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Multiclass Categorization

So far, we mainly dealt with binary problems h : X → {±1} or
regression problems, h : X → R

Multiclass problems: h : X → {1, . . . , k}
E.g.: x ∈ X is an image and {1, . . . , k} represents k possible objects

We’ll later consider problems in which k is extremely large, E.g., in
translation, x ∈ X is a sentence in Hebrew and {1, . . . , k} is all
possible sentences in English

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 3 / 40



Multiclass Categorization

So far, we mainly dealt with binary problems h : X → {±1} or
regression problems, h : X → R
Multiclass problems: h : X → {1, . . . , k}

E.g.: x ∈ X is an image and {1, . . . , k} represents k possible objects

We’ll later consider problems in which k is extremely large, E.g., in
translation, x ∈ X is a sentence in Hebrew and {1, . . . , k} is all
possible sentences in English

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 3 / 40



Multiclass Categorization

So far, we mainly dealt with binary problems h : X → {±1} or
regression problems, h : X → R
Multiclass problems: h : X → {1, . . . , k}
E.g.: x ∈ X is an image and {1, . . . , k} represents k possible objects

We’ll later consider problems in which k is extremely large, E.g., in
translation, x ∈ X is a sentence in Hebrew and {1, . . . , k} is all
possible sentences in English

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 3 / 40



Multiclass Categorization

So far, we mainly dealt with binary problems h : X → {±1} or
regression problems, h : X → R
Multiclass problems: h : X → {1, . . . , k}
E.g.: x ∈ X is an image and {1, . . . , k} represents k possible objects

We’ll later consider problems in which k is extremely large, E.g., in
translation, x ∈ X is a sentence in Hebrew and {1, . . . , k} is all
possible sentences in English

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 3 / 40



One-vs-All reduction

Suppose we have a learner A for binary classification and we need to
solve a multiclass problem

Let S = (x1, y1), . . . , (xm, ym)

One-vs-All: train k binary problems, where problem i discriminates
between class i and the rest of the classes. That is:

For every i, feed the binary training set
Si = (x1, (−1)1[y1 6=i]), . . . , (xm, (−1)1[ym 6=i]) into A to get hi
Output the multiclass classifier

h(x) = argmax
i∈[k]

hi(x)

In case of ties (more than one hi predicts 1), and if hi outputs a
confidence as well (e.g. SVM), we can use the confidence of hi to
break ties
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All-Pairs reduction

All pairs of classes are compared to each other.

For every 1 ≤ i < j ≤ k, construct a binary sample, Si,j , containing
examples from class i against examples from class j.

Call the binary learner to get hi,j

Output the multiclass classifier by predicting the class which had the
highest number of “wins”
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Sub-optimality of reductions

One-vs-All over halfspace binary classifier will fail on the sample
below, although it is separable by the resulting hypothesis class

1 2 3
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Linear Multiclass Predictors

Recall, binary linear predictor is

h(x) = sign(〈w,x〉

Can rewrite as
h(x) = argmax

y∈{±1}
〈w, yx〉

Natural generalization:

h(x) = argmax
y∈Y

〈w,Ψ(x, y)〉,

where Ψ : X × Y → Rd is a class-sensitive feature mapping.

Intuitively, we can think of the elements of Ψ(x, y) as score functions
that assess how good the label y fits the instance x.

The immediate question, how to construct Ψ ?
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Linear Multiclass Predictors

h(x) = argmax
y∈Y

〈w,Ψ(x, y)〉,

w

Ψ(x, y)

Ψ(x, y′)
Ψ(x, y′′)
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Class-sensitive feature mapping

Choosing Ψ is a “feature learning” problem, and is similar to choosing
a kernel in SVM. Hence, in general, it requires some prior knowledge

Example: TF-IDF:

X = text documents, Y = topics, d = size of a dictionary of words.
Term Frequency: TF (j,x) = number of times word j appears in
document x.
Document Frequency: DF (j, y) = number of times word j appears in
documents in our training set that are not about topic y.
(measures if word j is frequent in other topics)
Term-Frequency-Inverse-Document-Frequency:

Ψj(x, y) = TF (j,x) log
(

m
DF (j,y)

)
Intuitively, Ψj(x, y) should be large if word j appears a lot in x but
does not appear at all in documents that are not on topic y
In such case, we tend to believe that the document x is on topic y
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The Multi-vector Construction

h(x) = argmax
y∈[k]

(Wx)y = argmax
y∈[k]

〈wy,x〉

w1

w2

w3 w4

Can be written as argmaxy〈w,Ψ(x, y)〉 for

Ψ(x, y) = [ 0, . . . , 0︸ ︷︷ ︸
∈R(y−1)n

, x1, . . . , xn︸ ︷︷ ︸
∈Rn

, 0, . . . , 0︸ ︷︷ ︸
∈R(k−y)n

] .
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Cost-sensitive losses

Which prediction is worse?

Cost function: ∆ : Y × Y → R+

Zero-one loss is a special case: ∆(y, y′) = 1[y′ 6=y]
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ERM

ERM problem: find w that minimizes

LS(hw) =
1

m

m∑
i=1

∆(hw(xi), yi) .

In the realizable case, equivalent to the linear programming problem:

∀i ∈ [m], ∀y ∈ Y \ {yi}, 〈w,Ψ(xi, yi)〉 > 〈w,Ψ(xi, y)〉

NP hard in the non-realizable case so we’ll use a surrogate convex loss
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Generalized Hinge Loss

Multiclass predictor:

hw(x) = argmax
y′∈Y

〈w,Ψ(x,y′)〉 .

By definition:
〈w,Ψ(x, y)〉 ≤ 〈w,Ψ(x, hw(x))〉 .

Therefore,

∆(hw(x), y) ≤ ∆(hw(x), y) + 〈w,Ψ(x, hw(x))−Ψ(x, y)〉

≤ max
y′∈Y

(
∆(y′, y) + 〈w,Ψ(x, y′)−Ψ(x, y)〉

)
def
= `(w, (x, y))

The generalized hinge loss is convex and ρ-Lipschitz, for
ρ = maxy′∈Y ‖Ψ(x, y′)−Ψ(x, y)‖.
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Generalized Hinge Loss

The generalized hinge loss equals zero when:

∀y′ ∈ Y \ {y}, 〈w,Ψ(x,y)〉 ≥ 〈w,Ψ(x,y′)〉+ ∆(y′, y) .

w
Ψ(x, y)

Ψ(x, y′)

Ψ(x, y′′) ≥
∆

(y, y ′)

≥
∆

(y
, y
′′ )
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Multiclass SVM

Parameters:

class sensitive feature mapping, Ψ

cost function ∆ : Y × Y → R+

regularization parameter λ > 0

Solve:

argmin
w∈Rd

(
λ‖w‖2 +

1

m

m∑
i=1

max
y′∈Y

(
∆(y′, yi) + 〈w,Ψ(xi, y

′)−Ψ(xi, yi)〉
))

Output:
hw(x) = argmax

y∈Y
〈w,Ψ(x, y)〉
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SGD implementation

Loss function:

`(w, (x, y)) = max
y′∈Y

(
∆(y′, y) + 〈w,Ψ(x, y′)−Ψ(x, y)〉

)
Sub-gradient calculation

find ŷ ∈ argmaxy′∈Y
(
∆(y′, y) + 〈w(t),Ψ(x, y′)−Ψ(x, y)〉

)
set vt = Ψ(x, ŷ)−Ψ(x, y)
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Structured Output Prediction

Structured Output Prediction = Multiclass problems in which Y is very
large but is endowed with a predefined structure

Example — Optical Character Recognitio (OCR):

X = set of images

Y all possible words in English

workable
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Structured Output Prediction

The good news: sample complexity of multiclass SVM does not depend on
|Y| but rather on ‖Ψ(x, y)‖ and ‖w‖.

However, the huge size of Y poses computational challenges:

1 To apply the multiclass prediction we need to solve a maximization
problem over Y. How can we predict efficiently when Y is so large?

2 How do we train w efficiently? In particular, to apply the SGD rule
we again need to solve a maximization problem over Y.

Solution:

Endow Ψ and ∆ with structure that allows fast maximization over Y
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Modeling for OCR

For simplicity assume Y = words of length r

Define ∆(y′,y) = 1
r

∑r
i=1 1[yi 6=y′i]

Think about x ∈ X as a matrix of size n× r (after segmentation to
the r words)

Type 1 features: (capture pixels in the image whose gray level values
are indicative to a certain letter)

Ψi,j,1(x,y) =
1

r

r∑
t=1

xi,t 1[yt=j] .

Type 2 features: (capture “it is likely to see the pair ’qu’ in a word”)

Ψi,j,2(x,y) =
1

r

r∑
t=2

1[yt=i] 1[yt−1=j] .

Claim: The problem argmaxy∈Y〈w,Ψ(x,y)〉 can be solved efficiently
using dynamic programming
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Dynamic Programming

Can rewrite the problem as:

hw(x) = argmax
y∈Y

r∑
t=1

〈w,φ(x, yt, yt−1)〉 .

Maintain a matrix M ∈ Rq,r such that

Ms,τ = max
(y1,...,yτ ):yτ=s

τ∑
t=1

〈w,φ(x, yt, yt−1)〉

and observe: Maximum of 〈w,Ψ(x,y)〉 equals to maxsMs,r

Calculate M in a recursive manner:

Ms,τ = max
s′

(
Ms′,τ−1 + 〈w,φ(x, s, s′)〉

)
.
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Ranking
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Ranking

Ranking = ordering instances according to relevance

Let X ∗ =
⋃∞
n=1X n be the set of all sequences of instances from X of

arbitrary length.

Ranking hypothesis: a function that receives a sequence of instances
x̄ = (x1, . . . ,xr) ∈ X ∗, and returns a permutation of [r]

Equivalently, h(x̄) = y ∈ Rr, where π(y) is the induced permutation.

E.g.

y sorted y π(y)

2 -1 4
1 0.5 3
6 1 5
-1 2 1
0.5 6 2

π(y)i is the position of yi in the sorted vector. Top-ranked instances
are those that achieve the highest values in π(y).
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Loss functions for Ranking

Kendall-tau loss:

Count the number of pairs (i, j) that are in different order in the two
permutations:

∆(y′,y) =
2

r(r − 1)

r−1∑
i=1

r∑
j=i+1

1[sign(y′i−y′j)6=sign(yi−yj)] .

More useful than the 0-1 loss as it reflects the level of similarity
between the two rankings.
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Loss functions for Ranking

Normalized Discounted Cumulative Gain (NDCG):

Emphasizes correctness at the top of the list by using a discount

Define a discounted cumulative gain measure:

G(y′,y) =

r∑
i=1

D(π(y′)i) yi

where D is a decreasing function

Normalized discounted cumulative gain

∆(y′,y) = 1− G(y′,y)

G(y,y)

NDCG is often used to evaluate the performance of search engines
since in such applications it makes sense to completely ignore
elements which are not at the top of the ranking.
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Discounted cumulative gain — example

G(y′,y) =

r∑
i=1

D(π(y′)i) yi

y′ sorted y′ π(y′) D(π(y′)) y D(π(y)) π(y) sorted y

2 -1 4 1 5 1 4 -2
1 0.5 3 0 -2 0 1 1
6 1 5 2 6 2 5 3
-1 2 1 0 1 0 2 5
0.5 6 2 0 3 0 3 6

∆(y′,y) = 1− G(y′,y)

G(y,y)
= 1− 17

17
= 0

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 27 / 40



Linear Predictors for Ranking

Linear predictor

hw((x1, . . . ,xr)) = (〈w,x1〉, . . . , 〈w,xr〉) .

Let V be the set of all permutations as vectors in [r]r

Observe:

π(y′) = argmax
v∈V

r∑
i=1

vi y
′
i

Therefore, with Ψ(x̄,v) =
∑r

i=1 vixi, we have

π(hw(x̄)) = argmax
v∈V

r∑
i=1

vi〈w,xi〉

= argmax
v∈V

〈w,
r∑
i=1

vixi〉

= argmax
v∈V

〈w,Ψ(x̄,v)〉 .
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Linear Predictors for Ranking

We can now rely on the structured output formulation

The resulting hinge loss will be

max
v∈V

[
∆(v,y) +

r∑
i=1

(vi − π(y)i) 〈w,xi〉

]

Each step of SGD for the resulting learning problem boils down to
“the assignment problem” and can be solved efficiently using the
“Hungarian method”
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Bipartite Ranking

In ranking, the output is y ∈ Rr

If yi = yj we obtain a partial order

In the extreme case, y ∈ {±1}r we obtain just two options (relevant
or non-relevant)

So, is it a binary classification problem ?

Not quite, because of the loss function

Example: Fraud detection

Each day we get r transactions and need to predict fraud or benign
99.9% of the transactions are benign
So, the constant “benign” predictor will have zero-one error of 0.1%
But, it’s a poor predictor ...
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Multivariate Performance Measures

Suppose we predict y′ ∈ Rr and the truth is y ∈ {±1}r

Given a threshold θ, we have 4 numbers of interest:

True Positives: a = |{i : yi = +1 ∧ sign(y′i − θ) = +1}|
False Positives: b = |{i : yi = −1 ∧ sign(y′i − θ) = +1}|

False Negatives: c = |{i : yi = +1 ∧ sign(y′i − θ) = −1}|
True Negatives: d = |{i : yi = −1 ∧ sign(y′i − θ) = −1}|

Recall (a.k.a. sensitivity or true positive rate) is the fraction of true
positives y′ “catches”, namely, TP

TP+FN . Recall increases with θ

Precision is the fraction of correct predictions among the positive
labels we predict, namely, TP

TP+FP . Precision decreases with θ

Specificity is the fraction of true negatives that our predictor
“catches”, namely, TN

TN+FP . Specificity decreases with θ

θ controls the tradeoff between precision and recall
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Multivariate Performance Measures

Example:

y′ predicts by the halfspace (’dots’ = positive, ’stars’ = negative)

y predicts by the ellipse (within = positive, outside = negative)

TP

FP

FN

TN

Recall = TP
TP+FN

Precision = TP
TP+FP
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Receiver operating characteristic (ROC) curve

Recall=TPR= TP
TP+FN

1-sensitivity=FPR= FP
FP+TN

w
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Multivariate Performance Measures

For every θ we can define a single number that measures the performance.

Averaging sensitivity and specificity: 1
2

(
TP

TP+FN + TN
TN+FP

)
. This is

the accuracy on positive examples averaged with the accuracy on
negative examples.

F1-score: The F1 score is the harmonic mean of the precision and
recall: 2

1
Precision

+ 1
Recall

.

Recall at k: We measure the recall while the prediction must contain
at most k positive labels. That is, we should set θ so that
TP + FP ≤ k. E.g., convenient for fraud detection

Precision at k: We measure the precision while the prediction must
contain at least k positive labels. That is, we should set θ so that
TP + FP ≥ k.
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Multivariate Performance Measures

Zero-one loss can be written as FP+TN
m

If 99.9% of the examples are negatively labeled, zero-one loss of the
“all negative” predictor is 0.1%

But, the recall of such predictor is 0, hence the F1 score is also 0,
which means that the loss 1− F1 will be 1 (worst possible).

Conclusion: we need to train our predictor with an appropriate loss
function for the problem
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Linear Predictors for Multivariate Measures

Linear predictor:

hw(x̄) = (〈w,x1〉, . . . , 〈w,xr〉) .

Actual prediction:

b(y′) = (sign(y′1 − θ), . . . , sign(y′r − θ)) ∈ {±1}r .

Observe, for all performance measures defined before, exists some
V ⊆ {±1}r s.t.

b(y′) = argmax
v∈V

r∑
i=1

viy
′
i .

E.g., for recall at k take V to be all vectors in {±1}r that has at
most k pluses

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 37 / 40



Linear Predictors for Multivariate Measures

Linear predictor:

hw(x̄) = (〈w,x1〉, . . . , 〈w,xr〉) .

Actual prediction:

b(y′) = (sign(y′1 − θ), . . . , sign(y′r − θ)) ∈ {±1}r .

Observe, for all performance measures defined before, exists some
V ⊆ {±1}r s.t.

b(y′) = argmax
v∈V

r∑
i=1

viy
′
i .

E.g., for recall at k take V to be all vectors in {±1}r that has at
most k pluses

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 37 / 40



Linear Predictors for Multivariate Measures

Linear predictor:

hw(x̄) = (〈w,x1〉, . . . , 〈w,xr〉) .

Actual prediction:

b(y′) = (sign(y′1 − θ), . . . , sign(y′r − θ)) ∈ {±1}r .

Observe, for all performance measures defined before, exists some
V ⊆ {±1}r s.t.

b(y′) = argmax
v∈V

r∑
i=1

viy
′
i .

E.g., for recall at k take V to be all vectors in {±1}r that has at
most k pluses

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 37 / 40



Linear Predictors for Multivariate Measures

Linear predictor:

hw(x̄) = (〈w,x1〉, . . . , 〈w,xr〉) .

Actual prediction:

b(y′) = (sign(y′1 − θ), . . . , sign(y′r − θ)) ∈ {±1}r .

Observe, for all performance measures defined before, exists some
V ⊆ {±1}r s.t.

b(y′) = argmax
v∈V

r∑
i=1

viy
′
i .

E.g., for recall at k take V to be all vectors in {±1}r that has at
most k pluses

Shai Shalev-Shwartz (Hebrew U) IML Lecture 9 multiclass 37 / 40



Linear Predictors for Multivariate Measures

Hinge loss for multivariate:

∆(hw(x̄),y) = ∆(b(hw(x̄)),y)

≤ ∆(b(hw(x̄)),y) +

r∑
i=1

(bi(hw(x̄))− yi)〈w,xi〉

≤ max
v∈V

[
∆(v,y) +

r∑
i=1

(vi − yi) 〈w,xi〉

]
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SGD for Multivariate Measures

Applying SGD involves solving the maximization problem in the
definition of the loss

argmax
v∈V

[
∆(v,y) +

r∑
i=1

(vi − yi) 〈w,xi〉

]

Key idea, suppose ∆ only depends on a = TP, b = FP and partition
V into sets of the form

Ȳa,b = {v : |{i : vi = 1 ∧ yi = 1}| = a ∧ |{i : vi = 1 ∧ yi = −1}| = b } .

Withint each Ȳa,b the value of ∆ is constant, so we only need to
maximize the expression

max
v∈Ȳa,b

r∑
i=1

vi〈w,xi〉 .

This can be done efficiently by sorting the examples according to
〈w,xi〉
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Ȳa,b = {v : |{i : vi = 1 ∧ yi = 1}| = a ∧ |{i : vi = 1 ∧ yi = −1}| = b } .
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Summary

Multiclass problems

Simple reductions

Linear predictors and Multiclass SVM

Structured Output Prediction

Ranking

Bipartite Ranking and Multivariate Performance Measures

Efficient sub-gradient calculations using combinatorial optimization
(dynamic programming, assignment problems, sorting)
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