Introduction to Machine Learning (67577) Lecture 5

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Nonuniform learning, MDL, SRM, Decision Trees, Nearest Neighbor

Outline

- 2 Non-uniform learnability
- 3 Structural Risk Minimization
- 4 Decision Trees

How to Express Prior Knowledge

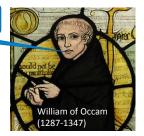
 \bullet So far, learner expresses prior knowledge by specifying the hypothesis class ${\cal H}$

Other Ways to Express Prior Knowledge

Occam's Razor: "A short explanation is preferred over a longer one"

Other Ways to Express Prior Knowledge

Occam's Razor: "A short explanation is preferred over a longer one"



"Things that look alike must be alike"

Outline

- 2 Non-uniform learnability
- 3 Structural Risk Minimization
- Decision Trees
- 5 Nearest Neighbor and Consistency

Bias to Shorter Description

- \bullet Let ${\mathcal H}$ be a countable hypothesis class
- Let $w:\mathcal{H}\to\mathbb{R}$ be such that $\sum_{h\in\mathcal{H}}w(h)\leq 1$
- \bullet The function w reflects prior knowledge on how important w(h) is

• Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, d(h) is not a prefix of d(h') (Always achievable by including an "end-of-word" symbol)

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, d(h) is not a prefix of d(h') (Always achievable by including an "end-of-word" symbol)
- Let |h| be the length of d(h)

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, d(h) is not a prefix of d(h') (Always achievable by including an "end-of-word" symbol)
- Let |h| be the length of d(h)
- Then, set $w(h) = 2^{-|h|}$

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, d(h) is not a prefix of d(h') (Always achievable by including an "end-of-word" symbol)
- Let $\left|h\right|$ be the length of d(h)
- Then, set $w(h) = 2^{-|h|}$
- Kraft's inequality implies that $\sum_h w(h) \leq 1$

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, d(h) is not a prefix of d(h')(Always achievable by including an "end-of-word" symbol)
- Let |h| be the length of d(h)
- Then, set $w(h) = 2^{-|h|}$
- Kraft's inequality implies that $\sum_h w(h) \leq 1$
 - Proof: define probability over words in $d(\mathcal{H})$ as follows: repeatedly toss an unbiased coin, until the sequence of outcomes is a member of $d(\mathcal{H})$, and then stop. Since $d(\mathcal{H})$ is prefix-free, this is a valid probability over $d(\mathcal{H})$, and the probability to get d(h) is w(h).

7 / 39

Theorem (Minimum Description Length (MDL) bound)

Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then, with probability of at least $1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$\forall h \in \mathcal{H}, \ L_D(h) \le L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$$

Theorem (Minimum Description Length (MDL) bound)

Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then, with probability of at least $1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$\forall h \in \mathcal{H}, \ L_D(h) \le L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$$

Compare to VC bound:

$$\forall h \in \mathcal{H}, \ L_D(h) \le L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$$

Proof

• For every h, define $\delta_h = w(h) \cdot \delta$

(日) (同) (三) (三)

э

Proof

- For every $h\text{, define }\delta_h=w(h)\cdot\delta$
- By Hoeffding's bound, for every h,

$$\mathcal{D}^m\left(\left\{S: L_{\mathcal{D}}(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}}\right\}\right) \le \delta_h$$

Image: Image:

э

Proof

- For every h, define $\delta_h = w(h) \cdot \delta$
- By Hoeffding's bound, for every h,

$$\mathcal{D}^m\left(\left\{S: L_{\mathcal{D}}(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}}\right\}\right) \le \delta_h$$

• Applying the union bound,

$$\mathcal{D}^{m}\left(\left\{S: \exists h \in \mathcal{H}, L_{\mathcal{D}}(h) > L_{S}(h) + \sqrt{\frac{\log(2/\delta_{h})}{2m}}\right\}\right) = \mathcal{D}^{m}\left(\cup_{h \in \mathcal{H}}\left\{S: L_{\mathcal{D}}(h) > L_{S}(h) + \sqrt{\frac{\log(2/\delta_{h})}{2m}}\right\}\right) \leq \sum_{h \in \mathcal{H}} \delta_{h} \leq \delta.$$

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$MDL(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]$$

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$MDL(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]$$

 \bullet When $w(h)=2^{-|h|}$ we obtain $-\log(w(h))=|h|\log(2)$

- MDL bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
- VC bound: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$MDL(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]$$

- \bullet When $w(h)=2^{-|h|}$ we obtain $-\log(w(h))=|h|\log(2)$
- Explicit tradeoff between bias (small $L_S(h)$) and complexity (small |h|)

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_{\mathcal{D}}(\mathrm{MDL}(S)) \le L_{\mathcal{D}}(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

- N

э

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_{\mathcal{D}}(\mathrm{MDL}(S)) \le L_{\mathcal{D}}(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

• Example: Take \mathcal{H} to be the class of all python programs, with |h| be the code length (in bits)

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_{\mathcal{D}}(\mathrm{MDL}(S)) \le L_{\mathcal{D}}(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

- Example: Take \mathcal{H} to be the class of all python programs, with |h| be the code length (in bits)
- Assume $\exists h^* \in \mathcal{H}$ with $L_{\mathcal{D}}(h^*) = 0$. Then, for every ϵ, δ , exists sample size m s.t. $\mathcal{D}^m(\{S : L_{\mathcal{D}}(\mathrm{MDL}(S)) \leq \epsilon\}) \geq 1 \delta$

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_{\mathcal{D}}(\mathrm{MDL}(S)) \le L_{\mathcal{D}}(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

- Example: Take \mathcal{H} to be the class of all python programs, with |h| be the code length (in bits)
- Assume $\exists h^* \in \mathcal{H}$ with $L_{\mathcal{D}}(h^*) = 0$. Then, for every ϵ, δ , exists sample size m s.t. $\mathcal{D}^m(\{S : L_{\mathcal{D}}(\mathrm{MDL}(S)) \leq \epsilon\}) \geq 1 \delta$
- MDL is a Universal Learner

For every
$$h^* \in \mathcal{H}$$
, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_{\mathcal{D}}(\mathrm{MDL}(S)) \le L_{\mathcal{D}}(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

- Example: Take \mathcal{H} to be the class of all python programs, with |h| be the code length (in bits)
- Assume $\exists h^* \in \mathcal{H}$ with $L_{\mathcal{D}}(h^*) = 0$. Then, for every ϵ, δ , exists sample size m s.t. $\mathcal{D}^m(\{S : L_{\mathcal{D}}(\mathrm{MDL}(S)) \leq \epsilon\}) \geq 1 \delta$
- MDL is a Universal Learner

Contradiction to the fundamental theorem of learning ?

- $\bullet\,$ Take again ${\cal H}$ to be all python programs
- Note that $\operatorname{VCdim}(\mathcal{H}) = \infty$
- $\bullet\,$ The No-Free-Lunch theorem we can't learn ${\cal H}$
- So how come we can learn \mathcal{H} using MDL ???

Outline

2 Non-uniform learnability

3 Structural Risk Minimization

4 Decision Trees

5 Nearest Neighbor and Consistency

Definition (Non-uniformly learnable)

$$\begin{split} \mathcal{H} \text{ is non-uniformly learnable if } \exists A \text{ and } m_{\mathcal{H}}^{\text{NUL}} : (0,1)^2 \times \mathcal{H} \to \mathbb{N} \text{ s.t.,} \\ \forall \epsilon, \delta \in (0,1), \forall h \in \mathcal{H}, \text{ if } m \geq m_{\mathcal{H}}^{\text{NUL}}(\epsilon, \delta, h) \text{ then } \forall \mathcal{D}, \end{split}$$

 $\mathcal{D}^m\left(\{S: L_{\mathcal{D}}(A(S)) \le L_{\mathcal{D}}(h) + \epsilon\}\right) \ge 1 - \delta .$

• Number of required examples depends on ϵ, δ , and h

Definition (Agnostic PAC learnable)

 \mathcal{H} is agnostically PAC learnable if $\exists A$ and $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ s.t. $\forall \epsilon, \delta \in (0,1)$, if $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, then $\forall \mathcal{D}$ and $\forall h \in \mathcal{H}$,

$$\mathcal{D}^m\left(\{S: L_{\mathcal{D}}(A(S)) \le L_{\mathcal{D}}(h) + \epsilon\}\right) \ge 1 - \delta .$$

• Number of required examples depends only on ϵ, δ

14 / 39

Corollary

Let ${\mathcal H}$ be the class of all computable functions

• *H* is non-uniform learnable, with sample complexity,

$$m_{\mathcal{H}}^{\text{NUL}}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}$$

• H is not PAC learnable.

Corollary

Let \mathcal{H} be the class of all computable functions

• *H* is non-uniform learnable, with sample complexity,

$$m_{\mathcal{H}}^{\text{NUL}}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}$$

• *H* is not PAC learnable.

- We saw that the VC dimension characterizes PAC learnability
- What characterizes non-uniform learnability ?

A class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ is non-uniform learnable if and only if it is a countable union of PAC learnable hypothesis classes.

Proof (Non-uniform learnable \Rightarrow countable union)

• Assume that $\mathcal H$ is non-uniform learnable using A with sample complexity $m_{\mathcal H}^{\rm NUL}$

- Assume that $\mathcal H$ is non-uniform learnable using A with sample complexity $m_{\mathcal H}^{\rm NUL}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \le n\}$

- Assume that $\mathcal H$ is non-uniform learnable using A with sample complexity $m_{\mathcal H}^{\rm NUL}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \le n\}$
- Clearly, $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$.

- Assume that $\mathcal H$ is non-uniform learnable using A with sample complexity $m_{\mathcal H}^{\rm NUL}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \le n\}$
- Clearly, $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$.
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_n$ with $L_{\mathcal{D}}(h) = 0$ we have that $\mathcal{D}^n(\{S : L_{\mathcal{D}}(A(S)) \leq 1/8\}) \geq 6/7$

- Assume that $\mathcal H$ is non-uniform learnable using A with sample complexity $m_{\mathcal H}^{\rm NUL}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \le n\}$
- Clearly, $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$.
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_n$ with $L_{\mathcal{D}}(h) = 0$ we have that $\mathcal{D}^n(\{S : L_{\mathcal{D}}(A(S)) \leq 1/8\}) \geq 6/7$
- The fundamental theorem of statistical learning implies that $\operatorname{VCdim}(\mathcal{H}_n) < \infty$, and therefore \mathcal{H}_n is agnostic PAC learnable

• Assume $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$

- Assume $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w:\mathbb{N}\to [0,1]$ s.t. $\sum_n w(n)\leq 1.$ E.g. $w(n)=\frac{6}{\pi^2n^2}$

• Assume
$$\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$$
, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$
• Choose $w : \mathbb{N} \to [0, 1]$ s.t. $\sum_n w(n) \le 1$. E.g. $w(n) = \frac{6}{\pi^2 n^2}$

• Choose
$$\delta_n = \delta \cdot w(n)$$
 and $\epsilon_n = \sqrt{C rac{d_n + \log(1/\delta_n)}{m}}$

- Assume $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w:\mathbb{N}\to [0,1]$ s.t. $\sum_n w(n)\leq 1.$ E.g. $w(n)=\frac{6}{\pi^2n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

$$\mathcal{D}^m(\{S: \exists h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n\}) \le \delta_n .$$

- Assume $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w:\mathbb{N}\to [0,1]$ s.t. $\sum_n w(n)\leq 1.$ E.g. $w(n)=\frac{6}{\pi^2n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

$$\mathcal{D}^m(\{S: \exists h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n\}) \le \delta_n .$$

• Applying the union bound over n we obtain

$$\mathcal{D}^{m}(\{S: \exists n, h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h) > L_{S}(h) + \epsilon_{n}\}) \leq \sum_{n} \delta_{n} \leq \delta .$$

- Assume $\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\operatorname{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w:\mathbb{N}\to [0,1]$ s.t. $\sum_n w(n)\leq 1.$ E.g. $w(n)=\frac{6}{\pi^2n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

$$\mathcal{D}^m(\{S: \exists h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n\}) \le \delta_n .$$

• Applying the union bound over n we obtain

$$\mathcal{D}^{m}(\{S: \exists n, h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h) > L_{S}(h) + \epsilon_{n}\}) \leq \sum_{n} \delta_{n} \leq \delta .$$

• This yields a generic non-uniform learning rule

18 / 39

Outline

2 Non-uniform learnability

4 Decision Trees

$$\operatorname{SRM}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right]$$

$$\operatorname{SRM}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right]$$

• As in the analysis of MDL, it is easy to show that for every $h \in \mathcal{H}$,

$$L_{\mathcal{D}}(\text{SRM}(S)) \leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}$$

$$\operatorname{SRM}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} \left[L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right]$$

• As in the analysis of MDL, it is easy to show that for every $h \in \mathcal{H}$,

$$L_{\mathcal{D}}(\text{SRM}(S)) \leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}$$

• Hence, SRM is a generic non-uniform learner with sample complexity

$$m_{\mathcal{H}}^{\mathrm{NUL}}(\epsilon,\delta,h) \leq \min_{n:h\in\mathcal{H}_n} C\, \frac{d_n - \log(w(n)) + \log(1/\delta)}{\epsilon^2}$$

No-free-lunch for non-uniform learnability

- Claim: For any infinite domain set, \mathcal{X} , the class $\mathcal{H} = \{0, 1\}^{\mathcal{X}}$ is not a countable union of classes of finite VC-dimension.
- \bullet Hence, such classes ${\cal H}$ are not non-uniformly learnable

The cost of weaker prior knowledge

- Suppose $\mathcal{H} = \cup_n \mathcal{H}_n$, where $\operatorname{VCdim}(\mathcal{H}_n) = n$
- Suppose that some $h^* \in \mathcal{H}_n$ has $L_{\mathcal{D}}(h^*) = 0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_n , and the sample complexity is $C \frac{n + \log(1/\delta)}{\epsilon^2}$
- \bullet Without this prior knowledge, SRM will need $C\,\frac{n+\log(\pi^2n^2/6)+\log(1/\delta)}{\epsilon^2}$ examples
- \bullet That is, we pay order of $\log(n)/\epsilon^2$ more examples for not knowing n in advanced

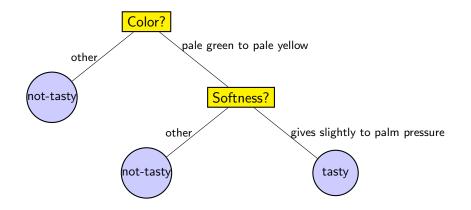
The cost of weaker prior knowledge

- Suppose $\mathcal{H} = \bigcup_n \mathcal{H}_n$, where $\operatorname{VCdim}(\mathcal{H}_n) = n$
- Suppose that some $h^* \in \mathcal{H}_n$ has $L_{\mathcal{D}}(h^*) = 0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_n , and the sample complexity is $C \frac{n + \log(1/\delta)}{2}$
- Without this prior knowledge, SRM will need $C \, \frac{n + \log(\pi^2 n^2/6) + \log(1/\delta)}{c^2}$ examples
- That is, we pay order of $\log(n)/\epsilon^2$ more examples for not knowing n in advanced

SRM for model selection:

Outline

- 2 Non-uniform learnability
- 3 Structural Risk Minimization
- 4 Decision Trees



э

VC dimension of Decision Trees

- Claim: Consider the class of decision trees over $\mathcal X$ with k leaves. Then, the VC dimension of this class is k
- Proof: A set of k instances that arrive to the different leaves can be shattered. A set of k + 1 instances can't be shattered since 2 instances must arrive to the same leaf

• Suppose $\mathcal{X}=\{0,1\}^d$ and splitting rules are according to $\mathbbm{1}_{[x_i=1]}$ for some $i\in[d]$

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)

- Suppose $\mathcal{X}=\{0,1\}^d$ and splitting rules are according to $\mathbbm{1}_{[x_i=1]}$ for some $i\in[d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)
 - An internal node of the form ' $1\!\!1_{[x_i=1]}$ ' for some $i\in[d]$

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)
 - An internal node of the form ' $\mathbb{1}_{[x_i=1]}$ ' for some $i\in[d]$
 - A leaf whose value is 1

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)
 - An internal node of the form ' $1\!\!1_{[x_i=1]}$ ' for some $i\in[d]$
 - A leaf whose value is 1
 - A leaf whose value is 0

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)
 - An internal node of the form ' $\mathbb{1}_{[x_i=1]}$ ' for some $i\in[d]$
 - A leaf whose value is 1
 - A leaf whose value is 0
 - End of the code

- Suppose $\mathcal{X} = \{0,1\}^d$ and splitting rules are according to $\mathbb{1}_{[x_i=1]}$ for some $i \in [d]$
- \bullet Consider the class of all such decision trees over ${\cal X}$
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^d$
- But, we can bias to "small trees"
- A tree with n nodes can be described as n+1 blocks, each of size $\log_2(d+3)$ bits, indicating (in depth-first order)
 - An internal node of the form ' $1\!\!1_{[x_i=1]}$ ' for some $i\in[d]$
 - A leaf whose value is 1
 - A leaf whose value is 0
 - End of the code

• Can apply MDL learning rule: search tree with n nodes that minimizes

$$L_{S}(h) + \sqrt{\frac{(n+1)\log_{2}(d+3) + \log(2/\delta)}{2m}}$$

26 / 39

Decision Tree Algorithms

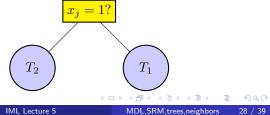
- NP hard problem ...
- Greedy approach: 'Iterative Dichotomizer 3'
- Following the MDL principle, attempts to create a small tree with low train error
- Proposed by Ross Quinlan

27 / 39

${\rm ID3}(S,A)$

- INPUT: training set S, feature subset $A \subseteq [d]$
- if all examples in S are labeled by 1, return a leaf 1
- if all examples in S are labeled by 0, return a leaf 0
- if $A = \emptyset$, return a leaf whose value = majority of labels in S. else :
 - Let $j = \operatorname{argmax}_{i \in A} \operatorname{Gain}(S, i)$
 - if all examples in S have the same label Return a leaf whose value = majority of labels in S
 - else

Let T_1 be the tree returned by $ID3(\{(\mathbf{x}, y) \in S : x_j = 1\}, A \setminus \{j\})$. Let T_2 be the tree returned by $ID3(\{(\mathbf{x}, y) \in S : x_j = 0\}, A \setminus \{j\})$. Return the tree:

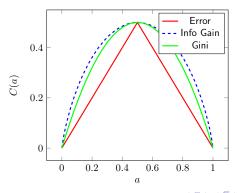


Gain Measures

$$\operatorname{Gain}(S,i) \ = \ C(\operatorname{\mathbb{P}}_S[y]) - \left(\operatorname{\mathbb{P}}_S[x_i] C(\operatorname{\mathbb{P}}_S[y|x_i]) + \operatorname{\mathbb{P}}_S[\neg x_i] C(\operatorname{\mathbb{P}}_S[y|\neg x_i])\right).$$

• Train error:
$$C(a) = \min\{a, 1-a\}$$

- Information gain: $C(a) = -a \log(a) (1-a) \log(1-a)$
- Gini index: C(a) = 2a(1-a)



Pruning, Random Forests,...

In the exercise you'll learn about additional practical variants:

- Pruning the tree
- Random Forests
- Dealing with real valued features

Outline

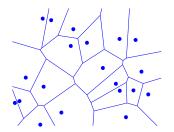
- 2 Non-uniform learnability
- 3 Structural Risk Minimization
- Decision Trees

Nearest Neighbor

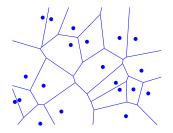
"Things that look alike must be alike"

- Memorize the training set $S = (x_1, y_1), \ldots, (x_m, y_m)$
- Given new x, find the k closest points in S and return majority vote among their labels

1-Nearest Neighbor: Voronoi Tessellation



1-Nearest Neighbor: Voronoi Tessellation



- Unlike ERM,SRM,MDL, etc., there's no ${\cal H}$
- At training time: "do nothing"
- At test time: search S for the nearest neighbors

• $\mathcal{X} = [0, 1]^d, Y = \{0, 1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X} , and $\eta : \mathbb{R}^d \to \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x}) = \mathbb{P}[y = 1|\mathbf{x}]$.

- $\mathcal{X} = [0, 1]^d, Y = \{0, 1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X} , and $\eta : \mathbb{R}^d \to \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x}) = \mathbb{P}[y = 1|\mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

$$h^{\star}(\mathbf{x}) = \mathbb{1}_{[\eta(\mathbf{x}) > 1/2]}$$
.

- $\mathcal{X} = [0, 1]^d, Y = \{0, 1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X} , and $\eta : \mathbb{R}^d \to \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x}) = \mathbb{P}[y = 1|\mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

$$h^{\star}(\mathbf{x}) = \mathbb{1}_{[\eta(\mathbf{x}) > 1/2]}$$
.

• Prior knowledge: η is *c*-Lipschitz. Namely, for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad |\eta(\mathbf{x}) - \eta(\mathbf{x}')| \le c \|\mathbf{x} - \mathbf{x}'\|$

- $\mathcal{X} = [0, 1]^d, Y = \{0, 1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X} , and $\eta : \mathbb{R}^d \to \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x}) = \mathbb{P}[y = 1|\mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

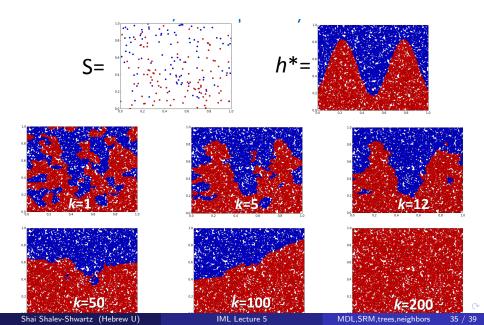
$$h^{\star}(\mathbf{x}) = \mathbb{1}_{[\eta(\mathbf{x}) > 1/2]}$$
.

- Prior knowledge: η is *c*-Lipschitz. Namely, for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad |\eta(\mathbf{x}) \eta(\mathbf{x}')| \le c \|\mathbf{x} \mathbf{x}'\|$
- Theorem: Let h_S be the k-NN rule, then,

$$\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \leq \left(1+\sqrt{\frac{8}{k}}\right)L_{\mathcal{D}}(h^*) + \left(6\,c\,\sqrt{d}+k\right)m^{-1/(d+1)}$$

34 / 39

k-Nearest Neighbor: Bias-Complexity Tradeoff



$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}} \right) L_{\mathcal{D}}(h^*) + \left(6 c \sqrt{d} + k \right) m^{-1/(d+1)}$$

- Suppose $L_{\mathcal{D}}(h^{\star}) = 0$. Then, to have error $\leq \epsilon$ we need $m \geq (4 c \sqrt{d}/\epsilon)^{d+1}$.
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}} \right) L_{\mathcal{D}}(h^*) + \left(6 c \sqrt{d} + k \right) m^{-1/(d+1)}$$

- Suppose $L_{\mathcal{D}}(h^{\star}) = 0$. Then, to have error $\leq \epsilon$ we need $m \geq (4 c \sqrt{d}/\epsilon)^{d+1}$.
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis

Theorem

For any c > 1, and every learner, there exists a distribution over $[0,1]^d \times \{0,1\}$, such that $\eta(\mathbf{x})$ is c-Lipschitz, the Bayes error of the distribution is 0, but for sample sizes $m \leq (c+1)^d/2$, the true error of the learner is greater than 1/4.

39

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^*) + \left(6 c \sqrt{d} + k\right) m^{-1/(d+1)}$$

- Seemingly, we learn the class of all functions over $[0,1]^d$
- But this class is not learnable even in the non-uniform model ...

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^*) + \left(6 c \sqrt{d} + k\right) m^{-1/(d+1)}$$

- Seemingly, we learn the class of all functions over $[0,1]^d$
- But this class is not learnable even in the non-uniform model ...
- There's no contradiction: The number of required examples depends on the Lipschitzness of η (the parameter c), which depends on \mathcal{D} .
 - PAC: $m(\epsilon, \delta)$
 - non-uniform: $m(\epsilon, \delta, h)$
 - consistency: $m(\epsilon, \delta, h, D)$

Issues with Nearest Neighbor

- Need to store entire training set "Replace intelligence with fast memory"
- Curse of dimensionality
 We'll later learn dimensionality reduction methods
- Computational problem of finding nearest neighbor
- What is the "correct" metric between objects ?
 Success depends on Lipschitzness of η, which depends on the right metric

Summary

- Expressing prior knowledge: Hypothesis class, weighting hypotheses, metric
- Weaker notions of learnability: "PAC" stronger than "non-uniform" stronger than "consistency"
- Learning rules: ERM, MDL, SRM
- Decision trees
- Nearest Neighbor