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e Nearest Neighbor and Consistency
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How to Express Prior Knowledge

@ So far, learner expresses prior knowledge by specifying the hypothesis
class H
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Other Ways to Express Prior Knowledge

Occam’s Razor: “A short explanation is
preferred over a longer one”
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Other Ways to Express Prior Knowledge

Occam’s Razor: “A short explanation is
preferred over a longer one”

William of Occam
(1287-1347)

”

“Things that look alike must be alike'
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Outline

@ Minimum Description Length
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Bias to Shorter Description

@ Let H be a countable hypothesis class
o Let w:H — R be such that 7, , w(h) <1
@ The function w reflects prior knowledge on how important w(h) is
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs

@ Suppose that the description language is prefix-free, namely, for every
h # 1, d(h) is not a prefix of d(h')
(Always achievable by including an “end-of-word” symbol)
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs

@ Suppose that the description language is prefix-free, namely, for every
h # 1, d(h) is not a prefix of d(h')
(Always achievable by including an “end-of-word” symbol)

o Let |h| be the length of d(h)
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs

@ Suppose that the description language is prefix-free, namely, for every
h # 1, d(h) is not a prefix of d(h')
(Always achievable by including an “end-of-word” symbol)

o Let |h| be the length of d(h)

@ Then, set w(h) = 2"
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs

@ Suppose that the description language is prefix-free, namely, for every
h # 1, d(h) is not a prefix of d(h')
(Always achievable by including an “end-of-word” symbol)

o Let |h| be the length of d(h)

@ Then, set w(h) = 2"

o Kraft's inequality implies that >, w(h) <1
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Example: Description Length

@ Suppose that each h € H is described by some word d(h) € {0,1}*
E.g.: H is the class of all python programs

@ Suppose that the description language is prefix-free, namely, for every
h # 1, d(h) is not a prefix of d(h')
(Always achievable by including an “end-of-word” symbol)
o Let |h| be the length of d(h)
@ Then, set w(h) = 2"
o Kraft's inequality implies that >, w(h) <1
e Proof: define probability over words in d(?) as follows: repeatedly toss
an unbiased coin, until the sequence of outcomes is a member of d(H),

and then stop. Since d(H) is prefix-free, this is a valid probability over
d(H), and the probability to get d(h) is w(h).

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 7 /39



Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let w:H — R be such that ), ,, w(h) < 1. Then, with probability of at
least 1 — 6 over S ~ D™ we have:

—log(w(h)) + log(2/6)
2m

Vh € H, Lp(h) < Lg(h) + \/
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Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let w:H — R be such that ), ,, w(h) < 1. Then, with probability of at
least 1 — 6 over S ~ D™ we have:

“Tog(w(h)) + log(2/9)

2m

Vh € H, Lp(h) < Lg(h) + \/

Compare to VC bound:

VCdim(H) + log(2/6)
2m

VheH, Lp(h) < Ls(h) + C’\/

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 8 /39



Proof

e For every h, define 05, = w(h) - §
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e For every h, define 05, = w(h) - §
@ By Hoeffding's bound, for every h,

D™ ({S : L’D(h) > Ls(h) + 10g(2/6h)}) < ¢y,

2m

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 9 /39



e For every h, define 05, = w(h) - §
@ By Hoeffding's bound, for every h,

D™ ({S : L’D(h) > Ls(h) + 10g(2/6h)}) < ¢y,

2m

@ Applying the union bound,

pm ({S:HheH,LD(h)>LS(h)+ 10g(2/5h)}) _

2m

pm (uheH {s  Lo(h) > Ls(h) + WW}) <

2m
Zéhgé.

heH
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Bound Minimization

o MDL bound: Vh € H, Lp(h) < Ls(h) + \/ log(w (1) +1og(2/3)

o VC bound: ¥h € H, Lp(h) < Lg(h +c\/VCchm H)+1oa(2/0)
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Bound Minimization

o MDL bound: Vh € H, Lp(h) < Ls(h) + \/ —log(u(h))-+log(2/2)

o VC bound: ¥h € H, Lp(h) < Lg(h) + c\/VCchm H)+1oa(2/0)

@ Recall that our goal is to minimize Lp(h) over h € H
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Bound Minimization

o MDL bound: Vh € H, Lp(h) < Ls(h) + \/ —log(u(h))-+log(2/2)

o VC bound: ¥h € H, Lp(h) < Lg(h) + c\/VCchm H)+1oa(2/0)

@ Recall that our goal is to minimize Lp(h) over h € H
@ Minimizing the VC bound leads to the ERM rule
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Bound Minimization

o MDL bound: Vh € H, Lp(h) < Ls(h) + \/ —log(u(h))-+log(2/2)

o VC bound: ¥h € H, Lp(h) < Lg(h) + c\/VCchm H)+1oa(2/0)

@ Recall that our goal is to minimize Lp(h) over h € H
@ Minimizing the VC bound leads to the ERM rule
@ Minimizing the MDL bound leads to the MDL rule:

Ls(h) + \/—log(w(h)) + log(2/5)]

2m

MDL(S) € argmin
heH
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Bound Minimization

o MDL bound: Yh € H, Lp(h) < Lg(h) + \/—10g(w(h))+10g(2/5)

VC bound: Vh € H, Lp(h) < Lg(h)+C \/ VCdim(#)-Hlog(2/9)

Recall that our goal is to minimize Lp(h) over h € H
Minimizing the VC bound leads to the ERM rule
Minimizing the MDL bound leads to the MDL rule:

Ls(h) + \/—log(w(h)) + log(2/5)]

2m

MDL(S) € argmin
heH

o When w(h) = 27" we obtain —log(w(h)) = |h|log(2)
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Bound Minimization

o MDL bound: Yh € H, Lp(h) < Lg(h) + \/—10g(w(h))+10g(2/5)

VC bound: Vh € H, Lp(h) < Lg(h)+C \/ VCdim(#)-Hlog(2/9)

Recall that our goal is to minimize Lp(h) over h € H
Minimizing the VC bound leads to the ERM rule
Minimizing the MDL bound leads to the MDL rule:

Ls(h) + \/—log(w(h)) + log(2/5)]

2m

MDL(S) € argmin
heH

o When w(h) = 27" we obtain —log(w(h)) = |h|log(2)
e Explicit tradeoff between bias (small Lg(h)) and complexity (small
[12])
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MDL guarantee

For every h* € H, w.p. > 1 — ¢ over S ~ D" we have:

—log(w(h*)) + log(2/9)
2m

Lp(MDL(S)) < Lp(h*) + \/
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MDL guarantee

For every h* € H, w.p. > 1 — ¢ over S ~ D" we have:

—log(w(h*)) + log(2/9)
2m

Lp(MDL(S)) < Lp(h*) + \/

e Example: Take H to be the class of all python programs, with |h| be
the code length (in bits)
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MDL guarantee

For every h* € H, w.p. > 1 — ¢ over S ~ D" we have:

—log(w(h*)) + log(2/9)
2m

Lp(MDL(S)) < Lp(h*) + \/

e Example: Take H to be the class of all python programs, with |h| be
the code length (in bits)

@ Assume Jh* € H with Lp(h*) = 0. Then, for every ¢, d, exists
sample size m s.t. D"({S : Lp(MDL(S)) <e€}) >1—-9§
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MDL guarantee

For every h* € H, w.p. > 1 — ¢ over S ~ D" we have:

Lp(MDL(S)) < Lp(h*) + \/ —1og(w(h*2)?31+ log(2/9)

e Example: Take H to be the class of all python programs, with |h| be
the code length (in bits)

@ Assume Jh* € H with Lp(h*) = 0. Then, for every ¢, d, exists
sample size m s.t. D"({S : Lp(MDL(S)) <e€}) >1—-9§

@ MDL is a Universal Learner
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MDL guarantee

For every h* € H, w.p. > 1 — 9 over S ~ D" we have:

Lp(MDL(S)) < Lp(h*) + \/ —1og(w(h*2)131+ log(2/9)

e Example: Take H to be the class of all python programs, with |h| be

the code length (in bits)
@ Assume Jh* € H with Lp(h*) = 0. Then, for every ¢, d, exists
sample size m s.t. D™({S: Lp(MDL(S)) <e€}) >1-9

@ MDL is a Universal Learner
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Contradiction to the fundamental theorem of learning 7

@ Take again H to be all python programs
e Note that VCdim(H) = oo
@ The No-Free-Lunch theorem we can't learn ‘H

@ So how come we can learn ‘H using MDL 777

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors



Outline

9 Non-uniform learnability
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Non-uniform learning

Definition (Non-uniformly learnable)

H is non-uniformly learnable if 3A and mfj* : (0,1)* x H — N s.t.,
Ve, 6 € (0,1),Vh € H, if m > m))"(¢,0, h) then VD,

D™ ({S: Lp(A(S)) < Lp(h) +¢e}) >1—4.

@ Number of required examples depends on ¢, 9, and h

Definition (Agnostic PAC learnable)

H is agnostically PAC learnable if 34 and my : (0,1)* — N s.t.
Ve, d € (0,1), if m > my(e,0), then VD and Vh € H,

D™ ({8 : Lp(A(S)) < Lp(h) +€}) >1-4.

@ Number of required examples depends only on €, 6

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM trees,neighbors 14 / 39



Non-uniform learning vs. PAC learning

Corollary

Let H be the class of all computable functions

@ H is non-uniform learnable, with sample complexity,

— log(w(h)) +log(2/9)

my/*(e,0,h) < 5e2

@ H is not PAC learnable.
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Non-uniform learning vs. PAC learning

Corollary

Let H be the class of all computable functions

@ H is non-uniform learnable, with sample complexity,

—log(w(h)) +log(2/6)
262

my/*(e,0,h) <

@ H is not PAC learnable.

@ We saw that the VC dimension characterizes PAC learnability

@ What characterizes non-uniform learnability 7

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors



Characterizing Non-uniform Learnability

A class H C {0,1}* is non-uniform learnable if and only if it is a
countable union of PAC learnable hypothesis classes.
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Proof (Non-uniform learnable = countable union)

@ Assume that H is non-uniform learnable using A with sample

complexity mj/*
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Proof (Non-uniform learnable = countable union)

@ Assume that H is non-uniform learnable using A with sample

complexity mj/*

o Foreveryn € N, let H, = {h € H:m}*(1/8,1/7,h) < n}
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Proof (Non-uniform learnable = countable union)

@ Assume that H is non-uniform learnable using A with sample

complexity mj/*

o Foreveryn € N, let H, = {h € H:m}*(1/8,1/7,h) < n}
o Clearly, H = UpenHn.
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Proof (Non-uniform learnable = countable union)

@ Assume that H is non-uniform learnable using A with sample
complexity mj/*

o Foreveryn € N, let H, = {h € H:m}*(1/8,1/7,h) < n}

o Clearly, H = UpenHn.

e For every D s.t. 3h € H,, with Lp(h) = 0 we have that
D"({S: Lp(A(S)) <1/8})>6/7
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Proof (Non-uniform learnable = countable union)

@ Assume that H is non-uniform learnable using A with sample

complexity mj/*

o Foreveryn € N, let H, = {h € H:m}*(1/8,1/7,h) < n}
o Clearly, H = UpenHn.

e For every D s.t. 3h € H,, with Lp(h) = 0 we have that
D"({S: Lp(A(S)) <1/8})>6/7

@ The fundamental theorem of statistical learning implies that
VCdim(#H,) < oo, and therefore H,, is agnostic PAC learnable
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Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM trees,neighbors 18 / 39



Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o
@ Choose w: N — [0,1] s.t. >~ w(n) <1. Eg. w(n) =

m2n2
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Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o
@ Choose w: N — [0,1] s.t. >~ w(n) <1. Eg. w(n) =

m2n2
C dn+log(1/6y)

@ Choose 0, = ¢ - w(n) and €, = -
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Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o
@ Choose w: N — [0,1] s.t. >~ w(n) <1. Eg. w(n) =

P}
e Choose d,, = d - w(n) and €, = C%@/%)
@ By the fundamental theorem, for every n,

D™({S :3h € Hp,Lp(h) > Ls(h) +€,}) < Iy .
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Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o
@ Choose w: N — [0,1] s.t. >~ w(n) <1. Eg. w(n) =

m2n2

CdnJrlog(l/én)

Choose §,, = ¢ - w(n) and €, =

By the fundamental theorem, for every n,

D™({S :3h € Hp,Lp(h) > Ls(h) +€,}) < Iy .

Applying the union bound over n we obtain

D™({S:3n,h € Hp, Lp(h) > Lg(h) + €x}) <> 6, <0 .
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Proof (Countable union = non-uniform learnable)

o Assume H = UpenHy, and VCdim(H,,) = d,, < 0o
@ Choose w: N — [0,1] s.t. >~ w(n) <1. Eg. w(n) =

m2n2

CdnJrlog(l/én)

Choose §,, = ¢ - w(n) and €, =

By the fundamental theorem, for every n,

D™({S :3h € Hp,Lp(h) > Ls(h) +€,}) < Iy .

Applying the union bound over n we obtain

D™({S:3n,h € Hp, Lp(h) > Lg(h) + €x}) <> 6, <0 .

This yields a generic non-uniform learning rule
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Outline

© Structural Risk Minimization
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Structural Risk Minimization (SRM)

SRM(S) € ar};ger%in [Ls(h) + n%lel%n \/Cdn — log(w(rrL’i) +log(1/9) ]
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Structural Risk Minimization (SRM)

SRM(S) € ar};ger%in [Ls(h) + n%lel%n \/Cdn — log(w(rrL’i) +log(1/9) ]

@ As in the analysis of MDL, it is easy to show that for every h € H,

dyn, —log(w(n)) +log(1/9)

Lp(SRM(S)) < Ls(h) + min- \/c
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Structural Risk Minimization (SRM)

SRM(S) € ar};ger%in [Ls(h) + n%lel%n \/Cdn — log(w(rrL’i) +log(1/9) ]

@ As in the analysis of MDL, it is easy to show that for every h € H,

dyn, —log(w(n)) +log(1/9)

Lp(SRM(S)) < Ls(h) + min- \/c

@ Hence, SRM is a generic non-uniform learner with sample complexity

(e 5, h) < %u% . d, — log(w(ng) + log(1/9)
n:hEHn €
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No-free-lunch for non-uniform learnability

o Claim: For any infinite domain set, &, the class % = {0,1}* is not a
countable union of classes of finite VC-dimension.

@ Hence, such classes H are not non-uniformly learnable
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The cost of weaker prior knowledge

@ Suppose H = UpH,,, where VCdim(H,,) =n

@ Suppose that some h* € H,, has Lp(h*) =0

@ With this prior knowledge, we can apply ERM on H,,, and the sample
complexity is C %}1/5)

e Without this prior knowledge, SRM will need C ”+log(”2n26/26)+1°g(1/5)
examples

e That is, we pay order of log(n)/e? more examples for not knowing n
in advanced
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The cost of weaker prior knowledge

@ Suppose H = UpH,,, where VCdim(H,,) =n

@ Suppose that some h* € H,, has Lp(h*) =0

@ With this prior knowledge, we can apply ERM on H,,, and the sample
complexity is C %}1/5)

e Without this prior knowledge, SRM will need C n+log(”2n26/26)+1°g(1/5)
examples

e That is, we pay order of log(n)/e? more examples for not knowing n
in advanced

SRM for model selection:
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Outline

@ Decision Trees
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Decision Trees

pale green to pale yellow

gives slightly to palm pressure
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VC dimension of Decision Trees

@ Claim: Consider the class of decision trees over X with & leaves.
Then, the VC dimension of this class is k

@ Proof: A set of k instances that arrive to the different leaves can be
shattered. A set of k + 1 instances can’t be shattered since 2
instances must arrive to the same leaf
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X

e Claim: This class contains {0,1}* and hence its VC dimension is
x| =24
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]

@ Consider the class of all such decision trees over X

e Claim: This class contains {0,1}* and hence its VC dimension is
x| =2¢

@ But, we can bias to “small trees”
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]

@ Consider the class of all such decision trees over X

e Claim: This class contains {0,1}* and hence its VC dimension is

x| =2¢

But, we can bias to “small trees”

A tree with n nodes can be described as n + 1 blocks, each of size
logy(d + 3) bits, indicating (in depth-first order)
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X
e Claim: This class contains {0,1}* and hence its VC dimension is
|X| = 2
But, we can bias to “small trees”
A tree with n nodes can be described as n + 1 blocks, each of size
logy(d + 3) bits, indicating (in depth-first order)
o An internal node of the form 'Ij,,_y)" for some i € [d]

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 26 / 39



Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X
e Claim: This class contains {0,1}* and hence its VC dimension is
x| = 2¢
But, we can bias to “small trees”
A tree with n nodes can be described as n + 1 blocks, each of size
logy(d + 3) bits, indicating (in depth-first order)
o An internal node of the form 'Ij,,_y)" for some i € [d]
o A leaf whose value is 1
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X
e Claim: This class contains {0,1}* and hence its VC dimension is
x| = 2¢
But, we can bias to “small trees”
A tree with n nodes can be described as n + 1 blocks, each of size
logy(d + 3) bits, indicating (in depth-first order)
o An internal node of the form 'Ij,,_y)" for some i € [d]
o A leaf whose value is 1
o A leaf whose value is 0
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]

@ Consider the class of all such decision trees over X

e Claim: This class contains {0,1}* and hence its VC dimension is

x| = 2¢

But, we can bias to “small trees”

A tree with n nodes can be described as n + 1 blocks, each of size

logy(d + 3) bits, indicating (in depth-first order)

An internal node of the form 'Ij,, )’ for some i € [d]

A leaf whose value is 1

(]
o A leaf whose value is 0
o End of the code
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Description Language for Decision Trees

@ Suppose X = {0,1}% and splitting rules are according to Ty, —q for
some i € [d]
@ Consider the class of all such decision trees over X
e Claim: This class contains {0,1}* and hence its VC dimension is
x| = 2¢
@ But, we can bias to “small trees”
@ A tree with n nodes can be described as n + 1 blocks, each of size
logy(d + 3) bits, indicating (in depth-first order)
o An internal node of the form 'Ij,,_y)" for some i € [d]
o A leaf whose value is 1
o A leaf whose value is 0
e End of the code

@ Can apply MDL learning rule: search tree with n nodes that minimizes

Ls(h) + \/ (n+1) 1og2(d2:; 3) + log(2/9)
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Decision Tree Algorithms

@ NP hard problem ...
@ Greedy approach: ‘lterative Dichotomizer 3’

o Following the MDL principle, attempts to create a small tree with low
train error

@ Proposed by Ross Quinlan
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ID3(S, A)

INPUT: training set S, feature subset A C [d]
if all examples in S are labeled by 1, return a leaf 1

if all examples in S are labeled by 0, return a leaf 0
if A =0, return a leaf whose value = majority of labels in S. else :
o Let j = argmax; 4 Gain(S,1)
o if all examples in S have the same label
Return a leaf whose value = majority of labels in S
o else
Let 77 be the tree returned by ID3({(x,y) € S :z; = 1}, A\ {j}).
Let 75 be the tree returned by ID3({(x,y) € S:z; =0}, A\ {j}).
Return the tree:
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Gain(5,i) = C(EW) - (Blod CEble) + EnlC(Ehl-2)).

e Train error: C(a) = min{a,1 —a}
= —alog(a) — (1 —a)log(l — a)

e Information gain: C(a)
e Gini index: C(a) =2a(1 —a)
—‘ Error‘
- -- Info Gain
—  Gini ||

0.4+

0 0.2
a
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Pruning, Random Forests,...

In the exercise you'll learn about additional practical variants:
@ Pruning the tree
@ Random Forests

@ Dealing with real valued features
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Outline

e Nearest Neighbor and Consistency
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Nearest Neighbor

“Things that look alike must be alike”

@ Memorize the training set S = (x1,91), .., (Tm, Ym)

@ Given new z, find the k closest points in S and return majority vote
among their labels
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1-Nearest Neighbor: Voronoi Tessellation
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1-Nearest Neighbor: Voronoi Tessellation

@ Unlike ERM,SRM MDL, etc., there's no H
@ At training time: “do nothing”

@ At test time: search S for the nearest neighbors
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Analysis of k-NN

o X =1[0,1]4Y = {0,1}, D is a distribution over X x Y, Dy is the
marginal distribution over X, and 17 : R* — R is the conditional
probability over the labels, that is, n(x) = Ply = 1|x].
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Analysis of k-NN

o X =1[0,1]4Y = {0,1}, D is a distribution over X x Y, Dy is the
marginal distribution over X, and 17 : R* — R is the conditional
probability over the labels, that is, n(x) = Ply = 1|x].

@ Recall: the Bayes optimal rule (that is, the hypothesis that minimizes
Lp(h) over all functions) is

P*(x) = Ty x)>1/2] -
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Analysis of k-NN

o X =1[0,1]4Y = {0,1}, D is a distribution over X x Y, Dy is the
marginal distribution over X, and 17 : R* — R is the conditional
probability over the labels, that is, n(x) = Ply = 1|x].

@ Recall: the Bayes optimal rule (that is, the hypothesis that minimizes
Lp(h) over all functions) is

P*(x) = Ty x)>1/2] -

@ Prior knowledge: 7 is c-Lipschitz. Namely, for all
x,x' €X, [n(x)—nx)| <clx—x
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Analysis of k-NN

o X =1[0,1]4Y = {0,1}, D is a distribution over X x Y, Dy is the
marginal distribution over X, and 17 : R* — R is the conditional
probability over the labels, that is, n(x) = Ply = 1|x].

@ Recall: the Bayes optimal rule (that is, the hypothesis that minimizes
Lp(h) over all functions) is

P*(x) = Ty x)>1/2] -

@ Prior knowledge: 7 is c-Lipschitz. Namely, for all
x,x' €X, [n(x)—nx)| <clx—x
@ Theorem: Let hg be the k-NN rule, then,

E [Lp(hs)] < <1 + \/i) Lp(h*) + (Gc\/3+ k) m- 1@+

S~D
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k-Nearest Neighbor: Bias-Complexity Tradeoff
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Curse of Dimensionality

JE [Lp(hs)] < (1+\/§> Lp(h*) + <6cf+k) 1/(d+1)

@ Suppose Lp(h*) = 0. Then, to have error < e we need
m > (4evd/e)?H
@ Number of examples grows exponentially with the dimension

@ This is not an artifact of the analysis
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Curse of Dimensionality

JE [Lp(hs)] < (1+\/§> Lp(h*) + <6cf+k> 1/(d+1)

@ Suppose Lp(h*) = 0. Then, to have error < e we need
m > (4evd/e)?H
@ Number of examples grows exponentially with the dimension

@ This is not an artifact of the analysis

For any ¢ > 1, and every learner, there exists a distribution over

[0,1]% x {0,1}, such that n(x) is c-Lipschitz, the Bayes error of the
distribution is 0, but for sample sizes m < (c+ 1)%/2, the true error of the
learner is greater than 1/4.
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Contradicting the No-Free-Lunch?

L [Lp(hs)] < (1 + \/i) Lp(h*) + (6C\/&+ k) m V(@41

o Seemingly, we learn the class of all functions over [0, 1]¢

@ But this class is not learnable even in the non-uniform model ...
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Contradicting the No-Free-Lunch?

E [Lp(hs)] < (1 + \/i) Lp(h*) + <6c\/&+ k) m—1/(d+1)

S~Dm

o Seemingly, we learn the class of all functions over [0, 1]¢
@ But this class is not learnable even in the non-uniform model ...

@ There's no contradiction: The number of required examples depends
on the Lipschitzness of 7 (the parameter ¢), which depends on D.
e PAC: m(e,d)
e non-uniform: m(e, d, h)
o consistency: m(e, 8, h, D)
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Issues with Nearest Neighbor

@ Need to store entire training set
“Replace intelligence with fast memory”

@ Curse of dimensionality
We'll later learn dimensionality reduction methods

@ Computational problem of finding nearest neighbor

@ What is the “correct” metric between objects ?
Success depends on Lipschitzness of 1, which depends on the right
metric
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@ Expressing prior knowledge: Hypothesis class, weighting hypotheses,
metric

@ Weaker notions of learnability:
“PAC" stronger than “non-uniform” stronger than “consistency”

@ Learning rules: ERM, MDL, SRM
@ Decision trees

@ Nearest Neighbor
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