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@ Reinforcement Learning

© Multi-Armed Bandit
o c-greedy exploration
e EXP3
e UCB

© Markov Decision Process (MDP)
@ Value lteration
@ ()-Learning
@ Deep-Q-Learning
@ Temporal Abstraction
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Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:
Fort=1,2,...

o Agent observes state s; € S

@ Agent decides on action a; € A based on the current policy
@ Environment provides reward r; € R

@ Environment moves the agent to next state s;11 € S
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Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:
Fort=1,2,...

o Agent observes state s; € S
@ Agent decides on action a; € A based on the current policy
@ Environment provides reward r; € R

@ Environment moves the agent to next state s;11 € S

Many applications, e.g.: Robotics, Playing games, Finance, Inventory
management, ...
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Merge into traffic:

Goal: Adjust the speed of the car according to traffic

@ State is positions and velocities of the car and the preceding car
@ Action is acceleration/braking command
o

Reward is composed of avoiding accidents, smooth driving, and
making progress
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Merge into traffic:

Goal: Adjust the speed of the car according to traffic

@ State is positions and velocities of the car and the preceding car
@ Action is acceleration/braking command
o

Reward is composed of avoiding accidents, smooth driving, and
making progress

Playing Atari Game:
@ https://www.youtube.com/watch?v=V1eYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Average Reward and Discounted Reward

Average Reward: Given time horizon T', the average reward of following a
policy 7 is
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Average Reward and Discounted Reward

Average Reward: Given time horizon T', the average reward of following a
policy 7 is

Discounted Reward: Given v € (0,1), the discounted reward of following a
policy 7 is

R, (m) = EZ’ytrt
t=1
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Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s; is the “instance”, a; is the predicted

label, —7; is the loss measuring the discrepancy between a; and the “true”
label, y¢, and sy41 is chosen independent of s; and a;.
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Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s; is the “instance”, a; is the predicted
label, —7; is the loss measuring the discrepancy between a; and the “true”
label, y¢, and sy41 is chosen independent of s; and a;.

Differences:
@ In SL, actions do not effect the environment, therefore we can collect
training examples in advance, and only then search for a policy

@ In SL, the effect of actions is local, while in RL, actions have
long-term effect

@ In SL we are given the correct answer, while in RL we only observe a
reward
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© Multi-Armed Bandit
o c-greedy exploration
e EXP3
e UCB
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The Multi-Armed Bandit Problem (Robbins

@ States: The state is constant (has no effect)
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The Multi-Armed Bandit Problem (Robbins

@ States: The state is constant (has no effect)

@ Actions: n slot machines (“arms”).
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The Multi-Armed Bandit Problem (Robbins 1952)

@ States: The state is constant (has no effect)
@ Actions: n slot machines (“arms”).

@ Reward: There exists a deterministic function p from A = [n] to all
distributions over [0, 1] s.t. for every ¢, r, ~ p(ay)
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The Multi-Armed Bandit Problem (Robbins 1952)

@ States: The state is constant (has no effect)
@ Actions: n slot machines (“arms”).

@ Reward: There exists a deterministic function p from A = [n] to all
distributions over [0, 1] s.t. for every ¢, r, ~ p(ay)

@ Denote: p; = Elri|la; = i], i* = argmax; p;, pu* = pi=, A; = p* —
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The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function p from A = [n] to all
distributions over [0, 1] s.t. for every ¢, r, ~ p(ay)

Denote: p; = Elr¢|la; = i], i* = argmax; p;, pu* = pi, A; = p* — p;

Regret:
p* —ERp(m)
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The Exploration-Exploitation Tradeoff

How to pick the next action?

@ Exploitation: Choose the most promising action based on your
current understanding
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The Exploration-Exploitation Tradeoff

How to pick the next action?

@ Exploitation: Choose the most promising action based on your
current understanding

@ Exploration: Maybe there is a better arm ?
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Naive approach: first explore then exploit

@ Procedure:
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Naive approach: first explore then exploit

@ Procedure:
o Pure exploration for the first m iterations (pick actions at random)
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Naive approach: first explore then exploit

@ Procedure:

o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1)
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Naive approach: first explore then exploit

@ Procedure:

o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1)
o Pure exploitation for the rest of the T — m iterations (always pick ¢)
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Naive approach: first explore then exploit

@ Procedure:

o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1)
o Pure exploitation for the rest of the T — m iterations (always pick ¢)

@ Analysis:
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Naive approach: first explore then exploit

@ Procedure:
o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1) )
o Pure exploitation for the rest of the T — m iterations (always pick ¢)
@ Analysis:
o Claim: If m is order of nlog(n)/e? then for all 4, |u; — fi;] < ¢
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Naive approach: first explore then exploit

@ Procedure:
o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1)
o Pure exploitation for the rest of the T — m iterations (always pick ¢)
@ Analysis:

o Claim: If m is order of nlog(n)/e? then for all 4, |u; — fi;] < ¢
e Proof: Hoeffding + union bound
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Naive approach: first explore then exploit

@ Procedure:
o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1) )
o Pure exploitation for the rest of the T — m iterations (always pick ¢)
@ Analysis:
o Claim: If m is order of nlog(n)/e? then for all 4, |u; — fi;] < ¢

e Proof: Hoeffding + union bound
o Regret:

we (T M _ =) + 7 (g — )

S (W = fr + fue — i3 + 5 — ) + 7 S 26+ — o
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Naive approach: first explore then exploit

@ Procedure:
o Pure exploration for the first m iterations (pick actions at random)
o Let ¢ = argmax; [i;, where fi; = avg(ry : a; = 1)
o Pure exploitation for the rest of the T — m iterations (always pick ¢)
@ Analysis:

o Claim: If m is order of nlog(n)/e? then for all 4, |u; — fi;] < ¢
e Proof: Hoeffding + union bound

o Regret:
o mi+ (T —m)p; . m _
w— T =W = m)+ 7w —p)
«  a . L m nlog(n)
< (p _Mi*+Mi*_M§+M2_Mg)+TSQG+T7€(Q
1/3

o For the best ¢, the regret is order of ("loﬁ(n)>
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}
@ A convex objective with convex constraint — can we use Stochastic
Gradient Descent 7
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}

@ A convex objective with convex constraint — can we use Stochastic
Gradient Descent 7

@ For every probability vector p, if we choose i; ~ p and set
VL(w(t)) = —rtpi,eit, then
t

E[VL®)] =3 pi- (— E[]}j) = V()
i=1 t
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}

@ A convex objective with convex constraint — can we use Stochastic
Gradient Descent 7

@ For every probability vector p, if we choose i; ~ p and set
VL(w(t)) = —rtpi,eit, then
t

E[VL®)] =3 pi- (— E[]}j) = V()
i=1 t

o Problem: we need that E[||VL(w®)||?] will be bounded
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}
@ A convex objective with convex constraint — can we use Stochastic
Gradient Descent 7

@ For every probability vector p, if we choose i; ~ p and set
VL(w(t)) = —rtpi,eit, then
t

E[VL®)] =3 pi- (— E[]}j) = V()
i=1 t

o Problem: we need that E[||VL(w®)||?] will be bounded
o e-greedy exploration: set p = (1 — e)w® +€1/n
That is, we explore w.p. € and exploit w.p. (1 —¢)
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SGD with e-greedy exploration

e Want to minimize L(w) = —w ' p over {w € [0,1]" : Y}, w; = 1}
@ A convex objective with convex constraint — can we use Stochastic
Gradient Descent 7

For every probability vector p, if we choose i; ~ p and set
VL(w(t)) = —rtpi,eit, then
t

E[VL®)] =3 pi- (— E[]}j) = V()
i=1 t

Problem: we need that E[||VL(w®)||?] will be bounded

e-greedy exploration: set p = (1 — e)w®) +e1/n
That is, we explore w.p. € and exploit w.p. (1 —¢)

1/3

Regret analysis: it can be show that the regret is order of (%)
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)
e Update: wgtﬂ) = Z% wl@ exp(—nV L(w®)[4])
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)

e Update: wgtﬂ) = Z% wl@ exp(—nV L(w®)[4])

@ The update makes sure that we have some exploration (we never
completely zero components of w)
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)

e Update: wgtﬂ) = Z% wl@ exp(—nV L(w®)[4])

@ The update makes sure that we have some exploration (we never
completely zero components of w)

1/2
@ Regret analysis: it can be show to be order of <m%g(n))
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)

e Update: wétﬂ) = Z% wl@ exp(—nV L(w®)[4])

@ The update makes sure that we have some exploration (we never
completely zero components of w)

1/2
@ Regret analysis: it can be show to be order of <m%g(n))

@ EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”
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EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

@ Same as SGD, but we pick p = w®) and update using Stochastic
Gradient in the Exponent

o Initialize: w™ = (1/n,...,1/n)

e Update: wétﬂ) = Z% wl@ exp(—nV L(w®)[4])

@ The update makes sure that we have some exploration (we never
completely zero components of w)

1/2
@ Regret analysis: it can be show to be order of <m%g(n))

@ EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

@ Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32



Upper Confidence Bound (UCB)

@ Optimism in the face of uncertainty (Lai and Robbins’ 1985)
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Upper Confidence Bound (UCB)

@ Optimism in the face of uncertainty (Lai and Robbins’ 1985)
e Using Hoeffding's inequality, if we pulled arm ¢ for N;(¢) times then:

2log(T)
Ni(t)

i < [+ := UCB;(t)
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Upper Confidence Bound (UCB)

@ Optimism in the face of uncertainty (Lai and Robbins’ 1985)
e Using Hoeffding's inequality, if we pulled arm ¢ for N;(¢) times then:

A 2log(T)
< s
pi < N.(0)

@ The UCB rule is to pull the arm that maximizes UCB;(¢)
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Upper Confidence Bound (UCB)

@ Optimism in the face of uncertainty (Lai and Robbins’ 1985)
e Using Hoeffding's inequality, if we pulled arm ¢ for N;(¢) times then:

A 2log(T)
< s
pi < N.(0)

@ The UCB rule is to pull the arm that maximizes UCB;(t

@ Regret can be shown to be bounded by log}T) Zz’:Ai>0 A%_
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© Markov Decision Process (MDP)
@ Value lteration
@ ()-Learning
@ Deep-Q-Learning
@ Temporal Abstraction
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Markov Decision Process (MDP)

The Markovian Assumption:

e For every ¢, s;41 ~ 7(s¢,a;) where 7 is a deterministic function over
Sx A

e For every ¢, r; is a random variable over [0, 1] whose distribution
depends deterministically only on (s, a;) and we denote its expected
value by p(s¢, at),

o It follows that (sy11,7:) is conditionally independent of
(Stflv atfl)a (5t72a at72)a ey (817 Cll) given (St7 at)
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MDP — algorithms

o Value lteration: Find the optimal policy when 7 and p are known

@ ()-Learning: Find the optimal policy when 7 and p are not known
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The Value Function and the ()-Function

@ The optimal value function is V*: 5 — R s.t.
Vi(s) =E 3022 | s1 =]
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The Value Function and the ()-Function

@ The optimal value function is V*: 5 — R s.t.
V*(s)=E [Zfil Yoy | 81 = 5]
@ Observe (this is known as Bellman's Equation:)

V*(s) = E V(s
(s) = max p(s,a)+vs,w(5’a) (s')
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The Value Function and the ()-Function

@ The optimal value function is V*: 5 — R s.t.
V*(s)=E [Zfil Yoy | 81 = 5]
@ Observe (this is known as Bellman's Equation:)

V*(s) =max |p(s,a) +v E V()

acA s'~7(s,a)

@ The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q*(s,0) = p(s,a) +7 E V(s

s'~7(s,a)
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The Value Function and the ()-Function

@ The optimal value function is V*: 5 — R s.t.
V*(s) =B[22 9're | 51= 3]
@ Observe (this is known as Bellman's Equation:)

V*(s) =max |p(s,a) +v E V()

acA s'~7(s,a)

@ The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q*(s,0) = p(s,a) +7 E V(s

s'~7(s,a)

@ corollary: The optimal policy is the greedy policy w.r.t. @*, namely,
7 (s) = argmax, Q* (s, a)
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The Value Function and the ()-Function

@ The optimal value function is V*: 5 — R s.t.
V*(s) =B[22 9're | 51= 3]
@ Observe (this is known as Bellman's Equation:)

V*(s) =max |p(s,a) +v E V()

acA s'~7(s,a)

@ The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q*(s,0) = p(s,a) +7 E V(s

s'~7(s,a)

@ corollary: The optimal policy is the greedy policy w.r.t. @*, namely,
7 (s) = argmax, Q* (s, a)

@ In particular, the optimal a; is a deterministic function of s;
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Value lteration

@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update

Verals) = 1pax [f’“’a)ﬂ E Vt(s’>]

s'~71(s,a)
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@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update
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e Theorem: ||V — V*loo < Y[V — V¥l

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32



Value lteration

@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update

Verals) = 1pax [f’“’a)ﬂ E Vt(s’>]

s'~71(s,a)

e Theorem: ||V — V*loo < Y[V — V¥l
@ Proof idea:
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Value lteration

@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update

Verals) = 1pax [f’“’a)ﬂ E Vt(s’>]

s'~71(s,a)

e Theorem: ||V — V*loo < Y[V — V¥l
@ Proof idea:
o Define T* : RISl — RISI to be the operator s.t. Vi1 = T*(V4)
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Value lteration

@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update

Vi = E V(s
pa(s) =g (s, £, B ()]
e Theorem: ||V — V*loo < Y[V — V¥l

@ Proof idea:

o Define T* : RISl — RISI to be the operator s.t. Vi1 = T*(V4)
o Show that T™ is a contraction mapping: for any two vector in RIS we
have [T (u) = T (v)[|oe < 7llu — vl
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Value lteration

@ lterative algorithm for finding V*:
Start with some arbitrary 1}y and update

Verals) = 1pax [f’“’a)ﬂ E Vt(s’>]

s'~71(s,a)

e Theorem: [V — V¥l < Y IVo — Voo
@ Proof idea:
o Define T* : RISl — RISI to be the operator s.t. Vi1 = T*(V4)
o Show that T™ is a contraction mapping: for any two vector in RIS we
have [T (u) = T (v)[|oc < 7llu — vl
e The proof follows from Banach's fixed point theorem
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Naive Learner

@ Step 1: Estimate 7 and p by applying purely random policy
@ Step 2: Apply Value lteration to learn the optimal policy

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 19 / 32



@ Bellman's equation for the @) function:

Q*(s,a) =p(s,a) +v B maxQ*(s,d)

s'~1(s,a) @
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@ Bellman's equation for the @) function:

Q*(S,CL) = p(S,CL) =+ Y , IB% )mE}XQ*(Sl,G/)

o Given (s, ay, St+1,7¢), define

B (Q) = Qo) = (-4 Qovir, )
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@ Bellman's equation for the @) function:

Q*(s,a) =p(s,a) +v B maxQ*(s,d)

s'~1(s,a) @

o Given (s, ay, St+1,7¢), define

B (Q) = Qo) = (-4 Qovir, )
o Initialize @1 and update

Qt+1(37 a) = Qt(sa a) - 77t55t,at (Qt)l[s =S, a = at]
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@ Bellman's equation for the @) function:

Q*(s,a) =p(s,a) +v B maxQ*(s,d)

s'~1(s,a) @

o Given (s, ay, St+1,7¢), define

B (Q) = Qo) = (-4 Qovir, )
o Initialize @1 and update

Qt+1(37 a) = Qt(sa a) - 77t55z,at (Qt)l[s =S, a = at]

@ The above update aims at converging to Bellman's equation

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 20 / 32



Exploration for ()-Learning

@ ()-Learning can be applied for any choice of a; (it is an “off policy”
learner)
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Exploration for ()-Learning

@ ()-Learning can be applied for any choice of a; (it is an “off policy”
learner)

@ Speed of convergence can be improved if we balance the
exploration-exploitation tradeoff (by one of the methods described
previously)
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The Curse of Dimensionality

e The @ function is a table of size |S| x |A]

@ This size grows exponentially with the dimensions of .S and A

@ The convergence of the “tabular” @Q-learning (namely, maintaing @ is
a table of size |S| x |A|) becomes very slow

@ We describe two approaches to overcome this problem:

e Function Approximation
o Temporal Abstractions
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Function Approximation for ()-Learning

@ Maintain a parametric hypothesis class of ) functions
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Function Approximation for ()-Learning

@ Maintain a parametric hypothesis class of ) functions

@ Rewrite § as a function of the parameter 6:

Ose,a:(0) = Qo(st, ar) — <Tt +ymax Qg, (se+1, a'))
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Function Approximation for ()-Learning

@ Maintain a parametric hypothesis class of ) functions

@ Rewrite § as a function of the parameter 6:
Ose,a:(0) = Qo(st, ar) — <Tt + ymax Qo,(st+1, a’))

e Since we want to minimize 16, o,(0)? we take a gradient step:

Orr1 = 0 — 05, 0, (0:) VQol(st, ar)
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Deep-Q-Learning

o Used by DeepMind to learn to play Atari games
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Deep-Q-Learning

o Used by DeepMind to learn to play Atari games

o Let Qp: S — R4l be a deep network, where we take S ¢ R and
assume that |A| is not too larger

@ Exploration: e-greedy
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Deep-Q-Learning

o Used by DeepMind to learn to play Atari games

o Let Qp: S — R4l be a deep network, where we take S ¢ R and
assume that |A| is not too larger

@ Exploration: e-greedy

@ Memory replay: After executing a;, and observing r, s;+1 we store the
example (s¢, ag, 74, 5.41) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database
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Deep-Q-Learning

o Used by DeepMind to learn to play Atari games

o Let Qp: S — R4l be a deep network, where we take S ¢ R and
assume that |A| is not too larger

@ Exploration: e-greedy

@ Memory replay: After executing a;, and observing r, s;+1 we store the
example (s¢, ag, 74, 5.41) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

o Freezing (): Every C step, freeze the value of QQy and denote it by Q
Then, redefine § to be

S0 = Qo) = 11+ max Qs ) )
This has some stabilization effect on the algorithm
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Intuition: Structuring a State Space

Consider some state space S C R¢
Suppose we partition itto S =51 WU Sy W... U S,

Assuming homogenous actions within each .S;, we can apply @
learning while using [k] as a new state space

@ One can think of Deep-Q-Learning as automatically finding the
partition (the first layers of the network)
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Temporal Abstraction

@ Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi

Step 1: finding my phone

Step 2: finding the number

Step 3: dialing the first digit

Step 20: commanding my finger muscle to move into the right place ...
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@ Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi

Step 1: finding my phone

Step 2: finding the number

Step 3: dialing the first digit

Step 20: commanding my finger muscle to move into the right place ...
e Options: (Sutton, Precup, Singh)
e An option is a pair (, §) where

e 7:S5 — Ais the policy to apply while within the “option”
e :S5 —[0,1] is a stochastic termination function
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Step 2: finding the number
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Step 20: commanding my finger muscle to move into the right place ...
e Options: (Sutton, Precup, Singh)
e An option is a pair (, §) where
e 7:S5 — Ais the policy to apply while within the “option”
e :S5 —[0,1] is a stochastic termination function

o Instead of directly choosing actions, the agent picks an option o; € O,
and this option is applied until it terminates
e That is, we should learn a policy over options, p: S — O
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Temporal Abstraction

@ Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi

Step 1: finding my phone

Step 2: finding the number

Step 3: dialing the first digit

Step 20: commanding my finger muscle to move into the right place ...

e Options: (Sutton, Precup, Singh)
e An option is a pair (, §) where
e 7:S5 — Ais the policy to apply while within the “option”
e :S5 —[0,1] is a stochastic termination function
o Instead of directly choosing actions, the agent picks an option o; € O,
and this option is applied until it terminates
e That is, we should learn a policy over options, p: S — O
e We can learn p similarly to how we learn a vanilla policy, and the
advantage is that mt may be easier to pick O than picking A
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Limitations of MDPs

@ The Markovian assumption is mathematically convenient but rarely
holds in practice

o POMDP = Partially Observed MDP: There is a hidden Markovian
state, but we only observe a view that depends on it

@ Another approach is “direct policy search”, that do not necessarily
rely on the Markovian assumption.
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@ Reinforcement Learning is a powerful and useful learning setting, but
is much harder than Supervised Learning

@ The Exploration-Exploitation Tradeoff

@ MDP: Connecting the future rewards to current actions using a
Markovian assumption
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Appendix
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Stationary Distribution of an MDP

@ A MDP and a deterministic policy function 7 induces a Markov chain
over S, because P[s;11|s¢, at, ..., 81,a1] = P[siy1]s¢]

@ The stationary distribution over S is the probability vector ¢ such that
gs =m0 7 37 1[se = o

e We have that g = )/ ¢ P[s|5']

o We have Rp(m) — > qsps where py = (s,7(s))

@ Using P to denote the matrix s.t. P; ¢ = P[s|s'], we obtain that the
average reward is the solution of the following Linear Program (LP):

min(gq, —p) s.t. ¢ > 0,{(q,1) =1,(P—-1)g=0
q
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The Dual Problem and the Value Function

@ Primal

min (g, —p) s.t. ¢ > 0,(¢,1) =1,(P —1I)g =0
g€RISI

e Dual: define A =[(PT —1),1]

0,...,0,1]) s.t. Av < —
verlfk}%}\{+1<v,[ J) st Av < —p

o Equivalently:

max Bst.f<—p+{T—-Pyv=v—[p+ P
veRISI BeR

o Equivalently (since at the optimum, 8 = ming[vs — (ps + (P v))])

max minfvs — (ps 4+ (P v)s)]
’UER‘Sl S
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@ Assumption: rewards are > 0
e Claim: If there's a solution to (I — PT)v = p, then it is an optimal
solution for which 3 =10

@ Proof: For any v, choose s s.t. v is minimal, then (PTv)s > v,
because the rows of P are probabilities vector. Since p, > 0, we
have that for this s, vs — (ps + (PTv)s) <0, so 8 < 0, which
concludes our proof.
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