Introduction to Machine Learning (67577) Lecture 4

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Boosting

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

Definition $((\epsilon, \delta)$ -Weak-Learnability)

A class $\mathcal H$ is (ϵ,δ) -weak-learnable if there exists a learning algorithm, A, and a training set size, $m\in\mathbb N$, such that for every distribution $\mathcal D$ over $\mathcal X$ and every $f\in\mathcal H$,

$$\mathcal{D}^m(\{S: L_{\mathcal{D},f}(A(S)) \le \epsilon\}) \ge 1 - \delta.$$

Definition $((\epsilon, \delta)$ -Weak-Learnability)

A class $\mathcal H$ is (ϵ,δ) -weak-learnable if there exists a learning algorithm, A, and a training set size, $m\in\mathbb N$, such that for every distribution $\mathcal D$ over $\mathcal X$ and every $f\in\mathcal H$,

$$\mathcal{D}^m(\{S: L_{\mathcal{D},f}(A(S)) \le \epsilon\}) \ge 1 - \delta.$$

Remarks:

• Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ

Definition $((\epsilon, \delta)$ -Weak-Learnability)

A class $\mathcal H$ is (ϵ,δ) -weak-learnable if there exists a learning algorithm, A, and a training set size, $m\in\mathbb N$, such that for every distribution $\mathcal D$ over $\mathcal X$ and every $f\in\mathcal H$,

$$\mathcal{D}^m(\{S: L_{\mathcal{D},f}(A(S)) \le \epsilon\}) \ge 1 - \delta.$$

Remarks:

- Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ
- Every class $\mathcal H$ is (1/2,0)-weak-learnable

Definition $((\epsilon, \delta)$ -Weak-Learnability)

A class $\mathcal H$ is (ϵ,δ) -weak-learnable if there exists a learning algorithm, A, and a training set size, $m\in\mathbb N$, such that for every distribution $\mathcal D$ over $\mathcal X$ and every $f\in\mathcal H$,

$$\mathcal{D}^m(\{S: L_{\mathcal{D},f}(A(S)) \le \epsilon\}) \ge 1 - \delta.$$

Remarks:

- Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ
- Every class \mathcal{H} is (1/2,0)-weak-learnable
- Intuitively, one can think of a weak learner as an algorithm that uses a simple 'rule of thumb' to output a hypothesis that performs just slightly better than a random guess

• $\mathcal{X} = \mathbb{R}$, \mathcal{H} is the class of 3-piece classifiers, e.g.

• $\mathcal{X} = \mathbb{R}$, \mathcal{H} is the class of 3-piece classifiers, e.g.

• Let $B=\{x\mapsto \mathrm{sign}(x-\theta)\cdot b:\ \theta\in\mathbb{R},b\in\{\pm 1\}\}$ be the class of Decision Stumps

• $\mathcal{X} = \mathbb{R}$, \mathcal{H} is the class of 3-piece classifiers, e.g.

- Let $B=\{x\mapsto \mathrm{sign}(x-\theta)\cdot b:\ \theta\in\mathbb{R},b\in\{\pm 1\}\}$ be the class of Decision Stumps
- Claim: There is a constant m, such that ERM_B over m examples is a (5/12,1/2)-weak learner for $\mathcal H$

• $\mathcal{X} = \mathbb{R}$, \mathcal{H} is the class of 3-piece classifiers, e.g.

- Let $B=\{x\mapsto \mathrm{sign}(x-\theta)\cdot b:\ \theta\in\mathbb{R},b\in\{\pm 1\}\}$ be the class of Decision Stumps
- Claim: There is a constant m, such that ERM_B over m examples is a (5/12,1/2)-weak learner for $\mathcal H$
- Proof:
 - \bullet Observe that there's always a decision stump with $L_{\mathcal{D},f}(h) \leq 1/3$
 - Apply VC bound for the class of decision stumps

• Suppose we have an (ϵ_0, δ_0) -weak-learner algorithm, A, for some class $\mathcal H$

- Suppose we have an (ϵ_0, δ_0) -weak-learner algorithm, A, for some class ${\cal H}$
- ullet Can we use A to construct a strong learner ?

- \bullet Suppose we have an $(\epsilon_0,\delta_0)\mbox{-weak-learner}$ algorithm, A , for some class ${\cal H}$
- Can we use A to construct a strong learner?
- If A is computationally efficient, can we boost it efficiently?

- Suppose we have an (ϵ_0, δ_0) -weak-learner algorithm, A, for some class ${\cal H}$
- ullet Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently?
- Two questions:

- Suppose we have an (ϵ_0, δ_0) -weak-learner algorithm, A, for some class ${\cal H}$
- ullet Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently?
- Two questions:
 - Boosting the confidence

- Suppose we have an (ϵ_0, δ_0) -weak-learner algorithm, A, for some class $\mathcal H$
- ullet Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently?
- Two questions:
 - Boosting the confidence
 - Boosting the accuracy

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

• Suppose A is an (ϵ_0, δ_0) -weak learner for \mathcal{H} that requires m_0 examples

- Suppose A is an (ϵ_0, δ_0) -weak learner for $\mathcal H$ that requires m_0 examples
- For any $\delta, \epsilon \in (0,1)$ we show how to learn $\mathcal H$ to accuracy $\epsilon_0 + \epsilon$ with confidence δ

- ullet Suppose A is an (ϵ_0, δ_0) -weak learner for ${\mathcal H}$ that requires m_0 examples
- For any $\delta, \epsilon \in (0,1)$ we show how to learn $\mathcal H$ to accuracy $\epsilon_0 + \epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log(2/\delta)}{\log(1/\delta_0)}\right\rceil$ i.i.d. samples, each of which of m_0 examples, to obtain h_1,\ldots,h_k

- ullet Suppose A is an (ϵ_0,δ_0) -weak learner for ${\mathcal H}$ that requires m_0 examples
- For any $\delta, \epsilon \in (0,1)$ we show how to learn $\mathcal H$ to accuracy $\epsilon_0 + \epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log(2/\delta)}{\log(1/\delta_0)}\right\rceil$ i.i.d. samples, each of which of m_0 examples, to obtain h_1,\ldots,h_k
- Step 2: Take additional validation sample of size $|V| \geq \frac{2\log(4k/\delta)}{\epsilon^2}$ and output $\hat{h} \in \operatorname{argmin}_{h_i} L_V(h_i)$

- ullet Suppose A is an (ϵ_0, δ_0) -weak learner for ${\mathcal H}$ that requires m_0 examples
- For any $\delta, \epsilon \in (0,1)$ we show how to learn $\mathcal H$ to accuracy $\epsilon_0 + \epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log(2/\delta)}{\log(1/\delta_0)}\right\rceil$ i.i.d. samples, each of which of m_0 examples, to obtain h_1,\ldots,h_k
- Step 2: Take additional validation sample of size $|V| \geq \frac{2\log(4k/\delta)}{\epsilon^2}$ and output $\hat{h} \in \operatorname{argmin}_{h_i} L_V(h_i)$
- Claim: W.p. at least 1δ , we have $L_{\mathcal{D}}(\hat{h}) \leq \epsilon_0 + \epsilon$

Proof

• First, by the validation procedure guarantees

$$\mathbb{P}[L_{\mathcal{D}}(\hat{h}) > \min_{i} L_{\mathcal{D}}(h_{i}) + \epsilon] \leq \delta/2.$$

Proof

• First, by the validation procedure guarantees

$$\mathbb{P}[L_{\mathcal{D}}(\hat{h}) > \min_{i} L_{\mathcal{D}}(h_{i}) + \epsilon] \leq \delta/2.$$

Second,

$$\mathbb{P}[\min_{i} L_{\mathcal{D}}(h_{i}) > \epsilon_{0}] = \mathbb{P}[\forall_{i} L_{\mathcal{D}}(h_{i}) > \epsilon_{0}]$$

$$= \prod_{i=1}^{k} \mathbb{P}[L_{\mathcal{D}}(h_{i}) > \epsilon_{0}]$$

$$\leq \delta_{0}^{k} \leq \delta/2.$$

Proof

First, by the validation procedure guarantees

$$\mathbb{P}[L_{\mathcal{D}}(\hat{h}) > \min_{i} L_{\mathcal{D}}(h_{i}) + \epsilon] \leq \delta/2.$$

Second,

$$\mathbb{P}[\min_{i} L_{\mathcal{D}}(h_{i}) > \epsilon_{0}] = \mathbb{P}[\forall_{i} L_{\mathcal{D}}(h_{i}) > \epsilon_{0}]$$

$$= \prod_{i=1}^{k} \mathbb{P}[L_{\mathcal{D}}(h_{i}) > \epsilon_{0}]$$

$$\leq \delta_{0}^{k} \leq \delta/2.$$

• Apply the union bound to conclude the proof.

ullet Suppose that A is a learner that guarantees:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon .$$

ullet Suppose that A is a learner that guarantees:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon .$$

• Denote $\theta = L_{\mathcal{D}}(A(S)) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}} \left[\theta \right] \le \epsilon \ .$$

• Suppose that A is a learner that guarantees:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon .$$

• Denote $\theta = L_{\mathcal{D}}(A(S)) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}} \left[\theta \right] \le \epsilon \ .$$

ullet Since heta is a non-negative random variable, we can apply Markov's inequality to obtain

$$\mathbb{P}[\theta \ge 2\epsilon] \le \frac{\mathbb{E}[\theta]}{2\epsilon} \le \frac{1}{2} .$$

ullet Suppose that A is a learner that guarantees:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon .$$

• Denote $\theta = L_{\mathcal{D}}(A(S)) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}} \left[\theta \right] \le \epsilon \ .$$

ullet Since heta is a non-negative random variable, we can apply Markov's inequality to obtain

$$\mathbb{P}[\theta \ge 2\epsilon] \le \frac{\mathbb{E}[\theta]}{2\epsilon} \le \frac{1}{2} .$$

• Corollary: A is $(2\epsilon, 1/2)$ -weak learner.

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

Boosting the accuracy

Problem raised in 1988 by Kearns and Valiant

Solved in 1990 by Robert Schapire, then a graduate student at MIT

In 1995, Schapire & Freund proposed the AdaBoost algorithm

• Input: $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, where for each $i, y_i = f(\mathbf{x}_i)$

- Input: $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, where for each $i, y_i = f(\mathbf{x}_i)$
- ullet Output: hypothesis h with small error on S

- Input: $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, where for each $i, y_i = f(\mathbf{x}_i)$
- ullet Output: hypothesis h with small error on S
- ullet We'll later analyze $L_{(\mathcal{D},f)}(h)$ as well

- Input: $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, where for each $i, y_i = f(\mathbf{x}_i)$
- Output: hypothesis h with small error on S
- We'll later analyze $L_{(\mathcal{D},f)}(h)$ as well
- ullet AdaBoost calls the weak learner on distributions over S

The AdaBoost Algorithm

• input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$
- for t = 1, ..., T:

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=(\frac{1}{m},\dots,\frac{1}{m})$
- for t = 1, ..., T:
 - invoke weak learner $h_t = \mathrm{WL}(\mathbf{D}^{(t)}, S)$

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$
- for t = 1, ..., T:
 - invoke weak learner $h_t = \mathrm{WL}(\mathbf{D}^{(t)}, S)$
 - compute $\epsilon_t = L_{\mathbf{D}^{(t)}}(h_t) = \sum_{i=1}^m D_i^{(t)} \, \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}$

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$
- for t = 1, ..., T:
 - invoke weak learner $h_t = \mathrm{WL}(\mathbf{D}^{(t)}, S)$
 - compute $\epsilon_t = L_{\mathbf{D}^{(t)}}(h_t) = \sum_{i=1}^m D_i^{(t)} \, \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}$
 - let $w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} 1 \right)$

- input: training set $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=(\frac{1}{m},\dots,\frac{1}{m})$
- for t = 1, ..., T:
 - invoke weak learner $h_t = \mathrm{WL}(\mathbf{D}^{(t)}, S)$
 - compute $\epsilon_t = L_{\mathbf{D}^{(t)}}(h_t) = \sum_{i=1}^m D_i^{(t)} \, \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}$
 - let $w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} 1 \right)$
 - $\bullet \text{ update } D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_t y_i h_t(\mathbf{x}_i))}{\sum_{j=1}^m D_j^{(t)} \exp(-w_t y_j h_t(\mathbf{x}_j))} \text{ for all } i=1,\ldots,m$

- input: training set $S=(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_m,y_m)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=(\frac{1}{m},\dots,\frac{1}{m})$
- for t = 1, ..., T:
 - invoke weak learner $h_t = WL(\mathbf{D}^{(t)}, S)$
 - compute $\epsilon_t = L_{\mathbf{D}^{(t)}}(h_t) = \sum_{i=1}^m D_i^{(t)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}$
 - let $w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} 1 \right)$
 - $\bullet \text{ update } D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_t y_i h_t(\mathbf{x}_i))}{\sum_{j=1}^m D_j^{(t)} \exp(-w_t y_j h_t(\mathbf{x}_j))} \text{ for all } i=1,\ldots,m$
- output the hypothesis $h_s(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^T w_t h_t(\mathbf{x})\right)$.

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_t w.r.t. $\mathbf{D}^{(t+1)}$ is exactly 1/2
- Proof:

$$\sum_{i=1}^{m} D_i^{(t+1)} \, \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]} = \frac{\sum_{i=1}^{m} D_i^{(t)} \, e^{-w_t y_i h_t(\mathbf{x}_i)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}}{\sum_{j=1}^{m} D_j^{(t)} e^{-w_t y_j h_t(\mathbf{x}_j)}}$$

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_t w.r.t. $\mathbf{D}^{(t+1)}$ is exactly 1/2
- Proof:

$$\sum_{i=1}^{m} D_i^{(t+1)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]} = \frac{\sum_{i=1}^{m} D_i^{(t)} e^{-w_t y_i h_t(\mathbf{x}_i)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}}{\sum_{j=1}^{m} D_j^{(t)} e^{-w_t y_j h_t(\mathbf{x}_j)}}$$

$$=\frac{e^{w_t}\epsilon_t}{e^{w_t}\epsilon_t + e^{-w_t}(1-\epsilon_t)} = \frac{\epsilon_t}{\epsilon_t + e^{-2w_t}(1-\epsilon_t)}$$

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_t w.r.t. $\mathbf{D}^{(t+1)}$ is exactly 1/2
- Proof:

$$\sum_{i=1}^{m} D_i^{(t+1)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]} = \frac{\sum_{i=1}^{m} D_i^{(t)} e^{-w_t y_i h_t(\mathbf{x}_i)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]}}{\sum_{j=1}^{m} D_j^{(t)} e^{-w_t y_j h_t(\mathbf{x}_j)}}$$

$$= \frac{e^{w_t} \epsilon_t}{e^{w_t} \epsilon_t + e^{-w_t} (1 - \epsilon_t)} = \frac{\epsilon_t}{\epsilon_t + e^{-2w_t} (1 - \epsilon_t)}$$

$$= \frac{\epsilon_t}{\epsilon_t + \frac{\epsilon_t}{1 - \epsilon_t} (1 - \epsilon_t)} = \frac{1}{2}.$$

If WL is $(1/2-\gamma,\delta)$ weak learner then, with probability at least $1-\delta T$,

$$L_S(h_s) \le \exp(-2\gamma^2 T) .$$

If WL is $(1/2 - \gamma, \delta)$ weak learner then, with probability at least $1 - \delta T$,

$$L_S(h_s) \leq \exp(-2\gamma^2 T)$$
.

Remarks:

• For any $\epsilon>0$ and $\gamma\in(0,1/2)$, if $T\geq\frac{\log(1/\epsilon)}{2\gamma^2}$, then AdaBoost will output a hypothesis h_s with $L_S(h_s)\leq\epsilon$.

If WL is $(1/2 - \gamma, \delta)$ weak learner then, with probability at least $1 - \delta T$,

$$L_S(h_s) \leq \exp(-2\gamma^2 T)$$
.

Remarks:

- For any $\epsilon>0$ and $\gamma\in(0,1/2)$, if $T\geq\frac{\log(1/\epsilon)}{2\gamma^2}$, then AdaBoost will output a hypothesis h_s with $L_S(h_s)\leq\epsilon$.
- ullet Setting $\epsilon=1/(2m)$ the hypothesis h_s must have a zero training error

If WL is $(1/2 - \gamma, \delta)$ weak learner then, with probability at least $1 - \delta T$,

$$L_S(h_s) \leq \exp(-2\gamma^2 T)$$
.

Remarks:

- For any $\epsilon>0$ and $\gamma\in(0,1/2)$, if $T\geq\frac{\log(1/\epsilon)}{2\gamma^2}$, then AdaBoost will output a hypothesis h_s with $L_S(h_s)\leq\epsilon$.
- \bullet Setting $\epsilon=1/(2m)$ the hypothesis h_s must have a zero training error
- Since the weak learner is invoked on a distribution over S, in many cases δ can be 0. In any case, by "boosting the confidence", we can assume w.l.o.g. that δ is very small.

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

ullet Let B be the set of all hypotheses the WL may return

- Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \mathbf{w} \in \mathbb{R}^T, \ \forall t, \quad h_t \in B \right\} .$$

- ullet Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \mathbf{w} \in \mathbb{R}^T, \ \forall t, \quad h_t \in B \right\} .$$

• Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B=\{g_1,\ldots,g_d\}$ for some $d\leq 2^m$.

- ullet Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \mathbf{w} \in \mathbb{R}^T, \ \forall t, \quad h_t \in B \right\} .$$

- Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B = \{g_1, \dots, g_d\}$ for some $d \leq 2^m$.
- Denote $\psi(x) = (g_1(x), \dots, g_d(x))$. Therefore:

$$L(B,T) = \left\{ x \mapsto \operatorname{sign} \left(\langle w, \psi(x) \rangle \right) : \mathbf{w} \in \mathbb{R}^d, \ \|\mathbf{w}\|_0 \le T \right\} ,$$

where $\|\mathbf{w}\|_0 = |\{i : w_i \neq 0\}|$.

- ullet Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \mathbf{w} \in \mathbb{R}^T, \ \forall t, \quad h_t \in B \right\} .$$

- Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B = \{g_1, \dots, g_d\}$ for some $d \leq 2^m$.
- Denote $\psi(x) = (g_1(x), \dots, g_d(x))$. Therefore:

$$L(B,T) = \left\{ x \mapsto \operatorname{sign} \left(\langle w, \psi(x) \rangle \right) : \mathbf{w} \in \mathbb{R}^d, \ \|\mathbf{w}\|_0 \le T \right\} \ ,$$

where $\|\mathbf{w}\|_0 = |\{i : w_i \neq 0\}|$.

• That is, AdaBoost learns a composition of the class of halfspaces with sparse coefficients over the mapping $x\mapsto \psi(x)$

 \bullet Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$B = \{x \mapsto \operatorname{sign}(x - \theta) \cdot b : \theta \in \mathbb{R}, b \in \{\pm 1\}\}\$$
.

• Suppose $\mathcal{X} = \mathbb{R}$ and B is Decision Stumps,

$$B = \{x \mapsto \operatorname{sign}(x - \theta) \cdot b : \theta \in \mathbb{R}, b \in \{\pm 1\}\}\$$
.

ullet Let \mathcal{G}_T be the class of piece-wise constant functions with T pieces

• Suppose $\mathcal{X} = \mathbb{R}$ and B is Decision Stumps,

$$B = \{x \mapsto \operatorname{sign}(x - \theta) \cdot b : \theta \in \mathbb{R}, b \in \{\pm 1\}\}\$$
.

- ullet Let \mathcal{G}_T be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_T \subseteq L(B,T)$

• Suppose $\mathcal{X} = \mathbb{R}$ and B is Decision Stumps,

$$B = \{x \mapsto \operatorname{sign}(x - \theta) \cdot b : \theta \in \mathbb{R}, b \in \{\pm 1\}\}\$$
.

- ullet Let \mathcal{G}_T be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_T \subseteq L(B,T)$

• Suppose $\mathcal{X} = \mathbb{R}$ and B is Decision Stumps,

$$B = \{x \mapsto \operatorname{sign}(x - \theta) \cdot b : \theta \in \mathbb{R}, b \in \{\pm 1\}\}\$$
.

- ullet Let \mathcal{G}_T be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_T \subseteq L(B,T)$

Composing halfspaces on top of simple classes can be very expressive!

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

Recall:

ullet We have argued that the expressiveness of L(B,T) grows with T

Recall:

- ullet We have argued that the expressiveness of L(B,T) grows with T
- \bullet In other words, the approximation error decreases with T

Recall:

- ullet We have argued that the expressiveness of L(B,T) grows with T
- ullet In other words, the approximation error decreases with T
- ullet We'll show that the estimation error increases with T

Recall:

- ullet We have argued that the expressiveness of L(B,T) grows with T
- ullet In other words, the approximation error decreases with T
- ullet We'll show that the estimation error increases with T
- \bullet Therefore, the parameter T of AdaBoost enables us to control the bias-complexity tradeoff

The Estimation Error of L(B,T)

Claim:

$$VCdim(L(B,T)) \leq \tilde{O}(T \cdot VCdim(B))$$

The Estimation Error of L(B,T)

Claim:

$$VCdim(L(B,T)) \leq \tilde{O}(T \cdot VCdim(B))$$

• Corollary: if $m \geq \tilde{\Omega}\left(\frac{\log(1/\delta)}{\gamma^2\epsilon}\right)$ and $T = \log(m)/(2\gamma^2)$, then w.p. of at least $1-\delta$,

$$L_{(\mathcal{D},f)}(h_s) \leq \epsilon$$
.

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

• We have essentially shown: if \mathcal{H} is weak learnable, then $\mathcal{H}\subseteq L(B,\infty)$

- ullet We have essentially shown: if ${\mathcal H}$ is weak learnable, then ${\mathcal H}\subseteq L(B,\infty)$
- What about the other direction ?

- We have essentially shown: if $\mathcal H$ is weak learnable, then $\mathcal H\subseteq L(B,\infty)$
- What about the other direction ?
- Using von Neumanns minimax theorem, it can be shown that if $L(B,\infty)$ separates a training set with ℓ_1 margin γ then ERM_B is a γ weak learner for $\mathcal H$.

- We have essentially shown: if $\mathcal H$ is weak learnable, then $\mathcal H\subseteq L(B,\infty)$
- What about the other direction ?
- Using von Neumanns minimax theorem, it can be shown that if $L(B,\infty)$ separates a training set with ℓ_1 margin γ then ERM_B is a γ weak learner for $\mathcal H$
- This is beyond the scope of the course

Outline

- Weak learnability
- 2 Boosting the confidence
- 3 Boosting the accuracy using AdaBoost
- 4 AdaBoost as a learner for Halfspaces++
- 5 AdaBoost and the Bias-Complexity Tradeoff
- 6 Weak Learnability and Separability with Margin
- AdaBoost for Face Detection

Face Detection

• Classify rectangles in an image as face or non-face

Weak Learner for Face Detection

Rules of thumb:

- "eye region is often darker than the cheeks"
- "bridge of the noise is brighter than the eyes"

Weak Learner for Face Detection

Rules of thumb:

- "eye region is often darker than the cheeks"
- "bridge of the noise is brighter than the eyes"

Goal:

- We want to combine few rules of thumb to obtain a face detector
- "Sparsity" reflects both small estimation error but also speed!

Weak Learner for Face Detection

Each hypothesis in the base class is of the form h(x) = f(g(x)), where f is a decision stump and $g: \mathbb{R}^{24,24} \to \mathbb{R}$ is parameterized by:

- An axis-aligned rectangle R. Since each image is of size 24×24 , there are at most 24^4 axis-aligned rectangles.
- A type, $t \in \{A, B, C, D\}$. Each type corresponds to a mask:

AdaBoost for Face Detection

The first and second features selected by AdaBoost, as implemented by Viola and Jones.

Summary

- Boosting the confidence using validation
- Boosting the accuracy using AdaBoost
- The power of composing halfspaces over simple classes
- The bias-complexity tradeoff
- AdaBoost works in many practical problems!