Introduction to Machine Learning (67577)

Lecture 6

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Convexity,Optimization,Surrogates,SGD

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 1/ 47

© Convexity

© Convex Optimization
@ Ellipsoid
@ Gradient Descent

© Convex Learning Problems
@ Surrogate Loss Functions

© Learning Using Stochastic Gradient Descent

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 2 /47

Definition (Convex Set)

A set C' in a vector space is convex if for any two vectors u, v in C, the
line segment between u and v is contained in C'. That is, for any

a € [0,1] we have that the convex combination au+ (1 — a)v is in C.

non-convex convex

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 3 /47

Definition (Convex function)

Let C be a convex set. A function f : C — R is convex if for every
u,v e C and a €[0,1],

fleu+ (1 —a)v) < af(u)+(1-a)f(v).

af(u) + (1 —a)f(v)

flou+ (1 —a)v)

“ou + (I —a)Vv

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 4 /47

Epigraph

A function f is convex if and only if its epigraph is a convex set:
epigraph(f) = {(x,8) : f(x) < B} .
f(x)

N

N\,
\ 7 r

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 5 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.

o let B(u,r)={v:|v—ul <r}

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.
o let B(u,r)={v:|v—ul <r}
o f(u) is a local minimum of f at uif 3r > 0s.t. Vv € B(u,r) we

have f(v) > f(u)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.
o let B(u,r)={v:|v—ul <r}
o f(u) is a local minimum of f at uif 3r > 0s.t. Vv € B(u,r) we
have f(v) > f(u)
o It follows that for any v (not necessarily in B), there is a small
enough a > 0 such that u+ «(v —u) € B(u,r) and therefore

fu) < fluta(v-u)).

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.
o let B(u,r)={v:|v—ul <r}
o f(u) is a local minimum of f at uif 3r > 0s.t. Vv € B(u,r) we
have f(v) > f(u)
o It follows that for any v (not necessarily in B), there is a small
enough a > 0 such that u+ «(v —u) € B(u,r) and therefore

fu) < fluta(v-u)).

o If f is convex, we also have that

Jata(v—u) = flav+ (1 - au) < (1-a)f(u) + af(v) .

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.
o let B(u,r)={v:|v—ul <r}
o f(u) is a local minimum of f at uif 3r > 0s.t. Vv € B(u,r) we
have f(v) > f(u)
o It follows that for any v (not necessarily in B), there is a small
enough a > 0 such that u+ «(v —u) € B(u,r) and therefore

fw) < flu+a(v—-u).
o If f is convex, we also have that

Jata(v—u) = flav+ (1 - au) < (1-a)f(u) + af(v) .

Combining, we obtain that f(u) < f(v).

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property |: local minima are global

If f is convex then every local minimum of f is also a global minimum.
o let B(u,r)={v:|v—ul <r}
o f(u) is a local minimum of f at uif 3r > 0s.t. Vv € B(u,r) we
have f(v) > f(u)
o It follows that for any v (not necessarily in B), there is a small
enough a > 0 such that u+ «(v —u) € B(u,r) and therefore

f) < fluta(v—u)).
o If f is convex, we also have that
flatalv—u))=flav+ (1 -aju) < -a)f(u)+af(v).

e Combining, we obtain that f(u) < f(v).

@ This holds for every v, hence f(u) is also a global minimum of f.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 6 /47

Property Il: tangents lie below f

If fis convex and differentiable, then

Vu, f(u)> f(w)+(Vf(w),u—w)

(recall, Vf(w) = <af(w),...,8gz(uv:)) is the gradient of f at w)

w1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 7 /47

Sub-gradients

@ v is sub-gradient of f at w if Vu, f(u) > f(w)+ (v,u—w)
e The differential set, 0f(w), is the set of sub-gradients of f at w

e Lemma: f is convex iff for every w, f(w) # ()

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 8 /47

Property Il: tangents lie below f

fis "locally flat” around w (i.e. 0 is a sub-gradient) iff w is a global
minimizer

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 9 /47

Definition (Lipschitzness)

A function f: C' — R is p-Lipschitz if for every wi, wo € C' we have that
[f(w1) = f(wa2)| < pllwr —wa.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 10 / 47

Definition (Lipschitzness)

A function f: C' — R is p-Lipschitz if for every wi, wo € C' we have that
[f(w1) = f(wa2)| < pllwr —wa.

If f is convex then f is p-Lipschitz iff the norm of all sub-gradients of f is
at most p

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 10 / 47

Outline

© Convex Optimization
@ Ellipsoid
@ Gradient Descent

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 11 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Special cases:

@ Feasibility problem: f is a constant function

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Special cases:

@ Feasibility problem: f is a constant function

@ Unconstrained minimization: C' = R4

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Special cases:

@ Feasibility problem: f is a constant function
@ Unconstrained minimization: C' = R4
@ Can reduce one to another:

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Special cases:

@ Feasibility problem: f is a constant function
@ Unconstrained minimization: C' = R4
@ Can reduce one to another:

o Adding the function I (w) to the objective eliminates the constraint

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

Convex optimization

Approximately solve:

argmin f(w)
wel

where C' is a convex set and f is a convex function.

Special cases:

@ Feasibility problem: f is a constant function
@ Unconstrained minimization: C' = R4
@ Can reduce one to another:

o Adding the function I (w) to the objective eliminates the constraint
e Adding the constraint f(w) < f* + € eliminates the objective

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 12 / 47

© Convexity

© Convex Optimization
@ Ellipsoid

© Convex Learning Problems
@ Surrogate Loss Functions

© Learning Using Stochastic Gradient Descent

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 13 / 47

The Ellipsoid Algorithm

o Consider a feasibility problem: find w € C
@ Assumptions:
e B(w*,r) C C C B(0,R)
e Separation oracle: Given w, the oracle tells if it’s in C' or not.
If w ¢ C' then the oracle finds v s.t. for every w’ € C' we have
(w,v) < (W', v)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 14 / 47

The Ellipsoid Algorithm

@ We implicitly maintain an ellipsoid: & = 5(/1;/2,wf)
@ Start withwy =0, A1 =1

@ Fort=1,2,...

Call oracle with w;

If w; € C, break and return w;

Otherwise, let v; be the vector defining a separating hyperplane
Update:

1 Atvt
d +1 \ V;rAtVt
d2 2 AtVtVTAt
A1 = A — t
i d2—1<t d+1 vtTAtvt)

Wiyl = Wi +

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 15 / 47

The Ellipsoid Algorithm

@ We implicitly maintain an ellipsoid: & = 5(/’1;/2,W,‘)
@ Start withwy =0, A1 =1

@ Fort=1,2,...

Call oracle with w;

If w; € C, break and return w;

Otherwise, let v; be the vector defining a separating hyperplane
Update:

1 Atvt
d +1 AV V;rAtVt
d2 2 AtVtVTAt
A1 = A — t
i d2—1<t d+1 vtTAtvt)

Wiyl = Wi +

The Ellipsoid converges after at most 2d(2d + 2) log(R/r) iterations.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 15 / 47

Implementing the separation oracle using sub-gradients

@ Suppose C'= NI {w: fi(w) <0} where each f; is a convex
function.

e Given w, we can check if f;(w) < 0 for every 4

e If fi(w) > 0 for some i, consider v € df;(w), then, for every w' € C
0> fi(w) > filw) + (W —w,v) > (W — w,v)

@ So, the oracle can return —v

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 16 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer
o Let C ={w: f(w)— f(w*) —e <0}

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer
o Let C ={w: f(w)— f(w*) —e <0}
@ We can apply the Ellipsoid algorithm while letting v; € O f(wy)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer
o Let C ={w: f(w)— f(w*) —e <0}
@ We can apply the Ellipsoid algorithm while letting v; € O f(wy)

@ Analysis:

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer

o Let C ={w: f(w)— f(w*) —e <0}

@ We can apply the Ellipsoid algorithm while letting v; € O f(wy)
@ Analysis:

o Let r best. B(w*,r)CC

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer
Let C ={w: f(w) — f(w*) —e <0}
We can apply the Ellipsoid algorithm while letting v, € O f(wy)

Let r be s.t. B(w*,r) C C

°
°
@ Analysis:
°
e For example, if f is p-Lipschitz we can take r = ¢/p

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer

o Let C ={w: f(w)— f(w*) —e <0}

@ We can apply the Ellipsoid algorithm while letting v; € O f(wy)
@ Analysis:

o Let r bes.t. B(w*,r) CC

e For example, if f is p-Lipschitz we can take r = ¢/p

o Let R=||w*||+r

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 17 / 47

The Ellipsoid Algorithm for unconstrained minimization

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity

Consider miny, f(w) and let w* be a minimizer

Let C = {w: f(w)— f(w*) —e <0}

We can apply the Ellipsoid algorithm while letting v, € O f(wy)
Analysis:

Let r be s.t. B(w*,r) C C

For example, if f is p-Lipschitz we can take r =¢/p

Let R = |[[w*|| + 7

Then, after 2d(2d + 2) log(R/r) iterations, w; must be in C

17 / 47

The Ellipsoid Algorithm for unconstrained minimization

o Consider miny, f(w) and let w* be a minimizer

o Let C ={w: f(w)— f(w*) —e <0}

@ We can apply the Ellipsoid algorithm while letting v; € O f(wy)

@ Analysis:

o Let r best. B(w*,r)CC

e For example, if f is p-Lipschitz we can take r = ¢/p

o Let R=||w*||+r

@ Then, after 2d(2d + 2) log(R/r) iterations, w; must be in C'

@ For f being p-Lipschitz, we obtain the iteration bound
ot g (212111

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity

17 / 47

© Convexity

© Convex Optimization

@ Gradient Descent
© Convex Learning Problems
@ Surrogate Loss Functions

© Learning Using Stochastic Gradient Descent

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 18 / 47

Gradient Descent

o Start with initial w(!) (usually, the zero vector)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 19 / 47

Gradient Descent

e Start with initial w() (usually, the zero vector)

@ At iteration t, update
witth) — w(® _ an(w(t)) ,

where n > 0 is a parameter

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 19 / 47

Gradient Descent

e Start with initial w() (usually, the zero vector)

@ At iteration t, update
witth) — w(® _ an(w(t)) ,

where n > 0 is a parameter
@ Intuition:

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 19 / 47

Gradient Descent

e Start with initial w() (usually, the zero vector)

@ At iteration t, update
witth) — w(® _ an(w(t)) ,

where n > 0 is a parameter
@ Intuition:

o By Taylor's approximation, if w close to w(*) then
fw) = f(w) + (w — w®, Vf(wh))

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 19 / 47

Gradient Descent

e Start with initial w() (usually, the zero vector)

@ At iteration t, update
witth) — w(® _ an(w(t)) ,

where n > 0 is a parameter
@ Intuition:

o By Taylor's approximation, if w close to w(*) then
fw) = f(w) + (w —w®, Vf(wh))
e Hence, we want to minimize the approximation while staying close to
).
wit):

Wt = argmin _lw—w[[%4y (F(w) + (w - w®, T (w))

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 19 / 47

Gradient Descent

e Initialize w(t) =0
o Update
wtD) = w® _ v f(w®)

o Output w = = ST w®

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 20 / 47

Sub-Gradient Descent

Replace gradients with sub-gradients:

where v; € 9f(w()

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 21 / 47

Analyzing sub-gradient descent

T T
D (W) = fwh) <Y (wl) —w* vy

t=1
lw® — w[* — [wT+D — w?

2n

T
77
+g 2 IvilP

Proof:
@ The inequality is by the definition of sub-gradients

@ The equality follows from the definition of the update using algebraic
manipulations

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 22 / 47

Analyzing sub-gradient descent for Lipschitz functions

@ Since f is convex and p-Lipschitz, ||v|| < p for every t

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 23 / 47

Analyzing sub-gradient descent for Lipschitz functions

@ Since f is convex and p-Lipschitz, ||v|| < p for every t
@ Therefore,
1 IwI* | no®

T
* P
fZ(f(Wt)—f(W) < T 5

t=1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 23 / 47

Analyzing sub-gradient descent for Lipschitz functions

@ Since f is convex and p-Lipschitz, ||v|| < p for every t

@ Therefore,

T
LS (fw) - sty < A2 met
T pt - 2T 2
o For every w*, if T' > ”WZ#, and n = H::;*y, then the right-hand

side is at most €

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 23 / 47

Analyzing sub-gradient descent for Lipschitz functions

@ Since f is convex and p-Lipschitz, ||v|| < p for every t
@ Therefore,

T
1 N [w*]* | np?
- - <
7 ;u‘(wt) fo) < Gt
o For every w*, if T' > ”WZ#, and n = H;‘;*y, then the right-hand

side is at most €
e By convexity, f(W) < = ST f(wy), hence f(W) — f(w*) < e

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 23 / 47

Analyzing sub-gradient descent for Lipschitz functions

@ Since f is convex and p-Lipschitz, ||v|| < p for every t
@ Therefore,
T
1 N [w*]* | np?
— _ < Lo
7 ;u‘(wt) fo) < Gt
e For every w*, if T > ”WZ!%Q, and n = H::;*y, then the right-hand

side is at most €
By convexity, f(W) < & 3", f(wy), hence f(W) — f(w*) <e

*112 ,2
@ Corollary: Sub-gradient descent needs HW% iterations to converge

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 23 / 47

Example: Finding a Separating Hyperplane

Let (x1,Y1),-- -, (Xm,Ym) we would like to find a separating w:
Vi, yi(w,x;) > 0.

Notation:
@ Denote by w* a separating hyperplane of unit norm and let
v = min; y; (W*, x;)

@ W.lo.g. assume ||x;|| = 1 for every i.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 24 / 47

Separating Hyperplane using the Ellipsoid

@ We can take the initial ball to be the unit ball
@ The separation oracle looks for i s.t. yi<w(t),xi> <0
@ If there's no such i, we're done. Otherwise, the oracle returns y;x;

@ The algorithm stops after at most 2d(2d + 2) log(1/7) iterations

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 25 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:

@ f is convex

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex

@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex
@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)
o f is 1-Lipschitz

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex
@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)
o f is 1-Lipschitz
o f(w")=—

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex
@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)
o f is 1-Lipschitz
o f(w")=—

o Therefore, after t > 7% iterations, we have f(w®)) < f(w*) +~v =0

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex
@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)
o f is 1-Lipschitz
o f(w")=—
o Therefore, after t > 7% iterations, we have f(w®)) < f(w*) +~v =0

e So, w(®) is a separating hyperplane

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

min f(w) where f(w) = max —y;(W,x;)

Observe:
@ f is convex
@ A sub-gradient of f at w is —y;x; for some i € argmax —y; (W, X;)
o f is 1-Lipschitz
o f(w")=—
o Therefore, after t > 7% iterations, we have f(w®)) < f(w*) +~v =0
e So, w(®) is a separating hyperplane

@ The resulting algorithm is closely related to the Batch Perceptron

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 26 / 47

The Batch Perceptron

e Initialize, w(!) =0

o While exists i s.t. y;(w®,x;) <0 update

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 27 / 47

The Batch Perceptron

e Initialize, w(!) =0

o While exists i s.t. y;(w®,x;) <0 update

Exercise: why did we eliminate n ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 27 / 47

Ellipsoid vs. Sub-gradient

For f convex and p-Lipschitz:

iterations cost of iteration
Ellipsoid d?log (M) d?>+ “gradient oracle”
*1(12 ,2
Sub-gradient descent % d+"gradient oracle”

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 28 /

Ellipsoid vs. Sub-gradient

For f convex and p-Lipschitz:

iterations cost of iteration

Ellipsoid

Sub-gradient descent

d?log (M) d?>+ “gradient oracle”

*112 52
% d+"gradient oracle”

For separating hyperplane:

Ellipsoid

Sub-gradient descent

iterations | cost of iteration
42 log (%) 4 + dm
7% dm

Shai Shalev-Shwartz (Hebrew U)

IML Lecture 6 Convexity 28 /

Outline

© Convex Learning Problems

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 29 / 47

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (H, Z,), is called convex if the hypothesis class H is
a convex set and for all z € Z, the loss function, ¢(-, z), is a convex
function (where, for any z, £(-, z) denotes the function f : H — R defined

by f(w) = £(w, 2)).

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 30 / 47

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (H, Z,), is called convex if the hypothesis class H is
a convex set and for all z € Z, the loss function, ¢(-, z), is a convex
function (where, for any z, £(-, z) denotes the function f : H — R defined

by f(w) = £(w, 2)).

@ The ERMy problem w.r.t. a convex learning problem is a convex
optimization problem: minyey % Yo l(w,)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 30 / 47

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (H, Z,), is called convex if the hypothesis class H is
a convex set and for all z € Z, the loss function, ¢(-, z), is a convex
function (where, for any z, £(-, z) denotes the function f : H — R defined

by f(w) = £(w, 2)).

@ The ERMy problem w.r.t. a convex learning problem is a convex
optimization problem: minyey % Yo l(w,)

@ Example — least squares: H# = R?, Z =R? x R,
Uw, (x,y)) = ((w,x) —y)?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 30 / 47

Learnability of convex learning problems

e Claim: Not all convex learning problems over R? are learnable

@ The intuitive reason is numerical stability
@ But, with two additional mild conditions, we obtain learnability

e 7 is bounded
o The loss function (or its gradient) is Lipschitz

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 31/ 47

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (H, Z, (), is called Convex-Lipschitz-Bounded, with
parameters p, B if the following holds:

@ The hypothesis class H is a convex set and for all w € H we have
w|| < B.

e For all z € Z, the loss function, ¢(-, z), is a convex and p-Lipschitz
function.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 32 /47

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (H, Z, (), is called Convex-Lipschitz-Bounded, with
parameters p, B if the following holds:

@ The hypothesis class H is a convex set and for all w € H we have
w|| < B.

e For all z € Z, the loss function, ¢(-, z), is a convex and p-Lipschitz
function.

Example:
o H={weR¢:|w|| < B}
o X ={xcR¢: x| <p}, Y =R,
o U(w,(x,y)) = [(w,x) —y|

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 32 /47

Convex-Smooth-bounded learning problem

A function f is S-smooth if it is differentiable and its gradient is
B-Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (H, Z, (), is called Convex-Smooth-Bounded, with
parameters (3, B if the following holds:

@ The hypothesis class H is a convex set and for all w € H we have
[wl < B.

e For all z € Z, the loss function, /(-, z), is a convex, non-negative, and
[B-smooth function.

v

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 33 /47

Convex-Smooth-bounded learning problem

A function f is S-smooth if it is differentiable and its gradient is
B-Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (H, Z, (), is called Convex-Smooth-Bounded, with
parameters (3, B if the following holds:

@ The hypothesis class H is a convex set and for all w € H we have
[wl < B.

e For all z € Z, the loss function, /(-, z), is a convex, non-negative, and
[B-smooth function.

v

Example:
o H={wecR?:|w| < B}
o ¥={xeR": x| <5/2}, V=R,
o Uw,(x,y)) = ((W,x) —y)?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 33 /47

Learnability

We will later show that all Convex-Lipschitz-Bounded and

Convex-Smooth-Bounded learning problems are learnable, with sample
complexity that depends only on €,6, B, and p or 5.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6

Convexity 34 / 47

Outline

@ Surrogate Loss Functions

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 35 / 47

Surrogate Loss Functions

In many natural cases, the loss function is not convex

For example, the 0 — 1 loss for halfspaces

O7HW, (x,9)) = Ty sign(iwx)] = Ly(wx)<0] -

Non-convex loss function usually yields intractable learning problems

Popular approach: circumvent hardness by upper bounding the
non-convex loss function using a convex surrogate loss function

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 36 / 47

Hinge-loss

ghinge(W’ (X, y)) déf maX{Ou 1— y<W, X>} .

Y hinge *

ZO—l *

iR

| y{w, x)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 37 /47

Error Decomposition Revisited

@ Suppose we have a learner for the hinge-loss that guarantees:

LEPE(A(S)) < min LI (w) + e,
wEeH

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 38 / 47

Error Decomposition Revisited

@ Suppose we have a learner for the hinge-loss that guarantees:

LEPE(A(S)) < min LI (w) + e,
wEeH

@ Using the surrogate property,

Ly '(A(S)) < min Lp™(w) + ¢

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 38 / 47

Error Decomposition Revisited

@ Suppose we have a learner for the hinge-loss that guarantees:

Lgnge(A(S)) < ‘I’Vné%Lhmge()+67

@ Using the surrogate property,

Ly '(A(S)) < min Lp™(w) + ¢

@ We can further rewrite the upper bound as:

I H(A(S) < iy 2% w) + (i L35 (w) — g 251 w)) +
weE we

weH

= €approximation T €optimization 1 €estimation

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 38 / 47

Error Decomposition Revisited

@ Suppose we have a learner for the hinge-loss that guarantees:

Lgnge(A(S)) < ‘I’Vnel%thnge()+€7

@ Using the surrogate property,

Ly '(A(S)) < min Lp™(w) + ¢

@ We can further rewrite the upper bound as:

Lo_l A < Lo 1 Lhmge o . LO—l
p (A(S)) < min Ly~ (w) + { min L™ (w) — min Ly, (w) | + e

= €approximation T €optimization 1 €estimation

@ The optimization error is a result of our inability to minimize the
training loss with respect to the original loss.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 38 / 47

Outline

© Learning Using Stochastic Gradient Descent

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 39 / 47

Learning Using Stochastic Gradient Descent

o Consider a convex-Lipschitz-bounded learning problem.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 40 / 47

Learning Using Stochastic Gradient Descent

o Consider a convex-Lipschitz-bounded learning problem.

@ Recall: our goal is to (probably approximately) solve:

\fvnel% Lp(w) where Lp(w)= ZINED[K(W, z)]

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 40 / 47

Learning Using Stochastic Gradient Descent

o Consider a convex-Lipschitz-bounded learning problem.

@ Recall: our goal is to (probably approximately) solve:

\fvnel% Lp(w) where Lp(w)= ZINEDWW’ z)]

@ So far, learning was based on the empirical risk, Lg(w)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 40 / 47

Learning Using Stochastic Gradient Descent

o Consider a convex-Lipschitz-bounded learning problem.

@ Recall: our goal is to (probably approximately) solve:

\fvnel% Lp(w) where Lp(w)= ZINEDWW’ z)]

@ So far, learning was based on the empirical risk, Lg(w)

@ We now consider directly minimizing Lp(w)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 40 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

@ Recall the gradient descent method in which we initialize w(!) = 0
and update w(tt) = w(t) — V Lp(w)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

@ Recall the gradient descent method in which we initialize w(!) = 0
and update w(tt) = w(t) — V Lp(w)
@ Observe: VLp(w) = E,.p[Vl(w, z)]

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = E [{(w,2)]
@ Recall the gradient descent method in which we initialize w(!) = 0
and update w(tt) = w(t) — V Lp(w)
@ Observe: VLp(w) = E,.p[Vl(w, z)]
e We can't calculate VLp(w) because we don't know D

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

@ Recall the gradient descent method in which we initialize w(!) = 0
and update w(tt) = w(t) — V Lp(w)

@ Observe: VLp(w) = E,.p[Vl(w, z)]

e We can't calculate VLp(w) because we don't know D

@ But we can estimate it by V{(w, z) for z ~ D

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

Recall the gradient descent method in which we initialize w(1) = 0
and update w(tt) = w(t) — V Lp(w)

Observe: VLp(w) = E,.p[Vl(w, z)]

We can't calculate VLp(w) because we don't know D

But we can estimate it by V/(w, z) for z ~ D

If we take a step in the direction v = V/{(w, z) then in expectation
we're moving in the right direction

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

o Recall the gradient descent method in which we initialize w(!) =0
and update w(tt) = w(t) — V Lp(w)

Observe: VLp(w) = E,.p[Vl(w, z)]

We can't calculate VLp(w) because we don't know D

But we can estimate it by V/(w, z) for z ~ D

If we take a step in the direction v = V/{(w, z) then in expectation
we're moving in the right direction

@ In other words, v is an unbiased estimate of the gradient

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

in L h L = E [/
min Lp(w) where Lp(w) = [((w,2)]

@ Recall the gradient descent method in which we initialize w(!) = 0
and update w(tt) = w(t) — V Lp(w)

Observe: VLp(w) = E,.p[Vl(w, z)]

We can't calculate VLp(w) because we don't know D

But we can estimate it by V/(w, z) for z ~ D

If we take a step in the direction v = V/{(w, z) then in expectation
we're moving in the right direction

In other words, v is an unbiased estimate of the gradient

We'll show that this is good enough

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 41 / 47

Stochastic Gradient Descent

e initialize: w() =0
o fort=1,2,...,T

o choose z; ~ D

o let v, € 0(w®, z,) update w1 = w®) — v,
e output W = + SE L w®

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 42 / 47

Stochastic Gradient Descent

e initialize: w() =0
o fort=1,2,...,T

o choose z; ~ D

o let v, € 0(w®, z,) update w1 = w®) — v,
e output W = + SE L w®

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 42 / 47

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of vy,..., vy, and any w*,
T (1) %2 (T+1) %2 T
&) ok oy W W —lw —wiF 2
Dot wvi) = 5 g2 vl

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 43 / 47

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of vy,..., vy, and any w*,
T (1) %2 (T+1) %2 T
&) ok oy W W —lw —wiF 2
Dot wvi) = 5 g2 vl

Assume that ||v;|| < p for all ¢ and that ||w*|| < B we obtain

T

B2 2T
S = w v < 5o+ 1
pr 2n 2

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 43 / 47

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of vy,..., vy, and any w*,
T (1) %2 (T+1) %2 T
&) ok oy W W —lw —wiF 2
Dot wvi) = 5 g2 vl

Assume that ||v;|| < p for all ¢ and that ||w*|| < B we obtain
T

B2 2T
S = w v < 5o+ 1
pr 2n 2

In particular, for n = ,/pé?—zT we get

T
Z(w(t) —w*,vi) <BpVT.

t=1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 43 / 47

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing
Z1,...,2r We obtain:

E

21,27

T
Z(W(t) —W*, vy)

t=1

< Bpﬁ.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 44 / 47

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing
Z1,...,2r We obtain:

E

21,27

< Bpﬁ.

T
Z(W(t) —W*, vy)
t=1

The law of total expectation: for every two random variables «, 3, and a
function g, Eo[g(a)] = Eg Eq[g(a)|5].

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 44 / 47

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing
Z1,...,2r We obtain:

E

21,27

< Bpﬁ.

T
Z(W(t) —W*, vy)
t=1

The law of total expectation: for every two random variables «, 3, and a
function g, Eo[g(o)] = EgEq[g(r)|3]. Therefore

E [(w® —w*v)= E E (w9 —w* v)|z1,...,2-1] .
Z1ye-52T Z1yeeesBt—1 Z1ye-s2T

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 44 / 47

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing
Z1,...,2r We obtain:

E

21,27

< Bpﬁ.

T
Z(W(t) —W*, vy)
t=1

The law of total expectation: for every two random variables «, 3, and a
function g, Eo[g(o)] = EgEq[g(r)|3]. Therefore

E [(w® —w*v)= E E (w9 —w* v)|z1,...,2-1] .
Z1ye-52T Z1yeeesBt—1 Z1ye-s2T

Once we know S the value of w(®) is not random, hence,

E[(w® —w*v) 21,0 za] = (w® = wh | E[V0(w?),)

Z1,--52T

= (wl —w*, VIp(w!))

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 44 / 47

Analyzing SGD for convex-Lipschitz-bounded

We got:

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 45 / 47

Analyzing SGD for convex-Lipschitz-bounded

We got:

< BpVT
Fn2T |

T
E [Z<w<t> —w*, VLp(w®))

By convexity, this means

E

215027

T
> (Lp(w?) _LD(W*))] < BpVT
=1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 45 / 47

Analyzing SGD for convex-Lipschitz-bounded

We got:
T
E [Z(W(t)—w*, VIp(w)| < BpVT
AR I
By convexity, this means
T
LB |2 Lo(w))] < BpVT

Dividing by T" and using convexity again,

| (F3w)] < oo+

32

Z17 %

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 45 / 47

Learning convex-Lipschitz-bounded problems using SGD

Corollary

Consider a convex-Lipschitz-bounded learning problem with parameters
p, B. Then, for every € > 0, if we run the SGD method for minimizing
Lp(w) with a number of iterations (i.e., number of examples)

B2p2
2

T >
€

B2

and with n = 2T then the output of SGD satisfies:

E[Lp(w)] < min Lp(w) + € .

wEH

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 46 / 47

Summary

@ Convex optimization
o Convex learning problems

@ Learning using SGD

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 47 / 47

	Convexity
	Convex Optimization
	Ellipsoid
	Gradient Descent

	Convex Learning Problems
	Surrogate Loss Functions
	Learning Using Stochastic Gradient Descent

