Introduction to Machine Learning (67577) Lecture 6

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Convexity, Optimization, Surrogates, SGD

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- 3 Convex Learning Problems
- Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

Definition (Convex Set)

A set C in a vector space is convex if for any two vectors \mathbf{u}, \mathbf{v} in C, the line segment between \mathbf{u} and \mathbf{v} is contained in C. That is, for any $\alpha \in [0,1]$ we have that the convex combination $\alpha \mathbf{u} + (1-\alpha)\mathbf{v}$ is in C.

Definition (Convex function)

Let C be a convex set. A function $f:C\to\mathbb{R}$ is convex if for every $\mathbf{u},\mathbf{v}\in C$ and $\alpha\in[0,1]$,

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$$
.

Epigraph

A function f is convex if and only if its epigraph is a convex set:

$$epigraph(f) = \{(\mathbf{x}, \beta) : f(\mathbf{x}) \le \beta\}.$$

If f is convex then every local minimum of f is also a global minimum.

If f is convex then every local minimum of f is also a global minimum.

• let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} - \mathbf{u}|| \le r}$

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} \mathbf{u}|| \le r}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u},r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} \mathbf{u}|| \le r}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r > 0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any ${\bf v}$ (not necessarily in B), there is a small enough $\alpha>0$ such that ${\bf u}+\alpha({\bf v}-{\bf u})\in B({\bf u},r)$ and therefore

$$f(\mathbf{u}) \le f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u}))$$
.

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} \mathbf{u}|| \le r}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r > 0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any ${\bf v}$ (not necessarily in B), there is a small enough $\alpha>0$ such that ${\bf u}+\alpha({\bf v}-{\bf u})\in B({\bf u},r)$ and therefore

$$f(\mathbf{u}) \le f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u}))$$
.

If f is convex, we also have that

$$f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) = f(\alpha \mathbf{v} + (1 - \alpha)\mathbf{u}) \le (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{v})$$
.

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} \mathbf{u}|| \le r}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r > 0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any ${\bf v}$ (not necessarily in B), there is a small enough $\alpha>0$ such that ${\bf u}+\alpha({\bf v}-{\bf u})\in B({\bf u},r)$ and therefore

$$f(\mathbf{u}) \le f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u}))$$
.

ullet If f is convex, we also have that

$$f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) = f(\alpha \mathbf{v} + (1 - \alpha)\mathbf{u}) \le (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{v})$$
.

• Combining, we obtain that $f(\mathbf{u}) \leq f(\mathbf{v})$.

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r) = {\mathbf{v} : ||\mathbf{v} \mathbf{u}|| \le r}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r > 0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any ${\bf v}$ (not necessarily in B), there is a small enough $\alpha>0$ such that ${\bf u}+\alpha({\bf v}-{\bf u})\in B({\bf u},r)$ and therefore

$$f(\mathbf{u}) \le f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u}))$$
.

ullet If f is convex, we also have that

$$f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) = f(\alpha \mathbf{v} + (1 - \alpha)\mathbf{u}) \le (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{v})$$
.

- Combining, we obtain that $f(\mathbf{u}) \leq f(\mathbf{v})$.
- This holds for every v, hence f(u) is also a global minimum of f.

Property II: tangents lie below f

If f is convex and differentiable, then

$$\forall \mathbf{u}, f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} - \mathbf{w} \rangle$$

(recall,
$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$
 is the gradient of f at \mathbf{w})

Sub-gradients

- ullet v is sub-gradient of f at ${f w}$ if $orall {f u}, \quad f({f u}) \geq f({f w}) + \langle {f v}, {f u} {f w}
 angle$
- ullet The differential set, $\partial f(\mathbf{w})$, is the set of sub-gradients of f at \mathbf{w}
- Lemma: f is convex iff for every \mathbf{w} , $\partial f(\mathbf{w}) \neq \emptyset$

Property II: tangents lie below f

f is "locally flat" around \mathbf{w} (i.e. $\mathbf{0}$ is a sub-gradient) iff \mathbf{w} is a global minimizer

Lipschitzness

Definition (Lipschitzness)

A function $f:C\to\mathbb{R}$ is ρ -Lipschitz if for every $\mathbf{w}_1,\mathbf{w}_2\in C$ we have that $|f(\mathbf{w}_1)-f(\mathbf{w}_2)|\le \rho\,\|\mathbf{w}_1-\mathbf{w}_2\|.$

Lipschitzness

Definition (Lipschitzness)

A function $f:C\to\mathbb{R}$ is ρ -Lipschitz if for every $\mathbf{w}_1,\mathbf{w}_2\in C$ we have that $|f(\mathbf{w}_1)-f(\mathbf{w}_2)|\le \rho\,\|\mathbf{w}_1-\mathbf{w}_2\|.$

Lemma

If f is convex then f is $\rho\text{-Lipschitz}$ iff the norm of all sub-gradients of f is at most ρ

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- Convex Learning Problems
- Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

Approximately solve:

$$\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

Approximately solve:

$$\operatorname*{argmin}_{\mathbf{w} \in C} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

Special cases:

ullet Feasibility problem: f is a constant function

Approximately solve:

$$\operatorname*{argmin}_{\mathbf{w} \in C} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

- ullet Feasibility problem: f is a constant function
- ullet Unconstrained minimization: $C=\mathbb{R}^d$

Approximately solve:

$$\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

- ullet Feasibility problem: f is a constant function
- Unconstrained minimization: $C = \mathbb{R}^d$
- Can reduce one to another:

Approximately solve:

$$\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

- ullet Feasibility problem: f is a constant function
- ullet Unconstrained minimization: $C=\mathbb{R}^d$
- Can reduce one to another:
 - Adding the function $I_C(\mathbf{w})$ to the objective eliminates the constraint

Approximately solve:

$$\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})$$

where C is a convex set and f is a convex function.

- Feasibility problem: f is a constant function
- Unconstrained minimization: $C = \mathbb{R}^d$
- Can reduce one to another:
 - ullet Adding the function $I_C(\mathbf{w})$ to the objective eliminates the constraint
 - ullet Adding the constraint $f(\mathbf{w}) \leq f^* + \epsilon$ eliminates the objective

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- 3 Convex Learning Problems
- Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

The Ellipsoid Algorithm

- Consider a feasibility problem: find $\mathbf{w} \in C$
- Assumptions:
 - $B(\mathbf{w}^*, r) \subseteq C \subset B(0, R)$
 - Separation oracle: Given \mathbf{w} , the oracle tells if it's in C or not. If $\mathbf{w} \not\in C$ then the oracle finds \mathbf{v} s.t. for every $\mathbf{w}' \in C$ we have $\langle \mathbf{w}, \mathbf{v} \rangle < \langle \mathbf{w}', \mathbf{v} \rangle$

The Ellipsoid Algorithm

- We implicitly maintain an ellipsoid: $\mathcal{E}_t = \mathcal{E}(A_t^{1/2}, \mathbf{w}_t)$
- Start with $\mathbf{w}_1 = \mathbf{0}$, $A_1 = I$
- For t = 1, 2, ...
 - ullet Call oracle with ${f w}_t$
 - If $\mathbf{w}_t \in C$, break and return \mathbf{w}_t
 - ullet Otherwise, let ${f v}_t$ be the vector defining a separating hyperplane
 - Update:

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t + \frac{1}{d+1} \frac{A_t \mathbf{v}_t}{\sqrt{\mathbf{v}_t^{\top} A_t \mathbf{v}_t}} \\ A_{t+1} &= \frac{d^2}{d^2 - 1} \left(A_t - \frac{2}{d+1} \frac{A_t \mathbf{v}_t \mathbf{v}_t^{\top} A_t}{\mathbf{v}_t^{\top} A_t \mathbf{v}_t} \right) \end{aligned}$$

The Ellipsoid Algorithm

- We implicitly maintain an ellipsoid: $\mathcal{E}_t = \mathcal{E}(A_t^{1/2}, \mathbf{w}_t)$
- Start with $\mathbf{w}_1 = \mathbf{0}$, $A_1 = I$
- For t = 1, 2, ...
 - Call oracle with \mathbf{w}_t
 - If $\mathbf{w}_t \in C$, break and return \mathbf{w}_t
 - ullet Otherwise, let ${f v}_t$ be the vector defining a separating hyperplane
 - Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \frac{1}{d+1} \frac{A_t \mathbf{v}_t}{\sqrt{\mathbf{v}_t^{\top} A_t \mathbf{v}_t}}$$
$$A_{t+1} = \frac{d^2}{d^2 - 1} \left(A_t - \frac{2}{d+1} \frac{A_t \mathbf{v}_t \mathbf{v}_t^{\top} A_t}{\mathbf{v}_t^{\top} A_t \mathbf{v}_t} \right)$$

Theorem

The Ellipsoid converges after at most $2d(2d+2)\log(R/r)$ iterations.

Implementing the separation oracle using sub-gradients

- Suppose $C = \bigcap_{i=1}^n \{ \mathbf{w} : f_i(\mathbf{w}) \le 0 \}$ where each f_i is a convex function.
- Given \mathbf{w} , we can check if $f_i(\mathbf{w}) \leq 0$ for every i
- If $f_i(\mathbf{w}) > 0$ for some i, consider $\mathbf{v} \in \partial f_i(\mathbf{w})$, then, for every $\mathbf{w}' \in C$

$$0 \ge f_i(\mathbf{w}') \ge f_i(\mathbf{w}) + \langle \mathbf{w}' - \mathbf{w}, \mathbf{v} \rangle > \langle \mathbf{w}' - \mathbf{w}, \mathbf{v} \rangle$$

ullet So, the oracle can return $-{f v}$

• Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{ \mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0 \}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:
- Let r be s.t. $B(\mathbf{w}^*, r) \subseteq C$

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:
- Let r be s.t. $B(\mathbf{w}^*, r) \subseteq C$
- \bullet For example, if f is $\rho\text{-Lipschitz}$ we can take $r=\epsilon/\rho$

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:
- Let r be s.t. $B(\mathbf{w}^*, r) \subseteq C$
- \bullet For example, if f is $\rho\text{-Lipschitz}$ we can take $r=\epsilon/\rho$
- $\bullet \ \mathsf{Let} \ R = \|\mathbf{w}^*\| + r$

The Ellipsoid Algorithm for unconstrained minimization

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{\mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0\}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:
- Let r be s.t. $B(\mathbf{w}^*, r) \subseteq C$
- \bullet For example, if f is $\rho\text{-Lipschitz}$ we can take $r=\epsilon/\rho$
- Let $R = \|\mathbf{w}^*\| + r$
- Then, after $2d(2d+2)\log(R/r)$ iterations, \mathbf{w}_t must be in C

The Ellipsoid Algorithm for unconstrained minimization

- ullet Consider $\min_{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^* be a minimizer
- Let $C = \{ \mathbf{w} : f(\mathbf{w}) f(\mathbf{w}^*) \epsilon \le 0 \}$
- ullet We can apply the Ellipsoid algorithm while letting $\mathbf{v}_t \in \partial f(\mathbf{w}_t)$
- Analysis:
- Let r be s.t. $B(\mathbf{w}^*, r) \subseteq C$
- \bullet For example, if f is $\rho\text{-Lipschitz}$ we can take $r=\epsilon/\rho$
- Let $R = \|\mathbf{w}^*\| + r$
- Then, after $2d(2d+2)\log(R/r)$ iterations, \mathbf{w}_t must be in C
- For f being ρ -Lipschitz, we obtain the iteration bound

$$2d(2d+2)\log\left(\frac{\rho\|\mathbf{w}^*\|}{\epsilon}+1\right)$$

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- 3 Convex Learning Problems
- Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

• Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)

- ullet Start with initial ${f w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}) ,$$

where $\eta > 0$ is a parameter

- ullet Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}) ,$$

where $\eta > 0$ is a parameter

Intuition:

- ullet Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}) ,$$

where $\eta > 0$ is a parameter

- Intuition:
 - By Taylor's approximation, if \mathbf{w} close to $\mathbf{w}^{(t)}$ then $f(\mathbf{w}) \approx f(\mathbf{w}^{(t)}) + \langle \mathbf{w} \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle$

- ullet Start with initial ${f w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}) ,$$

where $\eta > 0$ is a parameter

- Intuition:
 - By Taylor's approximation, if \mathbf{w} close to $\mathbf{w}^{(t)}$ then $f(\mathbf{w}) \approx f(\mathbf{w}^{(t)}) + \langle \mathbf{w} \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle$
 - Hence, we want to minimize the approximation while staying close to $\mathbf{w}^{(t)}$:

$$\mathbf{w}^{(t+1)} = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}^{(t)}\|^2 + \eta \left(f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle \right) \ .$$

- $\bullet \ \ \mathsf{Initialize} \ \mathbf{w}^{(1)} = \mathbf{0}$
- Update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)})$$

 \bullet Output $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

Sub-Gradient Descent

Replace gradients with sub-gradients:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t ,$$

where $\mathbf{v}_t \in \partial f(\mathbf{w}^{(t)})$

Analyzing sub-gradient descent

Lemma

$$\sum_{t=1}^{T} (f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})) \leq \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle$$

$$= \frac{\|\mathbf{w}^{(1)} - \mathbf{w}^{\star}\|^{2} - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}.$$

Proof:

- The inequality is by the definition of sub-gradients
- The equality follows from the definition of the update using algebraic manipulations

• Since f is convex and ρ -Lipschitz, $\|\mathbf{v}_t\| \leq \rho$ for every t

- Since f is convex and ρ -Lipschitz, $\|\mathbf{v}_t\| \leq \rho$ for every t
- Therefore,

$$\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}_t) - f(\mathbf{w}^*)) \leq \frac{\|\mathbf{w}^*\|^2}{2\eta T} + \frac{\eta \rho^2}{2}$$

- Since f is convex and ρ -Lipschitz, $\|\mathbf{v}_t\| \leq \rho$ for every t
- Therefore,

$$\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}_t) - f(\mathbf{w}^*)) \leq \frac{\|\mathbf{w}^*\|^2}{2\eta T} + \frac{\eta \rho^2}{2}$$

• For every \mathbf{w}^{\star} , if $T \geq \frac{\|\mathbf{w}^{\star}\|^2 \rho^2}{\epsilon^2}$, and $\eta = \sqrt{\frac{\|\mathbf{w}^{\star}\|^2}{\rho^2 T}}$, then the right-hand side is at most ϵ

- Since f is convex and ρ -Lipschitz, $\|\mathbf{v}_t\| \leq \rho$ for every t
- Therefore,

$$\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}_t) - f(\mathbf{w}^*)) \leq \frac{\|\mathbf{w}^*\|^2}{2\eta T} + \frac{\eta \rho^2}{2}$$

- For every \mathbf{w}^\star , if $T \geq \frac{\|\mathbf{w}^\star\|^2 \rho^2}{\epsilon^2}$, and $\eta = \sqrt{\frac{\|\mathbf{w}^\star\|^2}{\rho^2 T}}$, then the right-hand side is at most ϵ
- By convexity, $f(\bar{\mathbf{w}}) \leq \frac{1}{T} \sum_{t=1}^T f(\mathbf{w}_t)$, hence $f(\bar{\mathbf{w}}) f(\mathbf{w}^\star) \leq \epsilon$

- Since f is convex and ρ -Lipschitz, $\|\mathbf{v}_t\| \leq \rho$ for every t
- Therefore,

$$\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}_t) - f(\mathbf{w}^*)) \leq \frac{\|\mathbf{w}^*\|^2}{2\eta T} + \frac{\eta \rho^2}{2}$$

- For every \mathbf{w}^\star , if $T \geq \frac{\|\mathbf{w}^\star\|^2 \rho^2}{\epsilon^2}$, and $\eta = \sqrt{\frac{\|\mathbf{w}^\star\|^2}{\rho^2 T}}$, then the right-hand side is at most ϵ
- By convexity, $f(\bar{\mathbf{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} f(\mathbf{w}_t)$, hence $f(\bar{\mathbf{w}}) f(\mathbf{w}^{\star}) \leq \epsilon$
- \bullet Corollary: Sub-gradient descent needs $\frac{\|\mathbf{w}^*\|^2\rho^2}{\epsilon^2}$ iterations to converge

Example: Finding a Separating Hyperplane

Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ we would like to find a separating \mathbf{w} :

$$\forall i, \quad y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 0 .$$

Notation:

- Denote by \mathbf{w}^* a separating hyperplane of unit norm and let $\gamma = \min_i y_i \langle \mathbf{w}^*, \mathbf{x}_i \rangle$
- W.I.o.g. assume $\|\mathbf{x}_i\| = 1$ for every i.

Separating Hyperplane using the Ellipsoid

- We can take the initial ball to be the unit ball
- The separation oracle looks for i s.t. $y_i\langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0$
- If there's no such i, we're done. Otherwise, the oracle returns $y_i \mathbf{x}_i$
- The algorithm stops after at most $2d(2d+2)\log(1/\gamma)$ iterations

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

Observe:

f is convex

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i \in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i\rangle$

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i \in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i \rangle$
- f is 1-Lipschitz

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i \in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i\rangle$
- ullet f is 1-Lipschitz
- $f(\mathbf{w}^*) = -\gamma$

Convexity

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i\in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i\rangle$
- f is 1-Lipschitz
- $f(\mathbf{w}^*) = -\gamma$
- \bullet Therefore, after $t>\frac{1}{\gamma^2}$ iterations, we have $f(\mathbf{w}^{(t)}) < f(\mathbf{w}^*) + \gamma = 0$

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i\in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i\rangle$
- f is 1-Lipschitz
- $f(\mathbf{w}^*) = -\gamma$
- ullet Therefore, after $t>rac{1}{\gamma^2}$ iterations, we have $f(\mathbf{w}^{(t)}) < f(\mathbf{w}^*) + \gamma = 0$
- ullet So, $\mathbf{w}^{(t)}$ is a separating hyperplane

Consider the problem:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 where $f(\mathbf{w}) = \max_{i} -y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_i\mathbf{x}_i$ for some $i\in \operatorname{argmax} -y_i\langle \mathbf{w}, \mathbf{x}_i\rangle$
- f is 1-Lipschitz
- $f(\mathbf{w}^*) = -\gamma$
- \bullet Therefore, after $t>\frac{1}{\gamma^2}$ iterations, we have $f(\mathbf{w}^{(t)}) < f(\mathbf{w}^*) + \gamma = 0$
- ullet So, $\mathbf{w}^{(t)}$ is a separating hyperplane
- The resulting algorithm is closely related to the Batch Perceptron

The Batch Perceptron

- Initialize, $\mathbf{w}^{(1)} = \mathbf{0}$
- While exists i s.t. $y_i\langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0$ update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$$

The Batch Perceptron

- Initialize, $\mathbf{w}^{(1)} = \mathbf{0}$
- While exists i s.t. $y_i\langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0$ update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$$

Exercise: why did we eliminate η ?

Ellipsoid vs. Sub-gradient

For f convex and ρ -Lipschitz:

, ,	iterations	cost of iteration
Ellipsoid	$d^2 \log \left(\frac{\rho \ \mathbf{w}^*\ }{\epsilon} \right)$	d^2+ "gradient oracle"
Sub-gradient descent	$\frac{\ \mathbf{w}^*\ ^2 \rho^2}{\epsilon^2}$	d+ "gradient oracle"

Ellipsoid vs. Sub-gradient

For f convex and ρ -Lipschitz:

	iterations	cost of iteration
Ellipsoid	$d^2 \log \left(\frac{\rho \ \mathbf{w}^*\ }{\epsilon} \right)$	d^2+ "gradient oracle"
Sub-gradient descent	$\frac{\ \mathbf{w}^*\ ^2 \rho^2}{\epsilon^2}$	d+ "gradient oracle"

For separating hyperplane:

	iterations	cost of iteration
Ellipsoid	$d^2 \log \left(\frac{1}{\gamma}\right)$	$d^2 + dm$
Sub-gradient descent	$\frac{1}{\gamma^2}$	dm

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- 3 Convex Learning Problems
- 4 Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ) , is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any z, $\ell(\cdot, z)$ denotes the function $f: \mathcal{H} \to \mathbb{R}$ defined by $f(\mathbf{w}) = \ell(\mathbf{w}, z)$).

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H},Z,ℓ) , is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z\in Z$, the loss function, $\ell(\cdot,z)$, is a convex function (where, for any z, $\ell(\cdot,z)$ denotes the function $f:\mathcal{H}\to\mathbb{R}$ defined by $f(\mathbf{w})=\ell(\mathbf{w},z)$).

• The $ERM_{\mathcal{H}}$ problem w.r.t. a convex learning problem is a convex optimization problem: $\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell(\mathbf{w}, z_i)$

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H},Z,ℓ) , is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z\in Z$, the loss function, $\ell(\cdot,z)$, is a convex function (where, for any z, $\ell(\cdot,z)$ denotes the function $f:\mathcal{H}\to\mathbb{R}$ defined by $f(\mathbf{w})=\ell(\mathbf{w},z)$).

- The $ERM_{\mathcal{H}}$ problem w.r.t. a convex learning problem is a convex optimization problem: $\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}, z_i)$
- Example least squares: $\mathcal{H} = \mathbb{R}^d$, $Z = \mathbb{R}^d \times \mathbb{R}$, $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$

Learnability of convex learning problems

- ullet Claim: Not all convex learning problems over \mathbb{R}^d are learnable
- The intuitive reason is numerical stability
- But, with two additional mild conditions, we obtain learnability
 - ullet \mathcal{H} is bounded
 - The loss function (or its gradient) is Lipschitz

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex and ρ -Lipschitz function.

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class $\mathcal H$ is a convex set and for all $\mathbf w \in \mathcal H$ we have $\|\mathbf w\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot,z)$, is a convex and ρ -Lipschitz function.

Example:

- $\bullet \ \mathcal{H} = \{ \mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le B \}$
- $\bullet \ \mathcal{X} = \{\mathbf{x} \in \mathbb{R}^d: \|\mathbf{x}\| \leq \rho\}, \ \mathcal{Y} = \mathbb{R},$
- $\ell(\mathbf{w}, (\mathbf{x}, y)) = |\langle \mathbf{w}, \mathbf{x} \rangle y|$

Convex-Smooth-bounded learning problem

A function f is β -smooth if it is differentiable and its gradient is β -Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class $\mathcal H$ is a convex set and for all $\mathbf w \in \mathcal H$ we have $\|\mathbf w\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot,z)$, is a convex, non-negative, and β -smooth function.

Convex-Smooth-bounded learning problem

A function f is β -smooth if it is differentiable and its gradient is β -Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class $\mathcal H$ is a convex set and for all $\mathbf w \in \mathcal H$ we have $\|\mathbf w\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot,z)$, is a convex, non-negative, and β -smooth function.

Example:

- $\bullet \mathcal{H} = \{ \mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le B \}$
- $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}|| \le \beta/2 \}, \ \mathcal{Y} = \mathbb{R},$
- $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$

Learnability

We will later show that all Convex-Lipschitz-Bounded and Convex-Smooth-Bounded learning problems are learnable, with sample complexity that depends only on ϵ, δ, B , and ρ or β .

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- Convex Learning Problems
- Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

Surrogate Loss Functions

- In many natural cases, the loss function is not convex
- ullet For example, the 0-1 loss for halfspaces

$$\ell^{0-1}(\mathbf{w}, (\mathbf{x}, y)) = \mathbb{1}_{[y \neq \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle)]} = \mathbb{1}_{[y \langle \mathbf{w}, \mathbf{x} \rangle \leq 0]}.$$

- Non-convex loss function usually yields intractable learning problems
- Popular approach: circumvent hardness by upper bounding the non-convex loss function using a convex surrogate loss function

Hinge-loss

$$\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \max\{0, 1 - y \langle \mathbf{w}, \mathbf{x} \rangle\} \ .$$

37 / 47

• Suppose we have a learner for the hinge-loss that guarantees:

$$L_{\mathcal{D}}^{\text{hinge}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon$$
,

• Suppose we have a learner for the hinge-loss that guarantees:

$$L_{\mathcal{D}}^{\text{hinge}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon$$
,

• Using the surrogate property,

$$L_{\mathcal{D}}^{0-1}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon.$$

Suppose we have a learner for the hinge-loss that guarantees:

$$L_{\mathcal{D}}^{\text{hinge}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon$$
,

Using the surrogate property,

$$L^{0-1}_{\mathcal{D}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L^{\text{hinge}}_{\mathcal{D}}(\mathbf{w}) + \epsilon$$
.

We can further rewrite the upper bound as:

$$L_{\mathcal{D}}^{0-1}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w}) + \left(\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) - \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})\right) + \epsilon$$
$$= \epsilon_{\text{approximation}} + \epsilon_{\text{optimization}} + \epsilon_{\text{estimation}}$$

• Suppose we have a learner for the hinge-loss that guarantees:

$$L_{\mathcal{D}}^{\text{hinge}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) + \epsilon$$
,

Using the surrogate property,

$$L^{0-1}_{\mathcal{D}}(A(S)) \ \leq \ \min_{\mathbf{w} \in \mathcal{H}} L^{\text{hinge}}_{\mathcal{D}}(\mathbf{w}) + \epsilon \ .$$

We can further rewrite the upper bound as:

$$L_{\mathcal{D}}^{0-1}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w}) + \left(\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text{hinge}}(\mathbf{w}) - \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})\right) + \epsilon$$
$$= \epsilon_{\text{approximation}} + \epsilon_{\text{optimization}} + \epsilon_{\text{estimation}}$$

• The optimization error is a result of our inability to minimize the training loss with respect to the original loss.

Outline

- Convexity
- Convex Optimization
 - Ellipsoid
 - Gradient Descent
- Convex Learning Problems
- 4 Surrogate Loss Functions
- 5 Learning Using Stochastic Gradient Descent

• Consider a convex-Lipschitz-bounded learning problem.

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

ullet So far, learning was based on the empirical risk, $L_S(\mathbf{w})$

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- ullet So far, learning was based on the empirical risk, $L_S(\mathbf{w})$
- ullet We now consider directly minimizing $L_{\mathcal{D}}(\mathbf{w})$

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

• Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla L_{\mathcal{D}}(\mathbf{w})$

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- ullet But we can estimate it by $abla \ell(\mathbf{w},z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v} = \nabla \ell(\mathbf{w}, z)$ then in expectation we're moving in the right direction

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- ullet But we can estimate it by $abla \ell(\mathbf{w},z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v} = \nabla \ell(\mathbf{w},z)$ then in expectation we're moving in the right direction
- In other words, v is an unbiased estimate of the gradient

$$\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text{where} \quad L_{\mathcal{D}}(\mathbf{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(\mathbf{w}, z)]$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)} = \mathbf{0}$ and update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v} = \nabla \ell(\mathbf{w}, z)$ then in expectation we're moving in the right direction
- In other words, v is an unbiased estimate of the gradient
- We'll show that this is good enough

- initialize: $\mathbf{w}^{(1)} = \mathbf{0}$
- for t = 1, 2, ..., T
 - ullet choose $z_t \sim \mathcal{D}$
 - let $\mathbf{v}_t \in \partial \ell(\mathbf{w}^{(t)}, z_t)$ update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \mathbf{v}_t$
- output $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

- ullet initialize: $\mathbf{w}^{(1)} = \mathbf{0}$
- for t = 1, 2, ..., T
 - choose $z_t \sim \mathcal{D}$
 - let $\mathbf{v}_t \in \partial \ell(\mathbf{w}_{_}^{(t)}, z_t)$ update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \mathbf{v}_t$
- output $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

By algebraic manipulations, for any sequence of $\mathbf{v}_1,\dots,\mathbf{v}_T$, and any \mathbf{w}^\star ,

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle = \frac{\|\mathbf{w}^{(1)} - \mathbf{w}^{\star}\|^{2} - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}$$

By algebraic manipulations, for any sequence of $\mathbf{v}_1,\dots,\mathbf{v}_T$, and any \mathbf{w}^\star ,

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle = \frac{\|\mathbf{w}^{(1)} - \mathbf{w}^{\star}\|^{2} - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}$$

Assume that $\|\mathbf{v}_t\| \leq \rho$ for all t and that $\|\mathbf{w}^*\| \leq B$ we obtain

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \le \frac{B^{2}}{2\eta} + \frac{\eta \rho^{2} T}{2}$$

By algebraic manipulations, for any sequence of $\mathbf{v}_1,\dots,\mathbf{v}_T$, and any \mathbf{w}^\star ,

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle = \frac{\|\mathbf{w}^{(1)} - \mathbf{w}^{\star}\|^{2} - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}$$

Assume that $\|\mathbf{v}_t\| \leq \rho$ for all t and that $\|\mathbf{w}^*\| \leq B$ we obtain

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \leq \frac{B^{2}}{2\eta} + \frac{\eta \rho^{2} T}{2}$$

In particular, for $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$ we get

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \leq B \, \rho \, \sqrt{T} \, .$$

Taking expectation of both sides w.r.t. the randomness of choosing z_1, \ldots, z_T we obtain:

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle \right] \leq B \rho \sqrt{T} .$$

Taking expectation of both sides w.r.t. the randomness of choosing z_1, \ldots, z_T we obtain:

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle \right] \leq B \rho \sqrt{T}.$$

The law of total expectation: for every two random variables α, β , and a function g, $\mathbb{E}_{\alpha}[g(\alpha)] = \mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha)|\beta]$.

Taking expectation of both sides w.r.t. the randomness of choosing z_1, \ldots, z_T we obtain:

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle \right] \leq B \rho \sqrt{T}.$$

The law of total expectation: for every two random variables α, β , and a function g, $\mathbb{E}_{\alpha}[g(\alpha)] = \mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha)|\beta]$. Therefore

$$\mathbb{E}_{z_1,\ldots,z_T}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle] = \mathbb{E}_{z_1,\ldots,z_{t-1}} \mathbb{E}_{z_1,\ldots,z_T}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle \mid z_1,\ldots,z_{t-1}] .$$

Taking expectation of both sides w.r.t. the randomness of choosing z_1, \ldots, z_T we obtain:

$$\mathbb{E}_{z_1, \dots, z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle \right] \leq B \rho \sqrt{T}.$$

The law of total expectation: for every two random variables α, β , and a function g, $\mathbb{E}_{\alpha}[g(\alpha)] = \mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha)|\beta]$. Therefore

$$\mathbb{E}_{z_1,\ldots,z_T}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle] = \mathbb{E}_{z_1,\ldots,z_{t-1}} \mathbb{E}_{z_1,\ldots,z_T}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_t \rangle \mid z_1,\ldots,z_{t-1}].$$

Once we know β the value of $\mathbf{w}^{(t)}$ is not random, hence,

$$\mathbb{E}_{z_1,\dots,z_T}[\langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbf{v}_t \rangle \mid z_1, \dots, z_{t-1}] = \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \mathbb{E}_{z_t}[\nabla \ell(\mathbf{w}^{(t)}, z_t)] \rangle$$

$$= \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla L_{\mathcal{D}}(\mathbf{w}^{(t)}) \rangle$$

We got:

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla L_{\mathcal{D}}(\mathbf{w}^{(t)}) \rangle \right] \leq B \rho \sqrt{T}$$

We got:

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star} , \nabla L_{\mathcal{D}}(\mathbf{w}^{(t)}) \rangle \right] \leq B \rho \sqrt{T}$$

By convexity, this means

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T (L_{\mathcal{D}}(\mathbf{w}^{(t)}) - L_{\mathcal{D}}(\mathbf{w}^{\star})) \right] \leq B \rho \sqrt{T}$$

We got:

$$\mathbb{E}_{z_1, \dots, z_T} \left[\sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^*, \nabla L_{\mathcal{D}}(\mathbf{w}^{(t)}) \rangle \right] \leq B \rho \sqrt{T}$$

By convexity, this means

$$\mathbb{E}_{z_1,\dots,z_T} \left[\sum_{t=1}^T (L_{\mathcal{D}}(\mathbf{w}^{(t)}) - L_{\mathcal{D}}(\mathbf{w}^{\star})) \right] \leq B \rho \sqrt{T}$$

Dividing by T and using convexity again,

$$\mathbb{E}_{z_1,\dots,z_T} \left[L_{\mathcal{D}} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)} \right) \right] \leq L_{\mathcal{D}}(\mathbf{w}^*) + \frac{B \rho}{\sqrt{T}}$$

Learning convex-Lipschitz-bounded problems using SGD

Corollary

Consider a convex-Lipschitz-bounded learning problem with parameters ρ, B . Then, for every $\epsilon > 0$, if we run the SGD method for minimizing $L_{\mathcal{D}}(\mathbf{w})$ with a number of iterations (i.e., number of examples)

$$T \ge \frac{B^2 \rho^2}{\epsilon^2}$$

and with $\eta = \sqrt{\frac{B^2}{
ho^2 T}}$, then the output of SGD satisfies:

$$\mathbb{E}\left[L_{\mathcal{D}}(\bar{\mathbf{w}})\right] \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) + \epsilon .$$

Summary

- Convex optimization
- Convex learning problems
- Learning using SGD