, while having rg apply this hypothesis on a given mstanx;ewe compute
information about the noise distribution other than an uppe-i=1 Ml t (¥(x:),x"), whereMul t (¥(x;),x’) is a sub-
bound on its variance. This is relevant in cases where tfeutine which returns the inner produéﬂ/(xl) \I/(X')> (a
noise is hard to model, or if it might change in an unexpectgs$eudocode is provided as part of the proofs in Sec. VIII).
or even adversarial manner. Moreover, we provide results wi We start by considering dot-product kernels; that is, kisrne
respect to general analytic loss functions, which go beybed k(-,-) that can be written a&(x,x’) = Q({x,x’)), where
squared loss on which we focused in Sec. IV. We emphasi2¢:) has a Taylor expansio@(a) = >~ , 3,a™ such that
that the techniques here are substantially different thase (,, > 0 for all n —see theorem 4.19 in [8]. Our first result
of Sec. IV, and do not rely on surrogate kernels. Insteashows what regret bound is achievable by the algorithm for
the techniques focus on construction of unbiased gradiemy dot-product kernel, as well as characterize the number o
estimates directly in the RKHS. oracle queries per instance, and the overall running time of

V. UNKNOWN NOISEDISTRIBUTION



IEEE TRANSACTIONS ON INFORMATION THEORY , VOL. ?, NO. ?, AUGST 2010 11

the algorithm. The proof is provided in Subsection VIII-E.  We note that the distribution of the number of oracle queries
can be specified explicitly, and it decays very rapidly —see
Algorithm 4 Kernel Learning Algorithm with Noisy Input  the proof for details.

Par amet er s: Learning rate; > 0, number of roundd’, The parametep is user-defined, and. allows one to perform
sample parameter > 1 a tradeoff between the number of noisy copies required for
Initialize: each example, and the total number of examples. In other
oa;=0foralli=1,...,T. words, the regret bound will be similar whether many noisy
(x;) foralli=1,...,T measurements are provided on a few examples, or just a few

noisy measurements are provided on many different examples
// variable number of vectors iR? The result pertaining to radial kernels is very similar, and
For t—1...T uses esg.entially the same techniques_. For the_ sake ofy;_:larit
Define w, — Zt_,l 0 (x;) we provide a more concrete result WhIC.h pertains specificall
=1 BT to the most important and popular radial kernel, namely the

Reiglvg(zjc:lf;v:gfétst i mat e(Ay. p) Gaussian kernel. The proof is provided in Subsection VIII-F

/I Get unbiased estimates ®f(x;) in the RKHS Theorem 7. Assume that the loss functidnhas an analytic

Il U(x;) is a data structure which can store a

Let g; := Grad_Lengt h_Est i mat e(As, y¢,p) derivative?’(a) = Y2, y»a™ for all a in its domain, and let
Il Get unbiased estimate 6f(y, (w;, U(x))) O (a) =307 |m|a™ (@assuming it exists). Pick any Gaussian
Let oy := —gm/V/T Il Perform gradient step kernel k(x,x') = exp(— ||x —x||* /s?) for somes? > 0.
Let 7y 1= Zle 23:1 oy iy Pr Od(\f/(xi), \if(xj)) Finally, assume thait, [H5<t||2} < Bj for any x; returned
/I Compute squared norm, where by the oracle at round, for all t = 1,...,7. Then for all

By > 0 andp > 1 it is possible to implement the subroutines
of Algorithm 4 such that

1) The expected number of queries to each oratjds
3p
(p—1)2"
2) The expected running time of the algorithm is

11 Prod(F(x;), ¥(x;)) returns<\i/(xi), \i/(xj)>
If ny > By,

Let o; 1= ai‘/f_w foralli=1,...,¢t

/If squared norm is larger thaB,,, then project

Theorem 6. Assume that the loss functidnhas an analytic 0 <T3 (1 + dp )) _
derivative ¢'(a) = >-°  yna™ for all a in its domain, and (p—1)2
let ¢ (a) = 32,7 lmla" (assuming it exists). Pick any 3) |f we run Algorithm 4 with
dot-product kernelk(-,-) = Q({,-)). Finally, assume that B
E.[||%/||*] < Bx for any %, returned by the oracle at round n= v
t, forall ¢t =1,...,T. Then, for allB,, > 0 andp > 1, it Val! (\/(p = 1)u)
is possible to implement the subroutines of Algorithm 4 such  \where
that: 3
. . Bz + 2pv/ Bx
1) The expected number of queries to each oratjds u = By (p%l) exp (\/]_?S—Qp)
p
p—1)2 " then

2) The expected running time of the algorithm is

° (T3 (” v fpn?)) | ’

T

S €lwi, W), 1)

t=1

T
—  min Z£(<W7\Ij(xt>)ayt)
t=1

w: Wl < By &

3) If we run Algorithm 4 with <O (Vp = Du)VaT .
By As in Thm. 6, note that the number of oracle queries has
n= a fast decaying distribution. Also, note that with Gaussian
14 -1 - '
Vi +( (p )u) kernels, s> is usually chosen to be on the order of the
where 9 example’s squared norms. Thus, if the noise added to the
w= By ( p > Q(pBs) examples is proportional to their origi_nal norm, we can assu
-1 that Bz /s? = O(1), and thusu appearing in the bound is also
then bounded by a constant.

As previously mentioned, most of the subroutines are

described in the proofs section, as part of the proof of

) a Thm. 6. Here, we only show how to implement the
_w:@@BWZE«W’\I}(Xt» ) Grad_Length_Esti mat e subroutine, which returns the

, =t gradient length estimati@. The idea is based on the technique
<l (V- 1)“)\/ﬁ : described in Subsection 11I-C. We prove tljatis an unbiased
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estimate o’ (y; (w¢, ¥(x;))), and boundE,;[3?]. As discussed

e/arller, Weooassumne thdt(-) is analytic and can be written as 4.57“ — ADSOlUtE Loss |
U'(a) = ano In@. "‘/ 'm =1 Smoothed Absolute Loss (c=1)
4 % = = = Hinge Loss
- - . i -
Subroutine 1 Grad_Lengt h_Est i mat e(A;, y:,p) 35} s [''''''' Smoothed Hinge Loss (c=1) :
Sample nonnegative integeraccording toP(n) = ;’n;fl 3t 1
FOI’j:l,...,n 25F q

Let W(x;), := Map_Est i mat e(4;)
Il Get unbiased estimate @f(x;) in the RKHS
Return

pn+1 n
yt/}/np 1 E

t—

1
a1 iPr Od(\fl(xi), \iJ(Xt)j))
1

1=

T _ Fig. 2.  Absolute loss, hinge loss, and analytic approxiomsti For the
Lemm% 4. 'f‘ssume thatE, L\I/(Xt)l = VY(xt), and that absolute loss, the line represents the loss as a functiéw ol (x)) — y. For
Prod(¥(x), U(x’)) returns <D\IJ(X), ¥(x')) for all x,x’. De- the hinge loss, the lines represent the loss as a functign(ef, ¥ (x))

note the output of the subroutine above @s and define

V' (a) =377 |nla™ Then for any given
* =0 Example 2. For the exponential loss function,

Wi = 04,5_171\il(x1) 44 at_17t_1lfl(xt_1) (((w,U(x)),y) = e¥WTE) we haveé’+( (p— 1)u) =

vV (p—1u
it holds thatE, 3] = v, (y: (wy, ¥(x,))) and € '

) Example 3. Recall that the standard absolute loss is de-
E,[2] < Lg;( pBqu}(x)) fined as/((w,¥(x)),y) = |(w,¥(x)) — y|. Consider a
p—1 “smoothed” absolute loss functiof.((w, ¥(x)),y), defined
where the expectation is with respect to the randomnessasfan antiderivative ofrf(sa) for somec > 0 (see proof for

Subroutine 1. exact analytic form). Then we have that
Proof: The result follows from Lemma 1, wherg, ¢ (/{5 — 1)u) < + ;( A (p-1)u _ )
k ! D u) < -+ e 1) .
corresponds to the estimatér the function f corresponds +( ( ) ) 2 cymlp—1)u

to?, and the random variabl& correspondstc{wt,\ll(xt)> Example 4. Recall that the standard hinge loss is defined
(whereW (x;) is random andv; is held fixed). The ternt[X?] as ¢((w, ¥(x)),y) = max{l — y(w,¥(x)),0}. Consider
in Lemma 1 can be upper bounded as a “smoothed” hinge loss/.(y (w,¥(x))), defined as an

) ) antiderivative of(Erf(c(a — 1)) — 1)/2 for somec > 0 (see
E; [(<wt,\if(xt)>) ] < Hth2 E, {H@(Xt) } < Bw By - proof for exact analytic form). Then we have that

2 2
ZI ) < ——— (ec (p—l)u—l) )
u +( » )) cey/7m(p—1)u
) For any ¢, the loss function in the last two examples
B. Loss Function Examples is convex, and respectively approximate the absolute loss

Theorems 6 and 7 both deal with generic loss functiongw, ¥(x)) —y| and the hinge losmax{0,1 -y (w, ¥(x)) }
¢ whose derivative can be written @Zozo vna®, and the arbitrarily well for large enough. Fig. 2 shows these loss
regret bounds involve the functior (a) = Y0 |yn|a™. functions graphically for = 1. Note thatc need not be large
Below, we present a few examples of loss functions and théirorder to get a good approximation. Also, we note that both
corresponding’,. As mentioned earlier, while the theoremghe loss itself and its gradient are computationally easy to
in the previous subsection are in terms of classificatiosdss €valuate.
(i.e.,¢ is a function ofy (w, ¥(x))), virtually identical results ~ Finally, we remind the reader that as discussed in Subsec-
can be proven for regression losses (ifeis a function of tion Ill-C, performing an unbiased estimate of the gradient
(w, ¥(x)) —y), so we will give examples from both families.for non-differentiable losses directly (such as the hinges|
Working out the first two examples is straightforward. Ther absolute loss) appears to be impossible in general. On
proofs of the other two appear in Subsection VIII-G. The logge flip side, if one is willing to use a random number of
functions in the last two examples are illustrated graghica queries with polynomially-decaying rather than exporeyti

in Fig. 2. decaying tails, then one can achieve much better sample
) complexity results, by focusing on loss functions (or appro
Example 1. For the squared loss functiofi((w, ¥(x)) ,y) =  imations thereof) which are only differentiable to a boude

({(w, ¥(x)) —y)?, we have!, (\/(p — 1)u)) = 2y/(p — Du. order, rather than fully analytic. This again demonstrabes
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tradeoff between the number of examples, and the amount offo prove the theorem, we use a more general result which
information that needs to be gathered on each example. leads to non-vanishing regret, and then show that under the
assumptions of Thm. 8, the result holds. The proof of the

VI. ARE MULTIPLE NOISY COPIESNECESSARY? result is given in Subsection VIII-I.

The positive results discussed so far are mostly based Timeorem 9. Let W be a compact convex subset®f and
getting more than one noisy copy per example. However, opiek any learning algorithm which selects hypotheses fldm
might wonder if this is really necessary. In some applicatio and is allowed access to a single noisy copy of the instance
this is inconvenient, and one would prefer a method whidt each round:. If there exists a distribution over a compact
works when just a single noisy copy of each example is madabset ofR¢ such that

available. Moreover, in the setting of known noise covarean . ,
(Subsection IV-B), for linear predictors and squared logs, afvgg\l,n]E[é“w’x) ’ 1)} and afvggéné«w’E[xD ’ 1) ©)

needed just one noisy copy of each exarr(pig y,) in order are disjoint, then there exists a strategy for the adversargh

to learn. Perhaps a similar result can be obtained even qugt the sequencer;, ws. -+ - € W of predictors output by the
the noise distribution in unknown? . S
%{gornhm satisfies

In this subsection we show that, unfortunately, such
method cannot be found. Specifically, we prove that if the
noise distribution is unknown, then under very mild assump-hzrfl_f;ip T Z(£(<Wt’xt> 2ye) — (W, %) ’yf)) >0
tions, no method can achieve sub-linear regret, when it has =1
access to just a single noisy copy of each instancéeven With probability 1.

wheny; is known). On the other hand, for the case of squared onother way to phrase this theorem is that the regret cannot
loss and linear kernels, we know that we can learn based @yhish, if given examples sampled i.i.d. from a distribatithe

two noisy copies of each instance (see Subsection IV-A). §ming problem is more complicated than just finding the
without further assumptions, the lower bound that we proYgean of the data. Indeed, the adversary’s strategy we choose
here is indeed tight. It is an interesting open problem tonshqgter on is simply drawing and presenting examples from such
improved lower bounds when nonlinear kernels are used, Pgistribution. Below, we sketch how we use Thm. 9 in order to
when the loss function is more complex. prove Thm. 8. A full proof is provided in Subsection VIII-H.

Theorem 8. Let W be a compact convex subsetisf, and let ~ We construct a very simple one-dimensional distribution,
¢(-,1) : R — R satisfies the following: (1) it is bounded fromwhich satisfies the conditions of Thm. 9: it is simply the
below; (2) it is differentiable af with #(0,1) < 0. For any uniform distribution on{3x, —x}, where x is the vector
learning algorithm which selects hypotheses frothand is (1,0, ---,0). Thus, it is enough to show that

allowed access FO a single noisy copy of the instance at each argmin £(3w,1) + ¢(—w,1) and argmin £(w,1)
roundt, there exists a strategy for the adversary such that thew: jw|2<B,, w: |w]2< By

sequencew:, wo, ... of predictors output by the algorithm (10)
satisfies are disjoint, for some appropriately chosBg. Assuming the

contrary, then under the assumptions @mwe show that the
first set in Eq. (10) is inside a bounded ball around the origin
in a way which is independent d8,,, no matter how large it
, » is. Thus, if we pickB,, to be large enough, and assume that
with probability 1. the two sets in Eq. (10) are not disjoint, then there must be

Note that condition (1) is satisfied by virtually any los$omew such that bott{(3w, 1) + ¢(—w, 1) and/(w, 1) have
function other than the linear loss, while condition (2) & subgradient of zero ab. However, this can be shown to
satisfied by most regression losses, and bycmbsmca“()n contradict the aSSUmptionS (ﬂnleadlng to the desired result.
calibrated losses which include all reasonable losses for
classification (see [23]). VIlI. CONCLUSIONS ANDFUTURE WORK

The intuition of the proof is very simple: the adversary We have investigated the problem of learning, in an online
chooses beforehand whether the examples are drawn idrd. frfashion, linear and kernel-based predictors when the wbder
a distributionD, and then perturbed by noise, or drawn i.i.dexamples are corrupted by noise. We have shown bounds
from some other distributiorD’ without adding noise. The on the expected regret of learning algorithms under various
distributions D, D’ and the noise are designed so that thessumptions on the noise distribution and the loss function
examples observed by the learner are distributed in the safsguared loss, analytic losses). A key ingredient of owltes
way irrespective of which of the two sampling strategies thie the derivation of unbiased estimates for the loss graslien
adversary chooses. Therefore, it is impossible for thenkyar based on the possibility of obtaining a small but random
accessing a single copy of each instance to be statisticallymber of independent copies of each noisy example. We also
consistent with respect to both distributions simultarsypu show that accessing more than one copy of each noisy example
As a result, the adversary can always choose a distributionie a necessary condition for learning with sublinear regret
which the algorithm will be inconsistent, leading to com$ta There are several interesting research directions wornth pu
regret. suing in the noisy learning framework introduced here. For

T

T

, 1
h;n:;p max ;(th, Xt), yt) — L({W, x¢) ,yt)) >0
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instance, doing away with unbiasedness, which could lead to Proof: The expectation in the lemma can be written as
the design of estimators that are applicable to more types of
loss functions, for which unbiased estimators may not eveq
exist. Biased estimates may also help in designing improved

d

d
2 (ai — x; — ny)? 2/d
Ry, 5.aexp <_ Z 2 _ 952 )1 = H RS s 4

z =1

=1

estimates for kernel learning when the noise distributi®n i 2 e )2
. . . 2\—1/2 _Z_z _ (al Lq Z’L) dz (11
known, but not necessarily Gaussian. Another open question (2ms”) exp 2552 2_952 )% (11)
. : 2 o; 5% — 203
is whether our lower bound (Thm. 8) can be improved when :
nonlinear kernels are used. A purely technical integration exercise reveals that edeh e
menti in this product equalsxp(—(a; —z;)?/s?). Therefore,
VIIl. PROOFS Eqg. (11) equals
A. Proof of Thm. 1 d 9 2
| | | (a —2)* _ la—x]|
First, we use the following lemma that can be easily adapted H exp | — 52 I S
from [11]. i=1
Lemma 5. Letvy, ..., vy be a sequence of vectors. et = which is exactly(¥ (x), ¥(a)). u
0 and fort > 1 let w, = P(w, — nv¢), where P(-) is the Lemma 7. Let ¥(-) denote a feature mapping to an arbitrary
projection operator on an origin-centered ball of radid%,. RKHS. Letz;, 2o, ...,z be vectors iR, anda,, as, . .., ar
Then, for allu such that|ju|| < B,, we have scalars, such that>", a;¥(z;)||* < B2 for someB > 0. Then
m B2 772?:1 v |2 it holds that
Z<Vt,Wt—u>§2—+f- 2 2 532
t=1 " Z ai\I/(Zi) + Z ai\IJ(Zi) < TN
Applying Lemma 5 withv, = V, as defined in Lemma 2 i:a;>0 i:a;<0 sin”(6)
we obtain: where 3 is the angle between}_, ., a;¥(z;) and
T, . B2 Y V2 > ia, <0 @Y (2zi) in the RKHS (or3 = /2 if one of these
Z <Vt,Wt - u> < o T elements is zero).

t=1

Taking expectation of both sides and using again Lemma. 2We remark that this bound is designed for readability —it
we obtain that is not the tightest upper bound possible.

T Proof: The bound trivially holds ify ;. . a;¥(z;) or
B TG S ;¥ (z;) are zero, so we will assume w.1.0.g. that they
_ —_w g = :a; <0 7% 1 ' i~
E ;Wt’wt u = o T2 are both non-zero.
. o To simpli tation, let
Now, using convexity we get that 0 simplify notation, le
(Verwe =) > ((wexe) — ) = ((we, ) — 32)? v 2t
which gives wy = Z a; 0 (z;)
T T ita; >0
B: TG -~
2 2 W
E ;(<Wtaxt> ) ] < ;(<U7Xt>—yt) +2—77+T ' w_ = Z —a; ¥ (z;)

1:a,<0
Pickingn as in the theorem statement concludes our proof. . .
an P and notice thaw = w, — w_. By the cosine theorem and

B. Proof of Thm. 3 the fact thatw = w, — w_, we have that

2 2 2

To prove the theorem, we will need a few auxiliary lemmas. (W™ = [[wi " + [[w=|[" = 2 [w [ [w— | cos(B).
In particular, Lemma 6 is a key technical lemma, whiclk,ing for ||w_|| and taking the larger root in the resulting
will prove crucial in connectlng the RKHS with rESpeChuadratic equation, we have that
to U(-),k(-,-), and the RKHS with respect t&(-), k(-,-).

i 2 2 .

I&?(T'rgz 8 connects between the norms of elements in the tWoj|w || < |lw, || cos() + \/HWII —[lw+["sin*(8)  (12)

To state the lemmas and proofs conveniently, recall tifiéis easy to verify that the term in the squared root is alvay
shorthand non-negative). Therefore

R = |d| 782 . | H2 | | ?
_ W + |[w=
3,s,d < 52 202> . | + | |

2
i=1 2 2 2 . 9
. < [|lw + [ [|[w4|| cos + wi|® — [|w sin
Lemma 6. For anya,x € R?, if we letx = x + n where -] (” +l] cos(6) \/” | -+ (ﬁ))

n ~ N(0,%) is a Gaussian random vector with covariance < Wi ll® + (|wal | cos(B)| + ||wl]))? .
matrix X, then it holds that

. . From straightforward geometric arguments, we must have
En <‘I’(a),‘1’(x)> = (¥(a), ¥(x)). [wil® < [[w|?/sin?(3) (this is the same reason the term
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in the squared root in Eq. (12) is non-negative). Plugginig ththe RKHS corresponding t&(-), such that||a/”

15

into the right hand side of the inequality above, we get amolds that

Jlwl|*

sin?(3)

upper bound of the form
2
cos(f3
5|+ 1)

+ (1w [ 225

2 2
9W”@*mwn+mﬂm>

where we used the fact thatos(8)| < 1. A straightforward
upper bounding leads to the lemma statement. ]

The following lemma is basically a corollary of Lemma 7.

Lemma 8. Let zq,zs,...,zr be vectors inR¢ and
ai,as,...,ar scalars, such thaf>", a;i¥(z;)||* < B2. Then
>, a:¥(z) is an element in the RKHS with respecti¥g.),
whose norm squared is at most

5B%
sin?(5)
Here, 3 is the angle between}_ . . a;¥(z;) and
= iia;<0 @Y (2zi) in the RKHS (or3 = «/2 if one of the
elements is zero).

Proof: Picking somez;,zs,... anday,as,... as in the

lemma statement, we have

2
Zalﬁl(zz) = Zaiajl;:(zi,zj) S Z aiajl%(zi,zj)
% 9,7

i,j:aa; >0
(13)

where the last transition is by the fact thais always positive.

Now, by definition ofk(-, -), k(-, ), it holds for anyz;, z; that

< W2, it
T A T R
S (Fnabx)) - > (wab ()
t=1 t=1 ZT ) \ij(~ ) ,
w2 N |9
< Ery 5 (14)

In particular, considen = ZiTzl a; ¥ (x;) from the theorem’s
statement, and define

T
a* = Zat\il(xt) .

=1
This is an element in the RKHS correspondingit6), but it
shares the same set of weightansvhich is an element in the

RKHS corresponding tar(-). Since||ul|® < B2, |t follows
from Lemma 8 and the definition df’ that ||a*||* < W2
Therefore, Eq. (14) applies, and we get
T R T .
> <Wt7§t‘11(5<t)> -> <ﬁ*7§t‘11(5<t)>
t=1 t=1
T oA 2
W2 M- ||GeY(Xe)
<—+
- 2n 2

This inequality holds for anyx,,%},4;}7_,. In particular, it

will remain valid if we take expectations of both sides with
respect to the Gaussian noise injected into the unperturbed
data:

ﬂ e

1

which is at mostRg, ;. Therefore, we can upper bound Starting with the right hand side, we note that by definition

- d
k(zi,2;) 2 (zia = 20)? (20 = %)
. = R ) ) _ ) 7
k(z;,2;) B,s,d XD ; s2 s2 — 207
Eq. (13) by
Z aiajk(z;,z;) < Rz sd Z a;a;k(z;,z;) .

i,j:a;a;>0 4,j:aia; >0

The lemma follows by noting that according to Lemma 7,

D wiak(zi,z)

i,j:a;a;>0
2 2
= Z ai\I/(zl-) + Z ai\I/(zl-)
i:a;>0 i:a;<0
5B2
S =
sin?(3)

of g fr02m the algorithm’s pseudocode, and the fact that
b0 = hxx) < R,
k in Eq. (5),

[Hgt‘l’ M—‘*Et“(@ta@(iﬁ}—gt) (%))

0
- U(x}) ’ E, :(<Wta‘i’(it)> —Qt)Q]

by definition of the kernel

— 4F,
— 4F, B(x) 2: E, (< J(x )>) +§?}
<, [| )] (|wt| k. o] ] + it
—4RL, J(WPR% .+ B2) .

With these lemmas in hand, we are now ready to prove thePlugging this back into Eq. (15), and choosin@s in the

main theorem.
To make the proof clearer, let; ; denote the value of;
in algorithm 3 at the beginning of round

The first step of the proof consists of applying Lemma 5,
since our algorithm follows the protocol outlined in that

lemma, using kernels. We therefore have that for @nin

theorem’s statement, we finally get

T T
Z <‘?Vt, §t‘i’(it)> - Z <ﬁ*a §t‘i’(>~<t)>

t=1 =1
< QWRZ,s,d\/(WQR%,s,d + BE)T :

E

(16)



IEEE TRANSACTIONS ON INFORMATION THEORY , VOL. ?, NO. ?, AUGST 2010 16

We now turn to analyze the more interesting left hand sidgemarkably, this equation links between classifi@sin the
of Eq. (16). The left-hand side of Eq. (16) can be written aRKHS corresponding t@(-), and the classifiere/; in another
RKHS, corresponding t@(-).

[Z E, [<Wt,gt\11 X4 >} Z]Et K ,gt )>H ) Substituting Eq. (19) into Eq. (16), we get that

17 T
() E Z Wi, gt‘I’ Xt Z
t=1

In order to analyze the first sum inside the expectation,lireca
thatw, can be written aif;i ay,;U(x;). Therefore, we have t=1
that < 2WRsoa\/(W2RE,, ,+ BT .

Ee (Wi, 300 (%0))] = ZEt [ (), 308(%))|  Now, since f((wi, W(x)) ) = ({we, () — )2 is a
) convex function ofw;, and sinceg; ¥(x;) is the gradient at
= D EaEe [ons (%), ¥(%0)) |

w;, we can lower bound the left-hand side as

where the last transition is by the fact th&f, x;, 7, are E lZ€(<Wt"P(Xt)>7yt)] _Zé(mv‘l’(xt» )
mutually independent, and therefoig is independent of =
¥ (x;) conditioned on{(x;, %/, ;) }'=1. from which the theorem follows.

We now make two crucial observations, which are really

the heart of f: First, by L 6, have that
e heart of our proof: First, by Lemma 6, we have that . o . ..

ZEt {at i < (Xi), \if (x¢ >] Z Qi U (x)) The proof follows the same lines as the proof of Thm. 3 in
the previous subsection. The changes mostly have to do with
= <Wt,\IJ(xt)>. the auxiliary lemmas, which we present below. The proof of

the theorem itself is virtually identical to the one of Thm. 3
Vihd is thus skipped.
N al o N The auxiliary lemmas below modify the parallel lemmas in
Eilg:] =2 (Z E {a“ < (%), q}(xt)> - yt}) Subsection VIII-B, based on the new definitions of the featur
mapping¥ and the surrogate feature mappiwg But before

Secondly, using Lemma 6 in a similar manner, we also have

= 2((we, U(xt)) — ). that, we begin with a lemma which explicitly upper bounds
Define this expression ag;. Notice that it is exactly the |¥(x)||? for any x. With Gaussian kernels, this was trivial,
gradient ofw; with respect to/((w,, ¥(x;)) ,y:)- but now we need to work a bit harder.

As a result of these two observations, we get overall tha}_ emma 9. For any vectorx € RY,
X

E¢ [<Wt,9t\1’ (x¢) >} Zam i), 969 (x¢))

we have

\I/(X)H < exp(20¢) .

= <Wt,9t‘11(xt)> : (18) Proof: By Eq. (8),
Moving to the second sum in the l.h.s. of Eq. (17) recall that ) e/d
there exist some, ...,ar such thata* = 37 a,¥(x,). H\I,(X)H = h(x,x) = d/ (1 = 20u)~ 42 exp(—ud)du
Therefore, u=0 a
E, [< G >} ZEt [a< & )>] . < (1 - 20¢/d)~4/? /u:o dexp(—ud)du
= (1 —20¢/d)"¥?(1 — exp(—c)) . (20)

As before, we have by Lemma 6 tHat [<\Il(xl-), \i!(fct)> =
(¥(x;), ¥(x¢)), and thatgt |s conditionally independent with
expected valug, = 2(2 1 ayik(Xi,Xx¢) — ye ). Substituting

Also, by a Taylor expansion of the log function, and using the
fact that2oc/d < 1/2 by the assumption that < d/4c, we

this into the expression above, we get that it is equal to get
T 20¢\? B Jl 20¢c
D ai (U(xi), g0 W () = (u, 9,9 (x:)) L= ) =exp(dlee (1=
=t 4log(2)oc
Combining this and Eg. (18), and summing ovewe get that > exp <d (—T>) = exp(—4log(2)oc). (21)

lz E, Kwt,gt Xy >} ZEt K A )>H Plugging this into Eq. (20), we get the upper bound
T T exp(2log(2)oc) (1 — exp(—c)) < exp(20¢) .
Z wi, gtV (x¢)) Z

t=1

t=1

(19)
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Lemma 10. For any a,x € R?, if we letx = x + n where Therefore, we can upper bound Eg. (23) by
n ~ N(0,Y) is a Gaussian random vector with covariance 20c o
matrix X, then it holds that Z @it k(z“ j)<e Z aia;k(zi,2;) -

4,7 a;a;>0 i,ja;a;>0
E. <¢/(5<), \i/(a)> — (U(x), ¥(a)) . The lemma follows by noting that
Proof: On one hand, based on the definition fofin Z a;a;k(z;,z;)
Eqg. (7), it can be verified that¥ (x), ¥(a)) equals bjiaia; >0

2 2

Z ai\I!(zi)

i:a;>0

+

Z ai\I!(zi)

i:a;<0

c/d )
k(x,a) = / dexp (—u lx —a|” — ud) du . (22)
u=0

On the other hand, using the proof of Lemma 6 and Fubinihich according to Lemma 7 is at mosB?/sin*(3). =

theorem, the expectation in the lemma can be written as
D. Preliminary Result for Proving Thm. 6 and Thm. 7

En <‘I’(>~<)7‘I’(a)> To prove Thm. 6 and Thm. 7, we need a theorem which
¢/d - 2 basically states that if all subroutines in algorithm 4 hehas
—E, [d/ (1 —20u)"¥?exp <—M - ud) du‘| they should, then one can achieve @/T) regret bound.
u=0 This is provided in the following theorem, which is an
c/d d % — al? adaptation of a standard result of online convex optimizati
= /TO de” " En 1T o~ U (see, e.g., [11]).
c/d Ix — al® Theorem 10. Assume the following conditions hold with
= / de "% exp <—7> du respect to Algorithm 4:
u=0 L/u 1) For all ¢, \i/(xt) and g, are independent of each other

(1 —20u)"¥?exp <—

B C/dd 9 2 d (as random variables induced by the randomness of
=), P (_“ e —afl” —u ) v Algorithm 4) as well as independent of afyx;) and
- gi fori <t.
2) Forall ¢, E.[¥(x)] = ¥(x:), and there exists a constant
Lemma 11. Let zq,zo,...,zpr be vectors inR? and Byg > 0 such that
2 2
ai,as, ..., ar scalars, such thaty ", a;¥(z;)||” < B°. ]’hen _ 9
S, a;¥(z) is an element in the RKHS with respectig.), Eq {H‘I’(Xt)H } < By .

whose norm squared is at most _
3) Forall t, E[g:] = v+ (y: (we, ¥(x¢))), and there exists

2 ~
.515 exp(20¢) a constantB; > 0 such that[i?t [97] < By.
sin“(8) 4) For any pair of instances, x/,
Here, B is the angle between)>, . a;¥(z;) and Prod(¥(x), ¥(x')) = <\i/(x), \i/(x’)> :

= ia,<00i¥(z;) in the RKHS (or3 = /2 is one of the

elements is zero). If Algorithm 4 is run withy = By, //B;Bg, then
.. . T
Proof: Picking somez,,zs,... anday,as,... as in the .
lemma statement, we have ZZ ((we, W(x2))  v2) v WS B ;g«w, W) ve)
) 2 X < B V/B;B3T
Zaillf(zi) = Zaiajk(Zqu) < Z aia;k(z;,z;) -
. — o ' ' Here the expectation is with respect to both the randomness
i i,j:a;a; >0 i .
(23) of the oracles and of the algorithm throughout its run.
Now, by definition ofk(-,-) in Eq. (8), and the represen-  proof. Our algorithm corresponds to Zinkevich's on-
tation of k(-,-) as in Eq. (22), it holds for any;,z; that jine gradient descent algorithm [11] in a finite horizon
k(zi,21)/k(2:,2;) equals setting, where we assume the sequence of examples is
c/d,y _dje ullzi—z)? 71¥(x1),...,97¥(xr), the cost function is linear, and the
d Ju (1 —20u) eXp( —Zou “d) du learning rate at round is n/yv/T. By a straightforward
dfc/d exp (_u |z — z,”2 _ ud) du adaptation of the standard regret bound for that algoritbee (
L . [11]), we have that for any such that|w]|| < By,
( e fucilé exp (— 7““1zi;:i“ — ud) du T T
< (1-20c/d)” < 5,0 >_ < ~
c/d wi, G ¥(x¢) w, GV (x¢)
e / eXp( ul|z; —zj||2 —ud) du ; ;
< (1 - 20¢/d)~ 42 < e20° 1 (B2 GNTIRENTE
= (1 2oefy s < (B 1S ade| ) VT
where the last transition can be verified as in Eq. (21). U t=1
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We now take expectation of both sides in the inequality abowend &1,...,k, € {1,...,d}, with the entry corresponding
The expectation of the right-hand side is simply to n,ki,...,k, being v/Bnxk, ---zr,. The inner product
between¥ (x) and ¥ (x’) is similar to a standard dot product

2 T
E |1 B—W+QZEt [32] B, [H@(xt)Hz] VT between two vectors, and by the derivation above equals
2 k(x,x’) as required.
1 We now use a slightly more elaborate variant of our
< =

2(B——i-nBB)\/T.

As to the left-hand side, note that

unbiased estimate technique, to derive an unbiased estimat
of ¥(x). First, we sampleN according toP(N = n)
(p —1)/p"*t. Then, we query the oracle for for N times

T to getx™"), ..., %™, and formally definel(x) as
]E [Z <Wt,gt\IJ Xt > Z]Et |:<Wt,gt Xt)>:|‘|
=t T \il(x) Z Z x ZCk en Faeikon
=E | D (we el (3 (we, W (x0))) U x0)) R (24)
=1 wheree, , ..k, represents the unit vector in the direction
Also, indexed byn, k1, ..., k, as explained above. Since the oracle
T T queries are i.i.d., the expectation of this expression is
E Z<w,gt¢(xt)>] =3 (w, € (e (w, U(x0)) U (x0)) -
t=1 t=1 b— p ~(n)
Plugging in these expectations and choosipgas in the Z prtt ﬂn klzzl 2_:1 Ik”]en’kl """ e
statement of the theorem, we get that for amysuch that o d d
[w| < Bw, = Z Z Z (1) xé €n ki, kn
n=0k; =1 n=1

T
Z Wi, Yl (ye (We, U(x))) U () which is exactly¥ (x). We formalize the needed properties of
t=1

¥(x) in the following lemma.

Lemma 12. Assuming¥(x) is constructed as in the discus-
sion above, it holds tha[¥ (x)] = ¥(x) for anyx. Moreover,

if the noisy samples; returned by the oracled,; satisfy
E([|%||”] < Bx, then

—Z w, é yt (wy, ¥(x )>)‘IJ(X25)>
< Bu/BBST.

To get the theorem, we note that by convexity/othe left-
hand side above can be lower bounded by

T T
E [Z Cye (wi, W(xe)) = > Ly <Wa‘1’(xt)>)] :
t=1 t=1

E, [meam < LQlpBs)

where we recall thatQ defines the kernel by(x,x’)
Q((x,x')).

Proof: The first part of the lemma follows from the

discussion above. As to the second part, note that by (24),

Based on the preliminary result of Subsection VIII-D, we. |G 21 B ~(N)\2
present in this subsection the proof of Thm. 6. We first show/ H (Xt)H o Bn xtvkn)
how to implement the subroutines of Algorithm 4, and prove L
the relevant results on their behavior. Then, we prove the pnt2 G

. ~(3) 12

theorem itself. 5n e H (ol

We start by constructing an explicit feature mappibg)
corresponding to the RKHS induced by our kernel. For any p2rt? o\

71) (E: [%])

E. Proof of Thm. 6
2n+2

Y

(»— v kn=1

=1
t kl

E,

_ZP
—%QMmMV

x,x’, we have that

k(x,x) Bn((x, %'

p

o d n
-3 (Sont)
n=0 i=1

o,

3 HMS

n

u M& \iMS

d
.« .. / I e
Ty Ty Lhp Ly Loy

—zz z (m%

n=0k;=1 kn=1

n.

P w 0P
j;ﬁn(pBi) :FQ(Z’B&)

where the second-to-last step used the fact ghat 0 for all

) (Vo 5.

Of course, explicitly storing¥(x) as defined above is
This suggests the following feature representation: foy ainfeasible, since the number of entries is huge Fortuy',atel
x, ¥(x) returns an infinite-dimensional vector, indexedby this is not needed: we just need to stonﬁé) ~(N . The
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representation above is used implicitly when we calculatei We are now ready to prove Thm. 6. First, regarding the
products between(x) and other elements in the RKHS.expected number of queries, notice that to run Algorithme, w
We note that whileN is a random quantity which might beinvoke Map_Esti mate and Grad_Lengt h_Esti mat e
unbounded, its distribution decays exponentially fastfte® once at round:. Map_Est i nat e uses a random number

number of vectors to store is essentially bounded. B of queries distributed a®(B = n) = (p — 1)/p""},
After the discussion above, the pseudocode fand Grad _Lengt h_Esti mat e invokes Map_Esti mat e
Map_Esti mat e below should be self-explanatory. a random number of times, distributed a®(C = n) =
(p — 1)/p™*t. The total number of queries is therefore
Subroutine 2 Map_Est i mat e(A, p) chjll Bj, where B; for all j are i.i.d. copies ofB. The
Sample nonnegative integéf according to expected value of this expression, using a standard result
P(N =n) = (p — 1)/p"+! on the expected value.of a sum of a random number of
Query A, for N times to ge&g)’ - 7)~(§N) |nldepe1nder}t ra_ndo;n variables, is equa(te-E[C])E[B;], or
Returnz!", ..., %) as¥(x,). (L4 555) 575 = 5o

In terms of running time, we note that the expected running
time of Prod is 0(1 + p—) this because it performa/
We now turn to the subroutinéer od, which given two ele- multiplications of inner products, each one with runningei

ments¥ (x), ¥(x’)) in the RKHS, returns their inner product.O(d), and E[N] = . The expected running time of
Map_Esti mate is O(yl + o1 . The expected running time
Subroutine 3 Pr od (¥ (x), ¥ (x)) of & ad_Lengt h_Esti mat e is
Letx(M), ..., x(") be the vectors comprising (x) . ) p
Let x’D), ... x'(") be the vectors comprising (x’) O (1 + - <1 + " 1> +T (1 + p—1)>
2n+2 n - - -
’ @) /()
If n#n' return0, else return@n 2H<x ,x/( > _ ( p 2+T<1+ d >) .
(p—1) p—1
Lemma 13. Pr od(¥(x), ¥(x')) returns <@(X)¢,(X/)>_ Since Algorithm 4 at each d&f rounds calldvap_Est i nat e

once, Grad_Lengt h_Esti mat e once, Prod for O(T?)
Proof: Using the formal representation (ij(x),\i;(x') times, and .perf_oer(l) other operations, we get that the
in (24), we have tha<\ff(x), \i/(x’)> is 0 whenevern # 7 Overall runtime is

(because then these two elements are composed of different 1
unit vectors with respect to an orthogonal basis). Otherwis 0 <T (1 + | + pl 5
we have that _d (»—1) p
(<) T(14+ — | +T? 1+ ——
(790) (i) (055))
p2nt2 d . .
= Bn TERE Z :Eél) o 5:,(;:) 5:;(] ). :E;C(") Since ;17 < 2z We can upper bound this by
k1,....kn=1
2n+2 d d
5P 20310 m 3100 0(T(1+7p L1 (1+7p )))
o= | 2 T ) (kzx T ) (=17 »b—17
=
dp
ont+2 N :O(T3 (1—}—7)).
_ p ~(j) =1(j —1)2
g (6 5) v
j=1 .
which is exactly what the algorithm returns, hence the lemm The regret bound in the theorem follows from Thm. 10,

With the expressions for constants following from Lemma 4,
follows.

As discussed in the main text, in order to apply the Iearnec?mma 12, and Lemma 13.
predictor on a new given instaneg, we present another sub-
routine Mul t (¥(x),x’), which calculates the inner product

U(x),¥(x') ). The pseudocode is very similar to tReod F. Proof of Thm. 7

subroutine, and the proof of correctness is essentiallgdinge. The proof here is based on the preliminary result of Sub-

section VIII-D. The analysis in the Gaussian kernel case is

Subroutine 4 Mul t (¥(x),x’) rather similar to the one for inner product kernel case (in
Letn,x(M, ..., x("™ be the vectors comprising (x) Subsection VIII-E), with some technical changes. Thus, we
prtl 2 () provide the proof here mostly for completeness.
Returnﬁnﬁ 1_[1 <X X > We start by constructing an explicit feature mappibg)
j=

corresponding to the RKHS induced by our kernel. For any
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x,x’, we have that of the expression above is

(m T e <<x,x>>"1>

= pmtlngls?n(p — 1)

o0
p— 1 pn2+12n2
’ HX_XIH2 X n2+1 1g2n2(p — 1
k(x,x") = exp | ——5— =P nals?m2(p — 1)

S

d
HX”2 ||XIH2 2 (x,x’ Z Tky *** Tk, ©no ky,....k
:exp<‘s—2 exp|—Ta e T o AR

(%, x')
2 2 0o N 00 Clix 2 32 "
(e () () - (S )
n=0 ny=

This suggests the following feature representation: foy amvhich is exactly¥(x) as defined above.

x, ¥(x) returns an infinite-dimensional vector, indexed/y To actually store¥(x) in memory, we simply keep and
and ki,....k, € {1,. d} with the entry corresponding (1), ..., x(2N1+N2) The representation above is used implic-
ton, k..., kn be|nge ||x|| /s* (2/52>" _The inner itly when we calculate inner products betweg(x) and other
product betweeﬂf( ) and¥(x') is 5|m||ar to a standard inner €lements in the RKHS, via the subroutifeod. We formalize
product between two vectors, and by the derivation abotke needed properties @f(x) in the following lemma.

equalsk(x, x’) as required. Lemma 14. Assuming the construction of(x) as in the

discussion above, it holds that, [¥(x)] = ¥(x) for all x.
Moreover, if the noisy samplg; returned by the oracled,
satisfiesE, [||x;||’] < Bx, then

The idea of deriving an unbiased estimateldfx) is the
following: first, we sampléV,, Ny independently according to
P(N; = n1) = P(Ny = ng) = (p—1)/p"*1. Then, we query
the oracle forx for 2V, + N, times to getk! %(2N1+N2)

! goeeey ’ ~ 2 2 BS& 2 \/Bf(
and formally definel(x) as E, [H‘I’(Xt)H ] < (L) exp (—\/]3 ; L ) :

p—1

Proof: The first part of the lemma follows from the
discussion above. As to the second part, note that by (25),

we have thalH\IJ Xy ’ equals
5 ) (_1)N1pN1+N2+22N2
(x) =
N !INp!s2N142N2 (p — 1)2 2N1+2N2+492Ns Ny
N, p _ H(<,~<<2jfl>,5<<2j>>)2
% H <5(<2.7'—1>7,~((2j)> (N1INals2N142N2 (p — 1)2)° | )
Jj=1 d 5
; [ (s
% Z :Z,(QNIJFI) . :Z.(QNlJrNg)e _ 1 N
k1 Eng Naki,....kNny kisekny =1
k1yenkng=1 2N14+-2N2+4692N. N
(25) _ P 1+2Na+ 22N>

2(2i-1) (25)\)?
(N1!N2!82N1+2N2(p_1)2)2 H(<X X >)

j=1
N2 2
I1 H;gmm”
Jj=1

whereen, i, ...y, f€presents the unit vector in the direction 2N1+2N2+492N;

indexed by Na. k1,...,ky, as explained above. Since the < : p' Py - s B2V B
oracle calls are i.i.d., it is not hard to verify that the exjagion (N1INp!s2Mi202 (p — 1)2)
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The expectation of this expression owgi, Vs is equal to routine to compute ¥(x), ¥(x’) ), wherex’ is an explicitly

oo Imy42 given vector. The pseudocode is described in Subroutine 7. |
p—1 p~ 2n i imi i i i
. 5 5By is very similar to Subroutine 6, and the proof is essentitiby
Lo P (mls*m(p — 1)) same.
oo p— 1 p2n2+222n2 N - _
X ( P2t (ngls2nz (p — 1))2 By Subroutine 7 Mul t (¥(x), x’)
77,2:0

2 / oo 20 o o Let x(), ..., x(n1472) pe the vectors comprising (x)
( p ) Z (pBI)™ Z (4p”Bg)" Return
p—l (7’L1|82n1 n2'82”2 ( 1)n1 n1+n2+292n; ||X/H2
—1)2 exp <_ 2 )

’ (fo/s 2 ml(na!)2s2(mF2n2) (p .
= (Z( ) < (IT72, (370, %20)) (TT2, (2, x) ).

n1=0 n2=0

n1=0
(3 (<2WBT~:/S2> )
=0 na! We are now ready to prove Thm. 7. First, regarding the
expected number of queries, notice that to run Algorithme, w
- <L) 3 (vVPBx/s invoke Map_Esti mat e and Grad_Lengt h_Esti mat e
“\p-1 = ny! once at roundt. Map_Esti mat e uses a random number
- 9 2B; + B, of queries, whereB;, B, are independent and
(> (2pv/Bx/s*)" distributed asP(B; = n) = P(By = n) = (p — 1)/p"*L.
= no! Grad_Length_Estimate invokes Map_Estimate a

2 random numbe€ of times, whereP(C = n) = (p—1)/p"*+L.
— <L) exp (M) _ The total number of queries is therefore, ' (2B;1+ B; ),
p—1 s where B, 1, Bj » are i.i.d. copies ofB;, B, respectively. The
B expected value of this expression, using a standard result
After the discussion above, the pseudocode f@n the expected value of a sum of a random number of

Map_Est i mat e below should be self-explanatory. random variables, is equal ta + E[C])(2E[B; 1] + E[B; 2]),
1)\ 3 _ _3p
Subroutine 5 Map_Est i mat e(Ay, p) o (1 - p_l) pel (oL o S
S tP In terms of running time, the analysis is completely ideaitic

SampleN; according toP(Ny = n1) = (p—1)/p™*! to the one performed in the proof of Thm. 6, and the expected
SampleN, according toP(Ny = ny) = (p —1)/p"**! running time is the same up to constants.
Query A, for 2N; + Ny times to getxfS ), e ,i§2N1+N2) The regret bound in the theorem follows from Thm. 10,
Returnz!", ... &2V a5 (x,). with the expressions for constants following from Lemma 4,

Lemma 14, and Lemma 15.

We now turn to the subroutinér od (Subroutine 6), which
given the two element§ (x), ¥ (x’) in the RKHS, returns their G. Proof of Examples 3 and 4

inner product. Examples 3 and 4 use the error functiBinf(a) in order

- — — to construct analytic approximations of the hinge loss dned t
Subroutine 6 Pr od(¥(x), ¥(x)) absolute loss (see Fig. 2). The error function is useful for
Let x(™, ... %(2m1+n2) pe the vectors comprising (x) our purposes, since it is analytic in all &, and smoothly
Let )E,(l)’ o 7)2,(2n,1+n,2) be the vectors comprisin@(x’) ?nterpolates between-1 fo_r a <0 qnd_l for a > 0. Thl_Js,

If nl, # nl, return0, else return |t_can k_)e u_sed to approxmate_derlvatlve of losses which are
2 2 ’
(— 1)+t -+t +2na-+dg2ns piecewise linear, such as the hinge 1668) = max{0,1—a}
and the absolute lo5a) = |al.
To approximate the absolute loss, we use the antiderivative
% (H;};l <>~((2j71)7)~((2j)>) (H;’Lil <>~(/(2j71)7)~(/(2j)>) of Erf(sa). This function represents an analytic upper bound
' on the absolute loss, which becomes tighter: &screases. It
« (H;}il <5((2n1+j)’5(/(2n’1+j)>) can be verified that the antiqlerivative (with Fhe constac_aefr.
: parameter fixed so the function has the desired behavior) is

n1 !n’ll(ngl)232(n1+ni+2nz) (p—1)

The proof of the following lemma is a straightforward ¢(a) = a Erf(sa) + exp(—c®a?) .
algebraic exercise, similar to the proof of Lemma 13. v/
Lemma 15. Pr od (¥(x), ¥ (x')) returns<\i/(x), @(X/)>. While this loss function may seem to have slightly complex
form, we note that our algorithm only needs to calculate

As described in the main text, when we wish to apply ouhe derivative of this loss function at various points (ngme
learned predictor on a given instankg we also need a sub-Erf(sa) for various values of:), which can be easily done.
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By a Taylor expansion of the error function, we have that equals3?’ (3w, 1) —¢'(—w, 1), must be positive for large

enoughw > 0, and negative for large enough < 0,
Z . so the minimizers o¥(3w,1) + ¢(—w, 1) are in some

\/_ "' 2" + 1) bounded subset k.

3) There is somes € R such that/(-,1) monotonically
decreases in—oo, s) and monotonically increases in

2n+1

Thereforet’, (a) in this case is at most

2 = (sa)*t! 2 o= (sa)2+D) (s,00). If the function is constant in(s,co0) or in
Nz Z n!( 2n +1) = asyw Z (n+1)! (—o0, s), we are back to one of the two previous cases.
n=0 9 Otherwise, by convexity of(-), we must have some

= —= exp(c?a® — 1) . a,b, a < s < b, such that/(-,1) is strictly decreasing

at (—oo,a), and strictly increasing atb, c0). In that
We now turn to deal with Example 4. This time, we use the  case, it is not hard to see thgBw, 1) + ¢(—w, 1) must

antiderivative of(Erf(c(a—1))—1)/2. This function smoothly be strictly increasing for any > max{|a|, |b|}, and
interpolates between-1 for ¢ < —1 and 0 for a > 0. strictly decreasing for anyw < —max{]al,|b|}. So
Therefore, its antiderivative with respect torepresents an again, the minimizers of(3w, 1)+4(—w, 1) are in some

analytic upper bound on the hinge loss, which becomes tighte  bounded subset dg.
ascincreases. It can be verified that the antiderivative (With t \y,s are now ready to show that the two sets in (26) must
constant free parameter fixed so the function has the desiggd disjoint. Suppose we picR,, large enough so that the
behavior) is first set in (26) is strictly insidgw : |w|? < By }. Assume

_ (a—1)(Erf(c(a — 1)) — 1) 1 9 ,. on the contrary that there is some |w|> < By, Which
Ya) = 2 +2\/7_TC exp(—c*(a—1)7) belongs to both sets in (26). By assumption (2) and the
act that w minimizes ¢(w,1), we may assumev > 0.
hereforep) € 9¢(w, 1) as well a®) € 9(¢(3w, 1)+{(—w, 1)),

By a Taylor expansion of the error function, we have tha

, —1))2ntt where 0f is the (closed and convex) subgradient set of a
ta) = \/— Z nl 2n +1) : convex functionf. By subgradient calculus, this means there
is somea/3 € 0¢(3w,1) andb € 9¢(—w,1) such that
Thus, ¢, (a) in this case can be upper bounded by a/3 — b = 0. This implies thatd/(3w, 1) N 8¢(—w, 1) # 0.
g)2n1 1 a)2(nD) Now, suppose thahax 9¢(—w, 1) < 0. This would mean that
- + — Z ~ Z min 9¢(3w, 1) < 0. But then{(-,1) is strictly decreasing at
ni( 2”+1 =3 as\/_ ”+1 (w,3w), and in particular/(w, 1) > £(3w, 1), contradicting
< 1 (exp(c2a?) — 1) the assumption thaty minimizes ¢(-,1). So we must have
-2 as\/_ P " max9d¢(—w,1) > 0. Moreover,min 9¢(—w, 1) < 0 (because
w minimizes ¢(-,1) and —w < w). Since the subgradient
H. Proof of Theorem 8 set is closed and convex, it follows that € 9¢(—w,1).

Therefore, bothw and —w minimize ¢(-,1). But this means

Fix a large enoughB,, > 1 to be specified later. Let . - .
X g ug » pectl that¢/(0) = 0, in contradiction to assumption (2).

x = (1,0,...,0) and letD to be the uniform distribution
on {3x,—x}. To prove the result then we just need to show

that I. Proof of Thm. 9

argmin £(3w,1) +4(-w,1) and argmin {(w,1) Let D be a distribution which satisfies (9). The idea of
wi[w]?< B w < B h f is that the | t knowTf is the real
(26) the proof is that the learner cannot knowTf is the rea
distribution (on which regret is measured) or the distiiut
which includes noise. Specifically, consider the following
adversary strategies:

are disjoint, for some appropriately chosBy,.

First, we show that the first set above is a subsefwof:
|lw|? < R} for some fixedR which does not depend o,
We do a case-by-case analysis, depending on#ow) looks 1) At each round, draw an example fra and present it

like. to the learner (with the labdl) without adding noise.
1) ¢(-,1) monotonically increases iR. Impossible by ~ 2) At each round, pick the examplEp[x], add to it
assumption (2). zero-mean noise sampled from — Ep[x], where Z
2) ¢(-,1) monotonically decreases iR. First, recall that is distributed according td, and present the noisy
since (-, 1) is convex, it is differentiable almost any- example (with the label) to the learner.

where, and its derivative is monotonically increasingn both cases the examples presented to a learner appear
Now, since{(-,1) is convex and bounded from belowto come from the same distributioP. Hence, any learner
¢(w,1) must tend to0 asw — oo (wherever/(-,1) observing one copy of each example cannot know which of
is differentiable, which is almost everywhere by conthe two strategies is played by the adversary. Since (9)i@spl
vexity). Moreover, by assumption (2),(w, 1) is upper that the set of optimal learner strategies for each of the two
bounded by a strictly negative constant for any 0. adversary strategies are disjoint, by picking an apprgria
As a result, the gradient df{3w, 1) + ¢(—w, 1), which strategy the adversary can force a constant regret.
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To formalize this argument, fix any learning algorithm thas easy to verify that the functions, and F» are continuous.
observes one copy of each example andsetws, ... be the Indeed,¢({-,E[x]),1) is continuous by convexity of and
sequence of generated predictors. Then it is sufficienteavshE[¢((-, x) , 1)] is continuous by the compactness assumptions.
that at least one of the following two holds Hence, any cluster point ofr1, w», ... is also a cluster point

of both F} and F5. Since Fy, F, > 0 by construction, and
lim sup max E Zg we,x:),1) — £((w,x;),1)| >0 Wweare assumi_ng that neith&f (w) > 0 nor Fy(w) > 0 for
T—oo WEW any cluster pointw, we must havel;(w) = Fy(w) = 0.
(27) But this means tha# belongs to both sets appearing in (9),
in contradiction to the assumption they are disjoint. Thgs,
lim sup — Zg wi, E[x]),1) — Hg}v €(<W,E[x]> , 1) >0 sequence of predictors satisfies (30), as desired.
T—o0 t 1 w
(28) APPENDIX
with probability 1, where in both cases the expectation is with ALTERNATIVE NOTIONS OFREGRET

respect toD and “w.p. 1" refers to the randomness of the In the online setting, one may consider notions of regret
noise. First note that (27) is implied by other than Eqg. (1). One choice is

T

h;njolip Zé (W, x4),1) —&i&E[f((w,x%l)} >0 Z[ wi, U(X¢)), ye) — mm Z[ w, U (%)), y¢)
(29)

with probability 1. SinceW is compact,D is assumed to be bgt this is too easy, as it red_uces to standard on!ine legrnin
supported on a compact subset, ahés convex and hence with respect to examples which happen to be noisy. Another
continuous, therd((w, x) , 1) is almost surely bounded. So byklnd of regret we may want to minimize is

Azuma'’s inequality,

iP(TZ(IEt (Wi, x ,)}_z(<wt,xt>,1))ze>

T—1 This is the kind of regret which is relevant for actually
predicting the valueg; well based on the noisy instances.

is finite for all e > 0, where the expectatiof,[-] is Unfortunately. i | this is htoh for. T
conditioned on the randomness in the previous rounds Hegtti ntortunately, in general this IS 106 much 10 hope for. 10 see

W, = 13>t W, (which belongs to/V for all ¢ since it is a why, assume we deal with a linear kernel (so tigk) = x),
conve; SG?)ZIWG have and assumé(w,x,y) = ((w,x) — y)2. Now, suppose that

the adversary picks some* # 0 in W, which might be even

Zf ((we, U(%e)) s ye) — min L(w, U(xe)) ) - (31)

1 known to the learner, and at each roumatovides the example
T D Uwexi) 1) > Z]Et ((we,x) , 1)] (w*/[w*]|*,1). Itis easy to verify that Eq. (31) in this case
=1 equals

ZE f(<V_VT,X>,1) T

[ } > ((wi, %) —1)* - 0.

where the first inequality holds with probability 1 @5— oo t=1

by the Borel-Cantelli lemma, and the second one holds fRfecall that the learner chooses, before %, is revealed.

every T’ because is convex. Therefore, if the noise which leads g has positive variance,
Similarly, it will generally be impossible for the learner to choose
T such that(w,, %;) is arbitrarily close tol. Therefore, the
Zé ((w,E[x]),1) > é((v‘vT,E[x]) , 1) . equation above cannot grow sub-linearly with
t 1
Hence (28)—(29) are obtained if we show that no single ACKNOWLEDGMENTS
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