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e Support Vector Machines
@ Margin
@ hard-SVM
@ soft-SVM
@ Solving SVM using SGD

© Kernels

@ Embeddings into feature spaces
@ The Kernel Trick

@ Examples of kernels

@ SGD with kernels

@ Duality
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Which separating hyperplane is better ?

@ Intuitively, dashed black is better
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e Given hyperplane defined by L = {v : (w,v) + b =0}, and given x,
the distance of x to L is

d(x,L) = min{|[x —v| : v € L}

o Claim: if |w|| =1 then d(x, L) = |(w,x) + b
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Margin and Support Vectors

@ Recall: a separating hyperplane is defined by (w,b) s.t.
Vi, yi((w,x;) +b) >0

@ The margin of a separating hyperplane is the distance of the closest
example to it: min; [(w,x;) + b|

AN
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Margin and Support Vectors

@ Recall: a separating hyperplane is defined by (w,b) s.t.
Vi, yi((w,x;) +b) >0

@ The margin of a separating hyperplane is the distance of the closest
example to it: min; [(w,x;) + b|

@ The closest examples are called support vectors

AN
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Support Vector Machine (SVM)

o Hard-SVM: Seek for the separating hyperplane with largest margin

argmax min [(w,x;) +b| s.t. Vi, y;((w,x;) +0) > 0.
(w,b):||w|=1 %€[m]
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Support Vector Machine (SVM)

o Hard-SVM: Seek for the separating hyperplane with largest margin

argmax min [(w,x;) +b| s.t. Vi, y;((w,x;) +0) > 0.
(w,b):||w|=1 %€[m]

o Equivalently:

argmax min y;((w,x;) +0b) .
(w,b):||w|=1 %€[m]

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 6 /31



Support Vector Machine (SVM)

o Hard-SVM: Seek for the separating hyperplane with largest margin

argmax min [(w,x;) +b| s.t. Vi, y;((w,x;) +0) > 0.
(w,b):||w|=1 %€[m]

o Equivalently:
argmax min y;((w,x;) +b) .
(w,b):||w|=1 %€[m]

o Equivalently:

(wo, bo) = argmin |w||? s.t. Vi, yi((w,x;) +b) > 1
(w.b)
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Support Vector Machine (SVM)

o Hard-SVM: Seek for the separating hyperplane with largest margin

argmax min [(w,x;) +b| s.t. Vi, y;((w,x;) +0) > 0.
(w,b):||w|=1 %€[m]

o Equivalently:
argmax min y;((w,x;) +b) .
(w,b):||w|=1 %€[m]

o Equivalently:

(wo, bo) = argmin |w||? s.t. Vi, yi((w,x;) +b) > 1
(w.b)

Wo bo
lwoll* [lwoll

@ Observe: The margin of ( ) is 1/[[wo]| and is maximal

margin
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Margin-based Analysis

@ Margin is Scale Sensitive:
o if (w,b) separates (x1,91),- .-, (Xm, Ym) With margin -, then it
separates (2x1,Y1), - - -, (2Xm, Ym) With a margin of 2y
e The margin depends on the scale of the examples
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Margin-based Analysis

@ Margin is Scale Sensitive:
o if (w,b) separates (x1,91),- .-, (Xm, Ym) With margin -, then it
separates (2x1,Y1), - - -, (2Xm, Ym) With a margin of 2y
e The margin depends on the scale of the examples
@ Margin of distribution: We say that D is separable with a
(v, p)-margin if exists (w*,b*) s.t. ||[w*|| =1 and

D({(x,y) : x| < p Ay((wh,x) +5) > 1)) = 1.
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Margin-based Analysis

@ Margin is Scale Sensitive:
o if (w,b) separates (x1,91),- .-, (Xm, Ym) With margin -, then it
separates (2x1,Y1), - - -, (2Xm, Ym) With a margin of 2y
e The margin depends on the scale of the examples

@ Margin of distribution: We say that D is separable with a
(v, p)-margin if exists (w*,b*) s.t. ||[w*|| =1 and

D({(x,y) : x| < p Ay((wh,x) +5) > 1)) = 1.

@ Theorem: If D is separable with a (-, p)-margin then the sample
complexity of hard-SVM is

m(e,8) < 5 (2p/7)? + 1os(2/6))
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Margin-based Analysis

@ Margin is Scale Sensitive:
o if (w,b) separates (x1,91),- .-, (Xm, Ym) With margin -, then it
separates (2x1,Y1), - - -, (2Xm, Ym) With a margin of 2y
e The margin depends on the scale of the examples

@ Margin of distribution: We say that D is separable with a
(v, p)-margin if exists (w*,b*) s.t. ||[w*|| =1 and

D({(x,y) : x| < p Ay((wh,x) +5) > 1)) = 1.

@ Theorem: If D is separable with a (-, p)-margin then the sample
complexity of hard-SVM is

8
m(e,8) < (2(p/7)? +10g(2/9))
@ Unlike VC bounds, here the sample complexity depends on p/~v

instead of d
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Soft-SVM

@ Hard-SVM assumes that the data is separable
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Soft-SVM

@ Hard-SVM assumes that the data is separable
@ What if it's not? We can relax the constraint to yield soft-SVM

) 1 m
argmin (Auww +— Z&)
=1

w,0,

s.t. Vi, yi({w,x;) +0) >1-¢§ and § >0
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Soft-SVM

@ Hard-SVM assumes that the data is separable
@ What if it's not? We can relax the constraint to yield soft-SVM

1 m
argmin | \|w|?+ — ) &

s.t. Vi, yi({w,x;) +0) >1-¢§ and § >0
@ Can be written as regularized loss minimization:

argmin (Al|wl[? + L§"*((w, b)) )

w,b

where we use the hinge loss

MR8 ((w, ), (x, ) = max{0, 1 — y((w,x) +b)} .
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The Homogenous Case

@ Recall: by adding one more feature to x with the constant value of 1
we can remove the bias term

@ However, this will yield a slightly different algorithm, since now we'll
effectively regularize the bias term, b, as well

@ This has little effect on the sample complexity, and simplify the
analysis and algorithmic, so from now on we omit b
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Sample complexity of soft-SVM

@ Observe: soft-SVM = RLM
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Sample complexity of soft-SVM

@ Observe: soft-SVM = RLM
@ Observe: the hinge-loss, w — max{0,1 — y(w,x)}, is ||x||-Lipschitz
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Sample complexity of soft-SVM

@ Observe: soft-SVM = RLM
@ Observe: the hinge-loss, w — max{0,1 — y(w,x)}, is ||x||-Lipschitz
@ Assume that D is s.t. ||x|| < p with probability 1
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Sample complexity of soft-SVM

Observe: soft-SVM = RLM
Observe: the hinge-loss, w — max{0,1 — y(w,x)}, is ||x|-Lipschitz
Assume that D is s.t. ||x|| < p with probability 1

Then, we obtain a convex-Lipschitz loss, and by the results from
previous lecture, for every u,

. . 202
hinge < hinge 2 p
JEILE™AS)] < L5 (w) + Al + 32
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Sample complexity of soft-SVM

Observe: soft-SVM = RLM

Observe: the hinge-loss, w — max{0,1 — y(w,x)}, is ||x|-Lipschitz
Assume that D is s.t. ||x|| < p with probability 1

Then, we obtain a convex-Lipschitz loss, and by the results from
previous lecture, for every u,

. . 92
hinge < hinge 2 p
JEILE™AS)] < L5 (w) + Al + 32

@ Since the hinge-loss upper bounds the 0-1 loss, the right hand side is
also an upper bound on Eg.pm L% (A(S))]
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Sample complexity of soft-SVM

@ Observe: soft-SVM = RLM
@ Observe: the hinge-loss, w — max{0,1 — y(w,x)}, is ||x||-Lipschitz
@ Assume that D is s.t. ||x|| < p with probability 1

@ Then, we obtain a convex-Lipschitz loss, and by the results from
previous lecture, for every u,
B ILE(AS))] < LB () + Mul? + 22
S~pm' P - P Am
@ Since the hinge-loss upper bounds the 0-1 loss, the right hand side is
also an upper bound on Eg.pm L% (A(S))]

o For every B > 0, if we set A\ = Bzé’fn then:
_ ) . 8p2BQ
E [L%1(A(S))] < Linee :
B ISIAS)] < min I )+ 2
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d

@ Therefore, the sample complexity grows with d
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d
@ Therefore, the sample complexity grows with d

o In contrast, the sample complexity of SVM depends on (p/7)?, or
equivalently, p?B?
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d
@ Therefore, the sample complexity grows with d

o In contrast, the sample complexity of SVM depends on (p/7)?, or
equivalently, p?B?

@ Sometimes d > p>B? (as we saw in the previous lecture)
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d
@ Therefore, the sample complexity grows with d

o In contrast, the sample complexity of SVM depends on (p/7)?, or
equivalently, p?B?

@ Sometimes d > p>B? (as we saw in the previous lecture)

@ No contradiction to the fundamental theorem, since here we bound

the error of the algorithm using L'"%°(w*) while in the fundmental

0-1
theorem we have Ly~ (w*)
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Margin/Norm vs. Dimensionality

@ The VC dimension of learning halfspaces depends on the dimension, d
@ Therefore, the sample complexity grows with d

o In contrast, the sample complexity of SVM depends on (p/7)?, or
equivalently, p?B?

@ Sometimes d > p>B? (as we saw in the previous lecture)

@ No contradiction to the fundamental theorem, since here we bound
hinge

the error of the algorithm using L, (w*) while in the fundmental
theorem we have LY *(w*)

@ This is an additional prior knowledge on the problem, namely, that

Lgnge(W*) is not much larger than LOD_l(W*)'
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Solving SVM using SGD

SGD for solving Soft-SVM

goal: Solve argming, (3[|w[?+ L 37 max{0,1 — y(w,x;)})
parameter: T’
initialize: 8) = 0
fort=1,...,T
Letvv&)::fieﬁ)
Choose i uniformly at random from [m]
If (yi{w®, x;) < 1)
Set 90+ = 91 4 yix;
Else
Set 9+ = ®)
output: w = % ZZ;I w(®)
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© Kernels

@ Embeddings into feature spaces
@ The Kernel Trick

@ Examples of kernels

@ SGD with kernels

@ Duality
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Embeddings into feature spaces

@ The following sample in R! is not separable by halfspaces
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Embeddings into feature spaces

@ The following sample in R! is not separable by halfspaces

e But, if we map o — (=, 2?) it is separable by halfspaces

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 14 / 31



Embeddings into feature spaces

The general approach:

@ Define ¢ : X — F, where F is some feature space
(formally, we require F to be a subset of a Hilbert space)

@ Train a halfspace over (¥(x1),91), .-, (V(Xm), Ym)
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Embeddings into feature spaces

The general approach:
@ Define ¢ : X — F, where F is some feature space
(formally, we require F to be a subset of a Hilbert space)
@ Train a halfspace over (¥(x1),91), .-, (V(Xm), Ym)
Questions:
@ How to choose 1 7

o If F'is high dimensional we face

o statistical challenge — can be tackled using margin
e computational challenge — can be tackled using kernels
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Choosing a mapping

@ In general, requires prior knowledge

@ In addition, there are some generic mappings that enrich the class of
halfspaces, e.g. polynomial mappings
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Polynomial mappings

@ Recall, a degree k polynomial over a single variable is
i .
p(z) = ijo wjx!
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Polynomial mappings

@ Recall, a degree k polynomial over a single variable is
k .
p(z) = ijo wj?

o Can be rewritten as (w, 9 (z)) where ¢(x) = (1,z,22,...,2%)
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Polynomial mappings

@ Recall, a degree k polynomial over a single variable is
— vk pd
p(z) = ijo wyx
o Can be rewritten as (w, 9 (z)) where ¢(x) = (1,z,22,...,2%)

@ More generally, a degree k multivariate polynomial from R™ to R can

be written as ;
= Y w e

Jen]mr<k =1
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Polynomial mappings

@ Recall, a degree k polynomial over a single variable is
— vk pd
p(z) = ijo wyx
o Can be rewritten as (w, 9 (z)) where ¢(x) = (1,z,22,...,2%)

@ More generally, a degree k multivariate polynomial from R™ to R can

be written as ;
= Y w e

Jen]mr<k =1

o As before, we can rewrite p(x) = (w,%(x)) where now 1 : R* — R?
is such that for every J € [n]", r < k, the coordinate of ¢ (x)
associated with .J is the monomial []/_, z,.
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The Kernel Trick

@ A kernel function for a mapping 1 is a function that implements inner
product in the feature space, namely,

K(x,x') = (¥(x),$(x))

@ We will see that sometimes, it is easy to calculate K(x,x’) efficiently,
without applying v at all

@ But, is this enough ?
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The Representer Theorem

Consider any learning rule of the form

w" = argmin (£ ((w,$(x1)), -, (w, 0 (6m))) + M),

where f : R™ — R s an arbitrary function. Then, 3o € R such that

wr =" ().
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The Representer Theorem

Theorem
Consider any learning rule of the form

w” = argmin (f ((w, (1)), ., (W, §(xm))) + Alwl?)

where f : R™ — R is an arbitrary function. Then, da € R™ such that

wr =" ().

We can rewrite w* as w* = Y " oy1)(%;) + u, where (u,9(x;)) = 0 for
all i. Set w = w* — u. Observe, |[w*||?> = ||w||® + ||u]|?, and for every i,
(w,(x;)) = (w*,9(x;)). Hence, the objective at w equals the objective
at w* minus \||ul|?. By optimality of w*, u must be zero. O
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Implications of Representer Theorem

By representer theorem, optimal solution can be written as

w = Z i (x;)
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Implications of Representer Theorem

By representer theorem, optimal solution can be written as

w = Z a;h(x;)
Denote by G the matrix s.t. G; ; = (¥(x;), ¢ (x;)). We have that for all 4
= (3 o) (xi)) = e (V(x)), (i) = (Gev)s
J j=1
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Implications of Representer Theorem

By representer theorem, optimal solution can be written as
w = Z o) (xi)
Denote by G the matrix s.t. G; ; = (¥(x;), ¢ (x;)). We have that for all 4

(wo(x:)) = O aji(xy), = o (i( x;)) = (Gav);

J J=1
and
2 _ TG
wl* = ch X)), Zam X)) = 3 avay (0. () = o' Gar.
i,j=1
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Implications of Representer Theorem

By representer theorem, optimal solution can be written as
w = Z o) (xi)

Denote by G the matrix s.t. G; ; = (¥(x;), ¢ (x;)). We have that for all 4

(wo(x:)) = O aji(xy), = o (i( x;)) = (Gav);

J j=1

and

[w|? = ch X;), Zam x;)) Z aio (1(x:), ¥(x;)) = ' Ger.

5,j=1

So, we can optimize over «

argmin (f (Ga) + Aa' Gar)

acR™
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The Kernel Trick

@ Observe: the Gram matrix, G, only depends on inner products, and
therefore can be calculated using K alone

@ Suppose we found «, then, given a new instance,

(w,¥(x)) = (Z Yxg), 0(x) = (%), (%)) = D K(x5,%)

J J

@ That is, we can do training and prediction using K alone
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Representer Theorem for SVM

Soft-SVM:

in, ()\a Ga+ — ZmaX{O 1 —v:(Ga); }>
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Representer Theorem for SVM

Soft-SVM:

acR™

min ()\a Goa+ — ZmaX{O 1 —yi(Ga); }>

Hard-SVM

min o’ Ga s.t. Vi, y;(Ga); > 1
acR™
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Polynomial Kernels

@ The k degree polynomial kernel is defined to be

K(x,x') = (1+ (x,x'))¥.
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Polynomial Kernels

@ The k degree polynomial kernel is defined to be
K(x,x') = (1+ (x,x'))¥.

@ Exercise: show that if we define ¢ : R™ — RM+D" gt for
J €1{0,1,...,n}" there is an element of 1(x) that equals to
Hle xj;, then

K(x,x') = ((x), $(x)) -
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Polynomial Kernels

@ The k degree polynomial kernel is defined to be
K(x,x') = (1+ (x,x'))¥.

@ Exercise: show that if we define ¢ : R™ — RM+D" gt for
J €{0,1,...,n}* there is an element of 1(x) that equals to
15, zJ,, then
K(x,x') = (¥(x),¥(x')) .
@ Since v contains all the monomials up to degree k, a halfspace over
the range of 1 corresponds to a polynomial predictor of degree k over
the original space.
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Polynomial Kernels

@ The k degree polynomial kernel is defined to be
K(x,x') = (1+ (x,x'))¥.

@ Exercise: show that if we define ¢ : R™ — RM+D" gt for
J €{0,1,...,n}* there is an element of 1(x) that equals to
15, zJ,, then
K(x,x') = (¥(x),¥(x')) .
@ Since v contains all the monomials up to degree k, a halfspace over
the range of 1 corresponds to a polynomial predictor of degree k over
the original space.

@ Observe that calculating K (x,x’) takes O(n) time while the
dimension of v(x) is n*
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Gaussian kernel (RBF)

Let the original instance space be R and consider the mapping 1 where for
each non-negative integer n > 0 there exists an element 1 (z), which
2

equalsto\/»e 2 ™. Then,

<w<w>,w<x'>>=g% L) (e @)

24 (g2 AY() e—a')2

=€
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Gaussian kernel (RBF)

Let the original instance space be R and consider the mapping 1 where for
each non-negative integer n > 0 there exists an element 1 (z), which
2

equalsto\/»e 2 ™. Then,
ey =3 (e F ) (e ™ @r)
—e T
n=0 ’I’L' \/m
224 x/2 0o nn a2
é Z<(l‘l‘) ) g

= e 1
=0 n.

More generally, the Gaussian kernel is defined to be

[lx—x"]?

K(x,x')=e 20

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 24 /31



Gaussian kernel (RBF)

Let the original instance space be R and consider the mapping 1 where for
each non-negative integer n > 0 there exists an element 1 (z), which
2

equalsto\/»e 2 ™. Then,

(Y(z i( ln' T ) <\/1m e_(x;)Q (:L")n>

n=0
T

2(x1200 n\n _1\2
=e 2 Z<<xl‘)>:6_(x2$)

|
neo n:

More generally, the Gaussian kernel is defined to be

[lx—x"]?

K(x,x')=e 20
Can learn any polynomial ...
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Characterizing Kernel Functions

Lemma (Mercer's conditions)

A symmetric function K : X x X — R implements an inner product in
some Hilbert space if and only if it is positive semidefinite; namely, for all
X1i,...,Xm, the Gram matrix, G; j = K(x;,X;), is a positive semidefinite

matrix.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 25 /31



Implementing soft-SVM with kernels

@ We can use a generic convex optimization algorithm on the a problem

@ Alternatively, we can implement the SGD algorithm on the original w
problem, but observe that all the operations of SGD can be
implemented using the kernel alone
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SGD with kernels for soft-SVM

SGD for Solving Soft-SVM with Kermels

parameter: T'
Initialize: 5(1> =0cR"”
fort=1,. 1’
Let a(t B
Choose i umformly at random from [m]
For all j # i set 87" = g
If (y; agt)K(xj,xl) <1)
Set 81 = B+,
Else
Set g+ = g
Output: w = Y7, @;1(x;) where & = 7 S al
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@ Historically, many of the properties of SVM have been obtained by
considering a dual problem

@ It is not a must, but can be helpful

@ We show how to derive a dual problem to Hard-SVM:

min ||w|?  s.t. Vi, y(w,x;) > 1
w
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@ Hard-SVM can be rewritten as:

: 1 =
min  max | 5lwl*+ ;ai(l — yi(W, i)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 29 /31



@ Hard-SVM can be rewritten as:
1 m
min  max o <2HWHQ + ;O@'(l - yz‘<W,Xi>)>

@ Lets flip the order of min and max. This can only decrease the
objective value, so we obtain the weak duality inequality:

min max ( |WH2 Zaz yszz>)> >
w acR™:a>0

(1
clax i (QHWH + Zaz(l - yz<w,xz>))

i=1
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@ Hard-SVM can be rewritten as:

. Lo
min  max (2!\WH +) ai(l— y¢<w,xz~>)>

=1

@ Lets flip the order of min and max. This can only decrease the
objective value, so we obtain the weak duality inequality:

: 2
>
mwm( vl +Z% %WX@>>> .
max  min }Hsz—i— g a;(1 —y;(w,x;))
acR™:a>0 W 2 =1 ! ! T

@ In our case, there's also strong duality (i.e., the above holds with
equality)
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@ The dual problem:

S
X min S lwll +;ai(1_yi<wvxi>)
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@ The dual problem:

L Zm
: _ (1 — vy .
aEIg}’?;}ziZO H%,‘lln 2 HW” + gt al( Yi <W7 XZ>)

@ We can solve analytically the inner optimization and obtain the

solution
m
W = § Q3YiX;
i=1
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@ The dual problem:

(1 s =
X min <2HW” +) (1 - yi<W7Xi>)>

=1

@ We can solve analytically the inner optimization and obtain the
solution
m
W = Z QYiX
i=1

o Plugging it back, yields

m

Z ai(1— i) ojy;xj, %i))

i=1 J

i Xq

ae]Rm a>0

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 30 /31



o Margin as additional prior knowledge
e Hard and Soft SVM

o Kernels
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