Introduction to Machine Learning (67577) Lecture 3

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

General Learning Model and Bias-Complexity tradeoff

Outline

- The general PAC model
 - Releasing the realizability assumption
 - beyond binary classification
 - The general PAC learning model
- 2 Learning via Uniform Convergence
- 3 Linear Regression and Least Squares
 - Polynomial Fitting
- The Bias-Complexity Tradeoff
 - Error Decomposition
- 5 Validation and Model Selection

- ullet So far we assumed that labels are generated by some $f\in \mathcal{H}$
- This assumption may be too strong
- Relax the realizability assumption by replacing the "target labeling function" with a more flexible notion, a data-labels generating distribution

ullet Recall: in PAC model, ${\mathcal D}$ is a distribution over ${\mathcal X}$

- ullet Recall: in PAC model, ${\mathcal D}$ is a distribution over ${\mathcal X}$
- ullet From now on, let ${\mathcal D}$ be a distribution over ${\mathcal X} imes {\mathcal Y}$

- ullet Recall: in PAC model, ${\mathcal D}$ is a distribution over ${\mathcal X}$
- ullet From now on, let $\mathcal D$ be a distribution over $\mathcal X imes \mathcal Y$
- We redefine the risk as:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{(x,y)\sim\mathcal{D}}{\mathbb{P}}[h(x)\neq y] \stackrel{\text{def}}{=} \mathcal{D}(\{(x,y):h(x)\neq y\})$$

- ullet Recall: in PAC model, ${\mathcal D}$ is a distribution over ${\mathcal X}$
- ullet From now on, let $\mathcal D$ be a distribution over $\mathcal X imes \mathcal Y$
- We redefine the risk as:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{(x,y)\sim\mathcal{D}}{\mathbb{P}}[h(x)\neq y] \stackrel{\text{def}}{=} \mathcal{D}(\{(x,y):h(x)\neq y\})$$

We redefine the "approximately correct" notion to

$$L_{\mathcal{D}}(A(S)) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

PAC vs. Agnostic PAC learning

	PAC	Agnostic PAC
Distribution	${\cal D}$ over ${\cal X}$	${\mathcal D}$ over ${\mathcal X} imes {\mathcal Y}$
Truth	$f\in \mathcal{H}$	not in class or doesn't exist
Risk	$L_{\mathcal{D},f}(h) = \\ \mathcal{D}(\{x : h(x) \neq f(x)\})$	$L_{\mathcal{D}}(h) = \mathcal{D}(\{(x,y) : h(x) \neq y\})$
Training set	$(x_1, \dots, x_m) \sim \mathcal{D}^m$ $\forall i, \ y_i = f(x_i)$	$((x_1, y_1), \dots, (x_m, y_m)) \sim \mathcal{D}^m$
Goal	$L_{\mathcal{D},f}(A(S)) \le \epsilon$	$L_{\mathcal{D}}(A(S)) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$

Beyond Binary Classification

Scope of learning problems:

- Multiclass categorization: \mathcal{Y} is a finite set representing $|\mathcal{Y}|$ different classes. E.g. \mathcal{X} is documents and $\mathcal{Y} = \{\text{News}, \text{Sports}, \text{Biology}, \text{Medicine}\}$
- Regression: $\mathcal{Y} = \mathbb{R}$. E.g. one wishes to predict a baby's birth weight based on ultrasound measures of his head circumference, abdominal circumference, and femur length.

• Let $Z = \mathcal{X} \times \mathcal{Y}$

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x},y) \in Z$, how good is h on (\mathbf{x},y) ?

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x}, y) \in Z$, how good is h on (\mathbf{x}, y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x}, y) \in Z$, how good is h on (\mathbf{x}, y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$
- Examples:

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x}, y) \in Z$, how good is h on (\mathbf{x}, y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$
- Examples:
 - 0-1 loss: $\ell(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x}, y) \in Z$, how good is h on (\mathbf{x}, y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$
- Examples:
 - 0-1 loss: $\ell(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$
 - Squared loss: $\ell(h,(x,y)) = (h(x) y)^2$

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x},y) \in Z$, how good is h on (\mathbf{x},y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$
- Examples:
 - 0-1 loss: $\ell(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$
 - Squared loss: $\ell(h,(x,y)) = (h(x) y)^2$
 - Absolute-value loss: $\ell(h,(x,y)) = |h(x) y|$

- Let $Z = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example, $(\mathbf{x},y) \in Z$, how good is h on (\mathbf{x},y) ?
- Loss function: $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$
- Examples:
 - 0-1 loss: $\ell(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$
 - Squared loss: $\ell(h,(x,y)) = (h(x) y)^2$
 - Absolute-value loss: $\ell(h,(x,y)) = |h(x) y|$
 - Cost-sensitive loss: $\ell(h,(x,y)) = C_{h(x),y}$ where C is some $|\mathcal{Y}| \times |\mathcal{Y}|$ matrix

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

We wish to Probably Approximately Solve:

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathop{\mathbb{E}}_{z \sim \mathcal{D}} [\ell(h, z)] \ .$$

• Learner knows \mathcal{H} , Z, and ℓ

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

- Learner knows \mathcal{H} , Z, and ℓ
- ullet Learner receives accuracy parameter ϵ and confidence parameter δ

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

- Learner knows \mathcal{H} , Z, and ℓ
- ullet Learner receives accuracy parameter ϵ and confidence parameter δ
- Learner can decide on training set size m based on ϵ, δ

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

- Learner knows \mathcal{H} , Z, and ℓ
- ullet Learner receives accuracy parameter ϵ and confidence parameter δ
- Learner can decide on training set size m based on ϵ, δ
- ullet Learner doesn't know ${\mathcal D}$ but can sample $S\sim {\mathcal D}^m$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

- Learner knows \mathcal{H} , Z, and ℓ
- ullet Learner receives accuracy parameter ϵ and confidence parameter δ
- ullet Learner can decide on training set size m based on ϵ,δ
- ullet Learner doesn't know ${\mathcal D}$ but can sample $S\sim {\mathcal D}^m$
- ullet Using S the learner outputs some hypothesis A(S)

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad \text{where} \quad L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} [\ell(h, z)] \ .$$

- Learner knows \mathcal{H} , Z, and ℓ
- ullet Learner receives accuracy parameter ϵ and confidence parameter δ
- Learner can decide on training set size m based on ϵ, δ
- ullet Learner doesn't know ${\mathcal D}$ but can sample $S\sim {\mathcal D}^m$
- ullet Using S the learner outputs some hypothesis A(S)
- We want that with probability of at least 1δ over the choice of S, the following would hold: $L_{\mathcal{D}}(A(S)) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$

Formal definition

A hypothesis class $\mathcal H$ is agnostic PAC learnable with respect to a set Z and a loss function $\ell:\mathcal H\times Z\to\mathbb R_+$, if there exists a function $m_{\mathcal H}:(0,1)^2\to\mathbb N$ and a learning algorithm, A, with the following property: for every $\epsilon,\delta\in(0,1)$, $m\geq m_{\mathcal H}(\epsilon,\delta)$, and distribution $\mathcal D$ over Z,

$$\mathcal{D}^{m}\left(\left\{S \in Z^{m} : L_{\mathcal{D}}(A(S)) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon\right\}\right) \geq 1 - \delta$$

Outline

- The general PAC model
 - Releasing the realizability assumption
 - beyond binary classification
 - The general PAC learning model
- 2 Learning via Uniform Convergence
- 3 Linear Regression and Least Squares
 - Polynomial Fitting
- 4 The Bias-Complexity Tradeoff
 - Error Decomposition
- Validation and Model Selection

Representative Sample

Definition (ϵ -representative sample)

A training set S is called ϵ -representative if

$$\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon.$$

Representative Sample

Lemma

Assume that a training set S is $\frac{\epsilon}{2}$ -representative. Then, any output of $\mathrm{ERM}_{\mathcal{H}}(S)$, namely any $h_S \in \mathrm{argmin}_{h \in \mathcal{H}} L_S(h)$, satisfies

$$L_{\mathcal{D}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon.$$

Representative Sample

Lemma

Assume that a training set S is $\frac{\epsilon}{2}$ -representative. Then, any output of $\mathrm{ERM}_{\mathcal{H}}(S)$, namely any $h_S \in \mathrm{argmin}_{h \in \mathcal{H}} L_S(h)$, satisfies

$$L_{\mathcal{D}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
.

Proof: For every $h \in \mathcal{H}$,

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2} \le L_S(h) + \frac{\epsilon}{2} \le L_{\mathcal{D}}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = L_{\mathcal{D}}(h) + \epsilon$$

Uniform Convergence is Sufficient for Learnability

Definition (uniform convergence)

 $\mathcal H$ has the *uniform convergence property* if there exists a function $m_{\mathcal H}^{\mathrm{UC}}:(0,1)^2 \to \mathbb N$ such that for every $\epsilon,\delta \in (0,1)$, and every distribution $\mathcal D$,

$$\mathcal{D}^m(\{S \in Z^m : S \text{ is } \epsilon \text{ -representative}\}) \ge 1 - \delta$$

Uniform Convergence is Sufficient for Learnability

Definition (uniform convergence)

 $\mathcal H$ has the *uniform convergence property* if there exists a function $m_{\mathcal H}^{\mathrm{UC}}:(0,1)^2 \to \mathbb N$ such that for every $\epsilon,\delta \in (0,1)$, and every distribution $\mathcal D$,

$$\mathcal{D}^m\left(\left\{S\in Z^m: S \text{ is } \epsilon \text{ -representative}\right\}\right) \geq 1-\delta$$

Corollary

- If $\mathcal H$ has the uniform convergence property with a function $m_{\mathcal H}^{\scriptscriptstyle UC}$ then $\mathcal H$ is agnostically PAC learnable with the sample complexity $m_{\mathcal H}(\epsilon,\delta) \leq m_{\mathcal H}^{\scriptscriptstyle UC}(\epsilon/2,\delta)$.
- Furthermore, in that case, the $ERM_{\mathcal{H}}$ paradigm is a successful agnostic PAC learner for \mathcal{H} .

Finite Classes are Agnostic PAC Learnable

We will prove the following:

Theorem

Assume $\mathcal H$ is finite and the range of the loss function is [0,1]. Then, $\mathcal H$ is agnostically PAC learnable using the $\mathrm{ERM}_{\mathcal H}$ algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil.$$

Finite Classes are Agnostic PAC Learnable

We will prove the following:

Theorem

Assume $\mathcal H$ is finite and the range of the loss function is [0,1]. Then, $\mathcal H$ is agnostically PAC learnable using the $\mathrm{ERM}_{\mathcal H}$ algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil.$$

Proof: It suffices to show that ${\cal H}$ has the uniform convergence property with

$$m_{\mathcal{H}}^{\mathsf{UC}}(\epsilon, \delta) \le \left| \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right|$$
.

Proof (cont.)

• To show uniform convergence, we need:

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta.$$

Proof (cont.)

• To show uniform convergence, we need:

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta.$$

• Using the union bound:

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) = \mathcal{D}^{m}(\cup_{h \in \mathcal{H}}\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq \sum_{h \in \mathcal{H}} \mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}).$$

Proof (cont.)

• Recall: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$.

- Recall: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$.
- Denote $\theta_i = \ell(h, z_i)$.

- Recall: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$.
- Denote $\theta_i = \ell(h, z_i)$.
- Then, for all i, $\mathbb{E}[\theta_i] = L_{\mathcal{D}}(h)$

- Recall: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$.
- Denote $\theta_i = \ell(h, z_i)$.
- ullet Then, for all i, $\mathbb{E}[\theta_i] = L_{\mathcal{D}}(h)$

Lemma (Hoeffding's inequality)

Let $\theta_1, \ldots, \theta_m$ be a sequence of i.i.d. random variables and assume that for all i, $\mathbb{E}[\theta_i] = \mu$ and $\mathbb{P}[a \leq \theta_i \leq b] = 1$. Then, for any $\epsilon > 0$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right] \leq 2\exp\left(-2\,m\,\epsilon^{2}/(b-a)^{2}\right).$$

- Recall: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$.
- Denote $\theta_i = \ell(h, z_i)$.
- ullet Then, for all i, $\mathbb{E}[\theta_i] = L_{\mathcal{D}}(h)$

Lemma (Hoeffding's inequality)

Let $\theta_1, \ldots, \theta_m$ be a sequence of i.i.d. random variables and assume that for all i, $\mathbb{E}[\theta_i] = \mu$ and $\mathbb{P}[a \leq \theta_i \leq b] = 1$. Then, for any $\epsilon > 0$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right] \leq 2\exp\left(-2\,m\,\epsilon^{2}/(b-a)^{2}\right).$$

This implies:

$$\mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq 2 \exp(-2 m \epsilon^{2}).$$

We have shown:

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq 2 |\mathcal{H}| \exp(-2 m \epsilon^{2})$$

So, if $m \geq \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$ then the right-hand side is at most δ as required.

The Discretization Trick

- ullet Suppose ${\mathcal H}$ is parameterized by d numbers
- Suppose we are happy with a representation of each number using b bits (say, b=32)
- Then $|\mathcal{H}| \leq 2^{db}$, and so

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{2db + 2\log(2/\delta)}{\epsilon^2} \right\rceil.$$

 While not very elegant, it's a great tool for upper bounding sample complexity

Outline

- The general PAC model
 - Releasing the realizability assumption
 - beyond binary classification
 - The general PAC learning model
- 2 Learning via Uniform Convergence
- 3 Linear Regression and Least Squares
 - Polynomial Fitting
- 4 The Bias-Complexity Tradeoff
 - Error Decomposition
- 5 Validation and Model Selection

Linear Regression

- ullet $\mathcal{X}\subset\mathbb{R}^d$, $\mathcal{Y}\subset\mathbb{R}$, $\mathcal{H}=\{\mathbf{x}\mapsto\langle\mathbf{w},\mathbf{x}
 angle:\mathbf{w}\in\mathbb{R}^d\}$
- Example: d = 1, predict weight of a child based on his age.

The Squared Loss

- Zero-one loss doesn't make sense in regression
- Squared loss: $\ell(h, (\mathbf{x}, y)) = (h(\mathbf{x}) y)^2$
- The ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

• Equivalently, suppose X is a matrix whose ith column is \mathbf{x}_i , and \mathbf{y} is a vector with y_i on its ith entry, then

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|X^{\top} \mathbf{w} - \mathbf{y}\|^2$$

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

• Given a function $f: \mathbb{R} \to \mathbb{R}$, its derivative is

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

• If x minimizes f(x) then f'(x) = 0

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

- If x minimizes f(x) then f'(x) = 0
- ullet Now take $f:\mathbb{R}^d o \mathbb{R}$

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

- If x minimizes f(x) then f'(x) = 0
- Now take $f: \mathbb{R}^d \to \mathbb{R}$
- Its gradient is a d-dimensional vector, $\nabla f(\mathbf{x})$, where the ith coordinate of $\nabla f(\mathbf{x})$ is the derivative of the scalar function $g(a) = f((x_1, \dots, x_{i-1}, x_i + a, x_{i+1}, \dots, x_d))$.

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

- If x minimizes f(x) then f'(x) = 0
- Now take $f: \mathbb{R}^d \to \mathbb{R}$
- Its gradient is a d-dimensional vector, $\nabla f(\mathbf{x})$, where the ith coordinate of $\nabla f(\mathbf{x})$ is the derivative of the scalar function $g(a) = f((x_1, \dots, x_{i-1}, x_i + a, x_{i+1}, \dots, x_d))$.
- ullet The derivative of g is called the partial derivative of f

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

- If x minimizes f(x) then f'(x) = 0
- Now take $f: \mathbb{R}^d \to \mathbb{R}$
- Its gradient is a d-dimensional vector, $\nabla f(\mathbf{x})$, where the ith coordinate of $\nabla f(\mathbf{x})$ is the derivative of the scalar function $g(a) = f((x_1, \dots, x_{i-1}, x_i + a, x_{i+1}, \dots, x_d))$.
- The derivative of g is called the partial derivative of f
- If \mathbf{x} minimizes $f(\mathbf{x})$ then $\nabla f(\mathbf{x}) = (0, \dots, 0)$

• The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i, j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x}

- The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i, j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x}
- Note: if m=1 then $J_{\mathbf{x}}(f)=\nabla f(\mathbf{x})$ (as a row vector)

- The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i,j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x}
- Note: if m=1 then $J_{\mathbf{x}}(f)=\nabla f(\mathbf{x})$ (as a row vector)
- ullet Example: If $\mathbf{f}(\mathbf{w}) = A\mathbf{w}$ for $A \in \mathbb{R}^{m,n}$ then $J_{\mathbf{w}}(\mathbf{f}) = A$

- The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i, j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x}
- Note: if m=1 then $J_{\mathbf{x}}(f)=\nabla f(\mathbf{x})$ (as a row vector)
- ullet Example: If $\mathbf{f}(\mathbf{w}) = A\mathbf{w}$ for $A \in \mathbb{R}^{m,n}$ then $J_{\mathbf{w}}(\mathbf{f}) = A$
- Chain rule: Given $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^n$, the Jacobian of the composition function, $(\mathbf{f} \circ \mathbf{g}): \mathbb{R}^k \to \mathbb{R}^m$, at \mathbf{x} , is

$$J_{\mathbf{x}}(\mathbf{f} \circ \mathbf{g}) = J_{g(\mathbf{x})}(\mathbf{f})J_{\mathbf{x}}(\mathbf{g})$$
.

• Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| X^\top \mathbf{w} - \mathbf{y} \|^2$$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| X^\top \mathbf{w} - \mathbf{y} \|^2$$

• Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} - \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| X^\top \mathbf{w} - \mathbf{y} \|^2$$

- Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$
- \bullet Then, we need to solve $\min_{\mathbf{w}} \mathbf{f}(\mathbf{g}(\mathbf{w}))$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| \boldsymbol{X}^\top \mathbf{w} - \mathbf{y} \|^2$$

- Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$
- \bullet Then, we need to solve $\min_{\mathbf{w}} \mathbf{f}(\mathbf{g}(\mathbf{w}))$
- Note that $J_{\mathbf{w}}(\mathbf{g}) = X^{\top}$ and $J_{\mathbf{v}}(\mathbf{f}) = (v_1, \dots, v_m)$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| \boldsymbol{X}^\top \mathbf{w} - \mathbf{y} \|^2$$

- Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$
- \bullet Then, we need to solve $\min_{\mathbf{w}} \mathbf{f}(\mathbf{g}(\mathbf{w}))$
- \bullet Note that $J_{\mathbf{w}}(\mathbf{g}) = X^{\top}$ and $J_{\mathbf{v}}(\mathbf{f}) = (v_1, \dots, v_m)$
- Using the chain rule:

$$J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = J_{g(\mathbf{w})}(\mathbf{f})J_{\mathbf{w}}(\mathbf{g}) = \mathbf{g}(\mathbf{w})^{\top}X^{\top} = (X^{\top}\mathbf{w} - \mathbf{y})^{\top}X^{\top}$$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| \boldsymbol{X}^\top \mathbf{w} - \mathbf{y} \|^2$$

- Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$
- ullet Then, we need to solve $\min_{\mathbf{w}} \mathbf{f}(\mathbf{g}(\mathbf{w}))$
- \bullet Note that $J_{\mathbf{w}}(\mathbf{g}) = X^{\top}$ and $J_{\mathbf{v}}(\mathbf{f}) = (v_1, \dots, v_m)$
- Using the chain rule:

$$J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = J_{g(\mathbf{w})}(\mathbf{f})J_{\mathbf{w}}(\mathbf{g}) = \mathbf{g}(\mathbf{w})^{\top}X^{\top} = (X^{\top}\mathbf{w} - \mathbf{y})^{\top}X^{\top}$$

ullet Requiring that $J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = (0, \dots, 0)$ yields

$$(X^{\top}\mathbf{w} - \mathbf{y})^{\top}X^{\top} = \mathbf{0}^{\top} \quad \Rightarrow \quad XX^{\top}\mathbf{w} = X\mathbf{y} .$$

Recall that we'd like to solve the ERM problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \frac{1}{2} \| \boldsymbol{X}^\top \mathbf{w} - \mathbf{y} \|^2$$

- Let $\mathbf{g}(\mathbf{w}) = X^{\top}\mathbf{w} \mathbf{y}$ and $\mathbf{f}(\mathbf{v}) = \frac{1}{2}\|\mathbf{v}\|^2 = \sum_{i=1}^m v_i^2$
- ullet Then, we need to solve $\min_{\mathbf{w}} \mathbf{f}(\mathbf{g}(\mathbf{w}))$
- Note that $J_{\mathbf{w}}(\mathbf{g}) = X^{\top}$ and $J_{\mathbf{v}}(\mathbf{f}) = (v_1, \dots, v_m)$
- Using the chain rule:

$$J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = J_{g(\mathbf{w})}(\mathbf{f})J_{\mathbf{w}}(\mathbf{g}) = \mathbf{g}(\mathbf{w})^{\top}X^{\top} = (X^{\top}\mathbf{w} - \mathbf{y})^{\top}X^{\top}$$

• Requiring that $J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = (0, \dots, 0)$ yields

$$(X^{\top}\mathbf{w} - \mathbf{y})^{\top}X^{\top} = \mathbf{0}^{\top} \quad \Rightarrow \quad XX^{\top}\mathbf{w} = X\mathbf{y} .$$

ullet This is a linear set of equations. If XX^{\top} is invertible, the solution is

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y} \ .$$

- What if XX^{\top} is not invertible ?
- In the exercise you'll see that there's always a solution to the set of linear equations using pseudo-inverse

- What if XX^{\top} is not invertible ?
- In the exercise you'll see that there's always a solution to the set of linear equations using pseudo-inverse

Non-rigorous trick to help remembering the formula:

- ullet We want $X^{ op}\mathbf{w}pprox\mathbf{y}$
- Multiply both sides by X to obtain $XX^{\top}\mathbf{w} \approx X\mathbf{y}$
- Multiply both sides by $(XX^{\top})^{-1}$ to obtain the formula:

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}$$

Least Squares — Interpretation as projection

- Recall, we try to minimize $||X^{\top}\mathbf{w} \mathbf{y}||$
- The set $C=\{X^{\top}\mathbf{w}:\mathbf{w}\in\mathbb{R}^d\}\subset\mathbb{R}^m$ is a linear subspace, forming the range of X^{\top}
- Therefore, if w is the least squares solution, then the vector $\hat{\mathbf{y}} = X^{\top} \mathbf{w}$ is the vector in C which is closest to \mathbf{y} .
- ullet This is called the projection of ${f y}$ onto C
- We can find $\hat{\mathbf{y}}$ by taking V to be an $m \times d$ matrix whose columns are orthonormal basis of the range of X^{\top} , and then setting $\hat{\mathbf{y}} = VV^{\top}\mathbf{y}$

- Sometimes, linear predictors are not expressive enough for our data
- We will show how to fit a polynomial to the data using linear regression

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

• A one-dimensional polynomial function of degree *n*:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

• Goal: given data $S = ((x_1, y_1), \dots, (x_m, y_m))$ find ERM with respect to the class of polynomials of degree n

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

- Goal: given data $S = ((x_1, y_1), \dots, (x_m, y_m))$ find ERM with respect to the class of polynomials of degree n
- Reduction to linear regression:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

- Goal: given data $S = ((x_1, y_1), \dots, (x_m, y_m))$ find ERM with respect to the class of polynomials of degree n
- Reduction to linear regression:
- Define $\psi: \mathbb{R} \to \mathbb{R}^{n+1}$ by $\psi(x) = (1, x, x^2, \dots, x^n)$

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

- Goal: given data $S = ((x_1, y_1), \dots, (x_m, y_m))$ find ERM with respect to the class of polynomials of degree n
- Reduction to linear regression:
- Define $\psi: \mathbb{R} \to \mathbb{R}^{n+1}$ by $\psi(x) = (1, x, x^2, \dots, x^n)$
- Define $\mathbf{a} = (a_0, a_1, \dots, a_n)$ and observe:

$$p(x) = \sum_{i=0}^{n} a_i x^i = \langle \mathbf{a}, \psi(x) \rangle$$

• A one-dimensional polynomial function of degree *n*:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

- Goal: given data $S = ((x_1, y_1), \dots, (x_m, y_m))$ find ERM with respect to the class of polynomials of degree n
- Reduction to linear regression:
- Define $\psi: \mathbb{R} \to \mathbb{R}^{n+1}$ by $\psi(x) = (1, x, x^2, \dots, x^n)$
- Define $\mathbf{a} = (a_0, a_1, \dots, a_n)$ and observe:

$$p(x) = \sum_{i=0}^{n} a_i x^i = \langle \mathbf{a}, \psi(x) \rangle$$

• To find \mathbf{a} , we can solve Least Squares w.r.t. $((\psi(x_1), y_1), \dots, (\psi(x_m), y_m))$

Outline

- The general PAC model
 - Releasing the realizability assumption
 - beyond binary classification
 - The general PAC learning model
- 2 Learning via Uniform Convergence
- 3 Linear Regression and Least Squares
 - Polynomial Fitting
- The Bias-Complexity Tradeoff
 - Error Decomposition
- 5 Validation and Model Selection

Error Decomposition

• Let $h_S = \text{ERM}_{\mathcal{H}}(S)$. We can decompose the risk of h_S as:

$$L_{\mathcal{D}}(h_S) = \epsilon_{\rm app} + \epsilon_{\rm est}$$

- The approximation error, $\epsilon_{\rm app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$:
 - ullet How much risk do we have due to restricting to ${\cal H}$
 - ullet Doesn't depend on S
 - \bullet Decreases with the complexity (size, or VC dimension) of ${\cal H}$
- The estimation error, $\epsilon_{\rm est} = L_{\mathcal{D}}(h_S) \epsilon_{\rm app}$:
 - ullet Result of L_S being only an estimate of $L_{\mathcal{D}}$
 - ullet Decreases with the size of S
 - ullet Increases with the complexity of ${\cal H}$

Bias-Complexity Tradeoff

• How to choose \mathcal{H} ?

degree 2

 $\mathsf{degree}\ 3$

 $\mathsf{degree}\ 10$

Outline

- The general PAC model
 - Releasing the realizability assumption
 - beyond binary classification
 - The general PAC learning model
- 2 Learning via Uniform Convergence
- 3 Linear Regression and Least Squares
 - Polynomial Fitting
- The Bias-Complexity Tradeoff
 - Error Decomposition
- 5 Validation and Model Selection

ullet We have already learned some hypothesis h

- \bullet We have already learned some hypothesis h
- ullet Now we want to estimate how good is h

- ullet We have already learned some hypothesis h
- ullet Now we want to estimate how good is h
- Simple solution: Take "fresh" i.i.d. sample $V=(x_1,y_1),\ldots,(x_{m_v},y_{m_v})$

- ullet We have already learned some hypothesis h
- Now we want to estimate how good is h
- Simple solution: Take "fresh" i.i.d. sample $V=(x_1,y_1),\ldots,(x_{m_v},y_{m_v})$
- ullet Output $L_V(h)$ as an estimator of $L_{\mathcal{D}}(h)$

- ullet We have already learned some hypothesis h
- Now we want to estimate how good is h
- Simple solution: Take "fresh" i.i.d. sample $V=(x_1,y_1),\ldots,(x_{m_v},y_{m_v})$
- ullet Output $L_V(h)$ as an estimator of $L_{\mathcal{D}}(h)$
- ullet Using Hoeffding's inequality, if the range of ℓ is [0,1] we have

$$|L_V(h) - L_{\mathcal{D}}(h)| \leq \sqrt{\frac{\log(2/\delta)}{2 m_v}}$$
.

Validation for Model Selection

- Fitting polynomials of degrees 2,3, and 10 based on the black points
- The red points are validation examples
- Choose the degree 3 polynomial as it has minimal validation error

Validation for Model Selection — Analysis

- Let $\mathcal{H} = \{h_1, \dots, h_r\}$ be the output predictors of applying ERM w.r.t. the different classes on S
- Let V be a fresh validation set
- Choose $h^* \in \mathrm{ERM}_{\mathcal{H}}(V)$
- By our analysis of finite classes,

$$L_{\mathcal{D}}(h^*) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \sqrt{\frac{2\log(2|\mathcal{H}|/\delta)}{|V|}}$$

The model-selection curve

Train-Validation-Test split

- In practice, we usually have one pool of examples and we split them into three sets:
 - Training set: apply the learning algorithm with different parameters on the training set to produce $\mathcal{H} = \{h_1, \dots, h_r\}$
 - Validation set: Choose h^* from \mathcal{H} based on the validation set
 - Test set: Estimate the error of h^* using the test set

k-fold cross validation

 The train-validation-test split is the best approach when data is plentiful. If data is scarce:

```
k-Fold Cross Validation for Model Selection
 input:
       training set S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)
       learning algorithm A and a set of parameter values \Theta
 partition S into S_1, S_2, \ldots, S_k
 foreach \theta \in \Theta
       for i = 1 \dots k
             h_{i,\theta} = A(S \setminus S_i; \theta)
      \operatorname{error}(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})
output
   \theta^{\star} = \operatorname{argmin}_{\theta} [\operatorname{error}(\theta)], \quad h_{\theta^{\star}} = A(S; \theta^{\star})
```

Summary

- The general PAC model
 - Agnostic
 - General loss functions
- Uniform convergence is sufficient for learnability
- Uniform convergence holds for finite classes and bounded loss
- Least squares
 - Linear regression
 - Polynomial fitting
- The bias-complexity tradeoff
 - Approximation error vs. Estimation error
- Validation
- Model selection