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Which separating hyperplane is better ?

x

x

Intuitively, dashed black is better
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Margin

w

x

v

Given hyperplane defined by L = {v : 〈w,v〉+ b = 0}, and given x,
the distance of x to L is

d(x, L) = min{‖x− v‖ : v ∈ L}

Claim: if ‖w‖ = 1 then d(x, L) = |〈w,x〉+ b|
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Margin and Support Vectors

Recall: a separating hyperplane is defined by (w, b) s.t.
∀i, yi(〈w,xi〉+ b) > 0
The margin of a separating hyperplane is the distance of the closest
example to it: mini |〈w,xi〉+ b|

The closest examples are called support vectors
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Support Vector Machine (SVM)

Hard-SVM: Seek for the separating hyperplane with largest margin

argmax
(w,b):‖w‖=1

min
i∈[m]

|〈w,xi〉+ b| s.t. ∀i, yi(〈w,xi〉+ b) > 0 .

Equivalently:
argmax

(w,b):‖w‖=1
min
i∈[m]

yi(〈w,xi〉+ b) .

Equivalently:

(w0, b0) = argmin
(w,b)

‖w‖2 s.t. ∀i, yi(〈w,xi〉+ b) ≥ 1

Observe: The margin of
(

w0
‖w0‖ ,

b0
‖w0‖

)
is 1/‖w0‖ and is maximal

margin
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Margin-based Analysis

Margin is Scale Sensitive:
if (w, b) separates (x1, y1), . . . , (xm, ym) with margin γ, then it
separates (2x1, y1), . . . , (2xm, ym) with a margin of 2γ
The margin depends on the scale of the examples

Margin of distribution: We say that D is separable with a
(γ, ρ)-margin if exists (w?, b?) s.t. ‖w?‖ = 1 and

D({(x, y) : ‖x‖ ≤ ρ ∧ y(〈w?,x〉+ b?) ≥ 1}) = 1 .

Theorem: If D is separable with a (γ, ρ)-margin then the sample
complexity of hard-SVM is

m(ε, δ) ≤ 8

ε2
(
2(ρ/γ)2 + log(2/δ)

)
Unlike VC bounds, here the sample complexity depends on ρ/γ
instead of d
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Soft-SVM

Hard-SVM assumes that the data is separable

What if it’s not? We can relax the constraint to yield soft-SVM

argmin
w,b,ξ

(
λ‖w‖2 +

1

m

m∑
i=1

ξi

)
s.t. ∀i, yi(〈w,xi〉+ b) ≥ 1− ξi and ξi ≥ 0

Can be written as regularized loss minimization:

argmin
w,b

(
λ‖w‖2 + Lhinge

S ((w, b))
)

where we use the hinge loss

`hinge((w, b), (x, y)) = max{0, 1− y(〈w,x〉+ b)} .
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The Homogenous Case

Recall: by adding one more feature to x with the constant value of 1
we can remove the bias term

However, this will yield a slightly different algorithm, since now we’ll
effectively regularize the bias term, b, as well

This has little effect on the sample complexity, and simplify the
analysis and algorithmic, so from now on we omit b
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Sample complexity of soft-SVM

Observe: soft-SVM = RLM

Observe: the hinge-loss, w 7→ max{0, 1− y〈w,x〉}, is ‖x‖-Lipschitz

Assume that D is s.t. ‖x‖ ≤ ρ with probability 1

Then, we obtain a convex-Lipschitz loss, and by the results from
previous lecture, for every u,

E
S∼Dm

[Lhinge
D (A(S))] ≤ Lhinge

D (u) + λ‖u‖2 +
2ρ2

λm
.

Since the hinge-loss upper bounds the 0-1 loss, the right hand side is
also an upper bound on ES∼Dm [L0−1

D (A(S))]

For every B > 0, if we set λ =
√

2ρ2

B2m
then:

E
S∼Dm

[L0−1
D (A(S))] ≤ min

w:‖w‖≤B
Lhinge
D (w) +

√
8ρ2B2

m
.
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Margin/Norm vs. Dimensionality

The VC dimension of learning halfspaces depends on the dimension, d

Therefore, the sample complexity grows with d

In contrast, the sample complexity of SVM depends on (ρ/γ)2, or
equivalently, ρ2B2

Sometimes d� ρ2B2 (as we saw in the previous lecture)

No contradiction to the fundamental theorem, since here we bound
the error of the algorithm using Lhinge

D (w?) while in the fundmental
theorem we have L0−1

D (w?)

This is an additional prior knowledge on the problem, namely, that
Lhinge
D (w?) is not much larger than L0−1

D (w?).
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Solving SVM using SGD

SGD for solving Soft-SVM

goal: Solve argminw

(
λ
2‖w‖

2 + 1
m

∑m
i=1 max{0, 1− y〈w,xi〉}

)
parameter: T

initialize: θ(1) = 0
for t = 1, . . . , T

Let w(t) = 1
λ tθ

(t)

Choose i uniformly at random from [m]

If (yi〈w(t),xi〉 < 1)

Set θ(t+1) = θ(t) + yixi
Else

Set θ(t+1) = θ(t)

output: w̄ = 1
T

∑T
t=1w

(t)
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Embeddings into feature spaces

The following sample in R1 is not separable by halfspaces

But, if we map x→ (x, x2) it is separable by halfspaces
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Embeddings into feature spaces

The general approach:

Define ψ : X → F , where F is some feature space
(formally, we require F to be a subset of a Hilbert space)

Train a halfspace over (ψ(x1), y1), . . . , (ψ(xm), ym)

Questions:

How to choose ψ ?

If F is high dimensional we face

statistical challenge — can be tackled using margin
computational challenge — can be tackled using kernels
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Choosing a mapping

In general, requires prior knowledge

In addition, there are some generic mappings that enrich the class of
halfspaces, e.g. polynomial mappings
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Polynomial mappings

Recall, a degree k polynomial over a single variable is
p(x) =

∑k
j=0wjx

j

Can be rewritten as 〈w, ψ(x)〉 where ψ(x) = (1, x, x2, . . . , xk)

More generally, a degree k multivariate polynomial from Rn to R can
be written as

p(x) =
∑

J∈[n]r:r≤k

wJ

r∏
i=1

xJi .

As before, we can rewrite p(x) = 〈w, ψ(x)〉 where now ψ : Rn → Rd
is such that for every J ∈ [n]r, r ≤ k, the coordinate of ψ(x)
associated with J is the monomial

∏r
i=1 xJi .
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The Kernel Trick

A kernel function for a mapping ψ is a function that implements inner
product in the feature space, namely,

K(x,x′) = 〈ψ(x), ψ(x′)〉

We will see that sometimes, it is easy to calculate K(x,x′) efficiently,
without applying ψ at all

But, is this enough ?
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The Representer Theorem

Theorem

Consider any learning rule of the form

w? = argmin
w

(
f (〈w, ψ(x1)〉, . . . , 〈w, ψ(xm)〉) + λ‖w‖2

)
,

where f : Rm → R is an arbitrary function. Then, ∃α ∈ Rm such that
w? =

∑m
i=1 αiψ(xi).

Proof.

We can rewrite w? as w? =
∑m

i=1 αiψ(xi) + u, where 〈u, ψ(xi)〉 = 0 for
all i. Set w = w? − u. Observe, ‖w?‖2 = ‖w‖2 + ‖u‖2, and for every i,
〈w, ψ(xi)〉 = 〈w?, ψ(xi)〉. Hence, the objective at w equals the objective
at w? minus λ‖u‖2. By optimality of w?, u must be zero.
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Implications of Representer Theorem

By representer theorem, optimal solution can be written as

w =
∑
i

αiψ(xi)

Denote by G the matrix s.t. Gi,j = 〈ψ(xi), ψ(xj)〉. We have that for all i

〈w, ψ(xi)〉 = 〈
∑
j

αjψ(xj), ψ(xi)〉 =

m∑
j=1

αj〈ψ(xj), ψ(xi)〉 = (Gα)i

and

‖w‖2 = 〈
∑
j

αjψ(xj),
∑
j

αjψ(xj)〉 =

m∑
i,j=1

αiαj〈ψ(xi), ψ(xj)〉 = α>Gα .

So, we can optimize over α

argmin
α∈Rm

(
f (Gα) + λα>Gα

)
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The Kernel Trick

Observe: the Gram matrix, G, only depends on inner products, and
therefore can be calculated using K alone

Suppose we found α, then, given a new instance,

〈w, ψ(x)〉 = 〈
∑
j

ψ(xj), ψ(x)〉 =
∑
j

〈ψ(xj), ψ(x)〉 =
∑
j

K(xj ,x)

That is, we can do training and prediction using K alone
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Representer Theorem for SVM

Soft-SVM:

min
α∈Rm

(
λαTGα +

1

m

m∑
i=1

max{0, 1− yi(Gα)i}

)

Hard-SVM
min
α∈Rm

αTGα s.t. ∀i, yi(Gα)i ≥ 1
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Polynomial Kernels

The k degree polynomial kernel is defined to be

K(x,x′) = (1 + 〈x,x′〉)k .

Exercise: show that if we define ψ : Rn → R(n+1)k s.t. for
J ∈ {0, 1, . . . , n}k there is an element of ψ(x) that equals to∏k
i=1 xJi , then

K(x,x′) = 〈ψ(x), ψ(x′)〉 .

Since ψ contains all the monomials up to degree k, a halfspace over
the range of ψ corresponds to a polynomial predictor of degree k over
the original space.

Observe that calculating K(x,x′) takes O(n) time while the
dimension of ψ(x) is nk
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Gaussian kernel (RBF)

Let the original instance space be R and consider the mapping ψ where for
each non-negative integer n ≥ 0 there exists an element ψ(x)n which

equals to 1√
n!
e−

x2

2 xn. Then,

〈ψ(x), ψ(x′)〉 =

∞∑
n=0

(
1√
n!
e−

x2

2 xn
) (

1√
n!
e−

(x′)2

2 (x′)n
)

= e−
x2+(x′)2

2

∞∑
n=0

(
(xx′)n

n!

)
= e−

(x−x′)2
2 .

More generally, the Gaussian kernel is defined to be

K(x,x′) = e−
‖x−x′‖2

2σ .

Can learn any polynomial ...
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Characterizing Kernel Functions

Lemma (Mercer’s conditions)

A symmetric function K : X × X → R implements an inner product in
some Hilbert space if and only if it is positive semidefinite; namely, for all
x1, . . . ,xm, the Gram matrix, Gi,j = K(xi,xj), is a positive semidefinite
matrix.
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Implementing soft-SVM with kernels

We can use a generic convex optimization algorithm on the α problem

Alternatively, we can implement the SGD algorithm on the original w
problem, but observe that all the operations of SGD can be
implemented using the kernel alone
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SGD with kernels for soft-SVM

SGD for Solving Soft-SVM with Kernels

parameter: T

Initialize: β(1) = 0 ∈ Rm
for t = 1, . . . , T

Let α(t) = 1
λ tβ

(t)

Choose i uniformly at random from [m]

For all j 6= i set β
(t+1)
j = β

(t)
j

If (yi
∑m

j=1 α
(t)
j K(xj ,xi) < 1)

Set β
(t+1)
i = β

(t)
i + yi

Else

Set β
(t+1)
i = β

(t)
i

Output: w̄ =
∑m

j=1 ᾱjψ(xj) where ᾱ = 1
T

∑T
t=1α

(t)
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Duality

Historically, many of the properties of SVM have been obtained by
considering a dual problem

It is not a must, but can be helpful

We show how to derive a dual problem to Hard-SVM:

min
w
‖w‖2 s.t. ∀i, yi〈w,xi〉 ≥ 1
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Duality

Hard-SVM can be rewritten as:

min
w

max
α∈Rm:α≥0

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)

Lets flip the order of min and max. This can only decrease the
objective value, so we obtain the weak duality inequality:

min
w

max
α∈Rm:α≥0

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)
≥

max
α∈Rm:α≥0

min
w

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)

In our case, there’s also strong duality (i.e., the above holds with
equality)
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Duality

The dual problem:

max
α∈Rm:α≥0

min
w

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)

We can solve analytically the inner optimization and obtain the
solution

w =
m∑
i=1

αiyixi

Plugging it back, yields

max
α∈Rm:α≥0

1

2

∥∥∥∥∥
m∑
i=1

αiyixi

∥∥∥∥∥
2

+

m∑
i=1

αi(1− yi〈
∑
j

αjyjxj ,xi〉)

 .
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Summary

Margin as additional prior knowledge

Hard and Soft SVM

Kernels
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