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Generative Models

@ The Generative Approach: try to learn the distribution D over the
data

@ If we know D we can predict using the Bayes optimal classifier

@ Usually, it is much harder to learn D than to simply learn a predictor

@ However, in some situations, it is reasonable to adopt the generative
learning approach:
o Computational reasons
o We sometimes don't have a specific task at hand
o Interpretability of the data
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Outline

© Maximum Likelihood

© Naive Bayes

© Linear Discriminant Analysis
@ Latent Variables and EM

e Bayesian Reasoning
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Maximum Likelihood Estimator

® We assume as prior knowledge that the underlying distribution is
parameterized by some 6
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® We assume as prior knowledge that the underlying distribution is
parameterized by some 6

@ Learning the distribution corresponds to finding

e Example: let X = {0, 1} then the set of distributions over X" are

parameterized by a single number 6 € [0, 1] corresponding to
Py [z = 1] = Do({1}) = 0
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Maximum Likelihood Estimator

® We assume as prior knowledge that the underlying distribution is
parameterized by some 6

@ Learning the distribution corresponds to finding

e Example: let X = {0, 1} then the set of distributions over X" are
parameterized by a single number 6 € [0, 1] corresponding to
Py [z = 1] = Do({1}) = 0

@ The goal is to learn 6 from a sequence of i.i.d. examples
S =(x1,...,2m) ~ Dy
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Maximum Likelihood Estimator

@ Likelihood: The likelihood of S, assuming the distribution is Dy, is
defined to be

Dy ({S}) HDe{iBz} II

X~D,
i=1 0
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Maximum Likelihood Estimator

@ Likelihood: The likelihood of S, assuming the distribution is Dy, is
defined to be

Dy ({S}) HDe{iBz} II

X~D,
i=1 0

@ Log-Likelihood: it is convenient to denote

NDG

L(S;6) = log (D§*({S})) Zlog( P [X = d)
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Maximum Likelihood Estimator

@ Likelihood: The likelihood of S, assuming the distribution is Dy, is
defined to be

Dy ({S}) HDe{iBz} II

X~D,
i=1 0

@ Log-Likelihood: it is convenient to denote
L(S;0) =log (Dy*'({S})) Zlog( P [X = Z])

e Maximum Likelihood Estimator (MLE): estimate 6 based on S

according to X
0(S) = argmax L(S;6) .
]
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Maximum Likelihood Estimator for Bernoulli variables

@ Suppose X = {0,1}, Dy is the distribution s.t. Ppp,[z =1] =6
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Maximum Likelihood Estimator for Bernoulli variables

@ Suppose X = {0,1}, Dy is the distribution s.t. Ppp,[z =1] =6
@ The log-likelihood function:

L(S:6) = log(6) - |{i : s = 1}| +log(1 —0) - [{i : 2, = O}
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Maximum Likelihood Estimator for Bernoulli variables

@ Suppose X = {0,1}, Dy is the distribution s.t. Ppp,[z =1] =6
@ The log-likelihood function:

L(S:6) = log(6) - |{i : s = 1}| +log(1 —0) - [{i : 2, = O}

@ Maximizing w.r.t. 0 gives the ML estimator. Taking derivative w.r.t.
f and comparing to zero gives:
\{i:x,;: 1} B HZCEl:AO}’ 0 = 4 - {i:x; =1}
0 1-6 m
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Maximum Likelihood Estimator for Bernoulli variables

@ Suppose X = {0,1}, Dy is the distribution s.t. Ppp,[z =1] =6
@ The log-likelihood function:

L(S:6) = log(6) - |{i : s = 1}| +log(1 —0) - [{i : 2, = O}

@ Maximizing w.r.t. 0 gives the ML estimator. Taking derivative w.r.t.
f and comparing to zero gives:
\{i:x,;: 1} B HZCEl:AO}’ 0 = 4 - {i:x; =1}
0 1-6 m

e That is, 6 is the average number of ones in §
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Maximum Likelihood for Continuous Variables

e Example: X = [0, 1] and Dy is the uniform distribution. Then,
Dy({z}) =0 for all z so L(S;0) = —c0 ...

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 7 /26



Maximum Likelihood for Continuous Variables

e Example: X = [0, 1] and Dy is the uniform distribution. Then,
Dy({z}) =0 for all z so L(S;0) = —c0 ...

@ To overcome the problem, we define L using the density distribution:

L(S;0) =) log (Prup,lz = x:])
=1
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Maximum Likelihood for Continuous Variables

e Example: X = [0, 1] and Dy is the uniform distribution. Then,
Dy({z}) =0 for all = so L(S;0) = —
@ To overcome the problem, we define L using the density distribution:

0) = log (Pup, [z = i)
=1

e E.g., for Gaussian distribution, with 6 = (i, o),

1 z; — p)?

and

L(S;0) = 212_: 1)? —mlog(ov2n) .
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Maximum Likelihood for Continuous Variables

e Example: X = [0, 1] and Dy is the uniform distribution. Then,
Dy({z}) =0 for all = so L(S;0) = —
@ To overcome the problem, we define L using the density distribution:

0) = log (Pup, [z = i)
=1

e E.g., for Gaussian distribution, with 6 = (i, o),

1 z; — p)?

and

L(S;0) = 212_: 1)? —mlog(ov2n) .

® MLE becomes: i = 3™ z;and 6 = \/% Yo (x — f)?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 7 /26



Outline

© Naive Bayes
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Naive Bayes

@ A classical demonstration of how generative assumptions and
parameter estimations simplify the learning process
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@ A classical demonstration of how generative assumptions and
parameter estimations simplify the learning process
@ Goal: learn function h: {0,1}¢ — {0,1}

@ Bayes optimal classifier:

hBayes(X) = argmax P[Y = y|X = x] .
ye{0,1}
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@ A classical demonstration of how generative assumptions and
parameter estimations simplify the learning process

e Goal: learn function A : {0,1}¢ — {0,1}

@ Bayes optimal classifier:

hBayes(X) = argmax P[Y = y|X = x] .
ye{0,1}

o Need 2¢ parameters for describing P[Y = y|X = x] for every
x € {0,1}¢
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@ A classical demonstration of how generative assumptions and
parameter estimations simplify the learning process

e Goal: learn function A : {0,1}¢ — {0,1}

@ Bayes optimal classifier:

hBayes(X) = argmax P[Y = y|X = x] .
ye{0,1}

o Need 27 parameters for describing P[Y = y|X = x| for every

x € {0,1}4
@ Naive generative assumption: features are independent given the
label:
d
PIX =x|Y =y] = [[PIXi=m|Y =y
i=1
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e With this (rather naive) assumption and using Bayes rule, the Bayes
optimal classifier can be further simplified:

hBayes(X) = argmaxP[Y = y|X = X]

ye{0,1}
= argmax P[Y = y|P[X =x|Y =]
y€{0,1}
d
= argmax P[Y =y HP[Xi =z;|Y =y| .
ye{0,1} i=1
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e With this (rather naive) assumption and using Bayes rule, the Bayes
optimal classifier can be further simplified:

hBayes(X) = argmaxP[Y = y|X = X]

ye{0,1}
= argmax P[Y = y|P[X =x|Y =]
y€{0,1}
d
= argmax P[Y =y HP[Xi =z;|Y =y| .
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@ Now, number of parameters to estimate is 2d + 1
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e With this (rather naive) assumption and using Bayes rule, the Bayes
optimal classifier can be further simplified:

hBayes(X) = argmaxP[Y = y|X = X]

ye{0,1}
= argmax P[Y = y|P[X =x|Y =]
y€{0,1}
d
= argmax P[Y =y HP[XZ- =z;|Y =y| .
ye{0,1} i=1

@ Now, number of parameters to estimate is 2d + 1

@ Reduces both runtime and sample complexity
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© Linear Discriminant Analysis
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Linear Discriminant Analysis

@ Another demonstration of how generative assumptions simplify the
learning process
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Linear Discriminant Analysis

@ Another demonstration of how generative assumptions simplify the
learning process

o Goal: learn h: R% — {0,1}

@ The generative assumption: ¥ is generated based on
PlY =1] = P[Y = 0] = 1/2 and given y, x ~ N(p,, %):

PLX =xY =] = sz (- 2 x|
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Linear Discriminant Analysis

@ Another demonstration of how generative assumptions simplify the
learning process

o Goal: learn h: R% — {0,1}

@ The generative assumption: ¥ is generated based on
PlY =1] = P[Y = 0] = 1/2 and given y, x ~ N(p,, %):

PLX =xY =] = sz (- 2 x|

o Bayes rule:

hBayes(x) = argmaxP[Y = y|P[X =x|Y = y]
yE{O,l}
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Linear Discriminant Analysis

@ Another demonstration of how generative assumptions simplify the
learning process

o Goal: learn h: R% — {0,1}

@ The generative assumption: ¥ is generated based on
PlY =1] = P[Y = 0] = 1/2 and given y, x ~ N(p,, %):

PLX =xY =] = sz (- 2 x|

o Bayes rule:

Bisages () = argmaxP[Y = y|P[X = x|Y =y
yE{O,l}
@ This means we will predict hpayes(x) = 1 iff

300 )5 e pag) — () TS G ) > 0
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Linear Discriminant Analysis

e Equivalent to (w,x) + b > 0 where

(S g — i =7 )

N

W o= (p—po)' X" and b=
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Linear Discriminant Analysis

e Equivalent to (w,x) + b > 0 where

wo= (=)' 7" and b=c (ugS o — i S )

N

@ That is, Bayes optimal is a halfspace in this case
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Linear Discriminant Analysis

e Equivalent to (w,x) + b > 0 where

wo= (=)' 7" and b=c (ugS o — i S )

N

@ That is, Bayes optimal is a halfspace in this case

@ But, instead of learning the halfspace directly, we'll learn g, p1, %
using maximum likelihood.
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Outline

@ Latent Variables and EM
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Latent Variables

@ Sometimes, it is convenient to express the distribution over X" using
latent random variables
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Latent Variables

@ Sometimes, it is convenient to express the distribution over X" using
latent random variables

e Mixture of Gaussians: Each x € R? is generated by first selecting a
random y from [k], then choose x according to N(p,, ;)
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Mixture of Gaussians

o Each x € R? is generated by first selecting a random y from [k], then
choose x according to N(u,, )

@ The density can be written as:

k
PIX =x] = ) PIY =yP[X =x]Y =y
y=1
k 1 1 _
= 2 i, 7 P G )
y:

@ Note: Y is a hidden variable that we do not observe in the data. It is
just used to simplify the parametric description of the distribution
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Latent Variables

@ More generally,

log (Pe[X =x]) =log [ Y Pe[X =x,Y =y

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 17 / 26



Latent Variables
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Latent Variables

@ More generally,

log (Po[X =x]) =log | Y Po[X =x,Y =]

@ Maximum Likelihood:

argmax Z log Z PolX =x;,Y =y

@ In many cases, the summation inside the log makes the above
optimization problem computationally hard
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Latent Variables

@ More generally,
log (Pa[X = x]) =log | Y Pe[X =x,Y =y

@ Maximum Likelihood:

argmax Z log Z PolX =x;,Y =y

@ In many cases, the summation inside the log makes the above
optimization problem computationally hard

@ A popular heuristic: Expectation-Maximization (EM), due to
Dempster, Laird and Rubin
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Expectation-Maximization (EM)

@ Designed for cases in which, had we known the values of the latent
variables Y, then the maximum likelihood optimization problem
would have been tractable.
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Expectation-Maximization (EM)

@ Designed for cases in which, had we known the values of the latent
variables Y, then the maximum likelihood optimization problem
would have been tractable.

o Precisely, define the following function over m x k matrices and the
set of parameters 6:

ZZszlog PO =x;,Y —y])

i=1 y=1
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Expectation-Maximization (EM)

@ Designed for cases in which, had we known the values of the latent
variables Y, then the maximum likelihood optimization problem
would have been tractable.

o Precisely, define the following function over m x k matrices and the
set of parameters 6:

ZZszlog PO =x;,Y —y])

i=1 y=1

@ Interpret F'(Q,0) as the expected log-likelihood of
(X17 y1)7 ) (Xma ym)
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Expectation-Maximization (EM)

@ Designed for cases in which, had we known the values of the latent
variables Y, then the maximum likelihood optimization problem
would have been tractable.

o Precisely, define the following function over m x k matrices and the
set of parameters 6:

ZZszlog PO =x;,Y —y])

i=1 y=1

@ Interpret F'(Q,0) as the expected log-likelihood of
(X1, 91)5 - - 5 (X Ym)

e Assumption: For any matrix Q € [0, 1]™F, such that each row of Q
sums to 1, the optimization problem argmaxgy F'(Q, 0) is tractable.
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Expectation-Maximization (EM)

@ ‘“chicken and egg” problem: Had we known @), easy to find 8. Had
we known €, we can set Q;, = PolY = y|X = x;]
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Expectation-Maximization (EM)

@ ‘“chicken and egg” problem: Had we known @), easy to find 8. Had
we known €, we can set Q;, = PolY = y|X = x;]

o Expectation step: set

Q(tJrl P Y =yl X =x;] .
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Expectation-Maximization (EM)

@ ‘“chicken and egg” problem: Had we known @), easy to find 8. Had
we known €, we can set Q;, = PolY = y|X = x;]

o Expectation step: set

Q(tJrl P Y =yl X =x;] .

@ Maximization step: set

0'+Y) = argmax F(QU+Y) ) .
0
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EM as an alternate maximization algorithm

@ EM can be viewed as alternate maximization on the objective

m k
G(Q.0) = F(Q,0) — Z Z iy 10g(Qiy) -
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EM as an alternate maximization algorithm

@ EM can be viewed as alternate maximization on the objective

m k
G(Qae) :F(Q,O) _ZZ ,ylog sz

@ Lemma: The EM procedure can be rewritten as:

QU = argmax G(Q,0W)
QE[O,I]m’k:Vi,Zy Qi,jzl

o+l — argmaxG(Q(t+1),0).
(4

Furthermore, G(Q(+D), 01 = ,(5;01)).
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EM as an alternate maximization algorithm

@ EM can be viewed as alternate maximization on the objective

m k
G(Q,0) = ZZ iy 10g8(Qiy) -

@ Lemma: The EM procedure can be rewritten as:

QU = argmax G(Q,0W)
QE[O,I]m’k:Vi,Zy Qi,jzl

o+l — argmaxG(Q(t+1),0).
(4

Furthermore, G(Q(+D), 01 = ,(5;01)).
e Corollary: L(S;0"1) > L(S;01)
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EM for Mixture of Gaussians (soft k-means)

e Mixture of k& Gaussians in which 8 = (¢, {py, ..., 1 })
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EM for Mixture of Gaussians (soft k-means)

e Mixture of k& Gaussians in which 8 = (¢, {py, ..., 1 })

@ Expectation step:

(t) ¢ 1 )12
Q) ox ) exp (3l - w1
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EM for Mixture of Gaussians (soft k-means)

e Mixture of k& Gaussians in which 8 = (¢, {py, ..., 1 })
@ Expectation step:

(t) ¢ 1 )12
Q) ox ) exp (3l - w1

@ Maximization step:

t+1) ZszXZ and c?(!tJrl) x ZQZ(t;
i=1
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Outline

e Bayesian Reasoning
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Bayesian Reasoning

@ So far, we treated 6 as an unknown parameter
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Bayesian Reasoning

@ So far, we treated 6 as an unknown parameter
@ Bayesians treat uncertainty as randomness
e Formally, think on 6 as a random variable with prior probability P[0]
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Bayesian Reasoning

@ So far, we treated 6 as an unknown parameter
@ Bayesians treat uncertainty as randomness

e Formally, think on 6 as a random variable with prior probability P[0]
@ The probability of X given S is

PIX =2/ =D P[X = 2[0, S| P[0]S] = ZP = 2|0] P[0] 5]
6
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Bayesian Reasoning

So far, we treated 6 as an unknown parameter

Bayesians treat uncertainty as randomness

Formally, think on 6 as a random variable with prior probability P[6]
The probability of X given S is

PIX =2/ =D P[X = 2[0, S| P[0]S] = ZP = 2|0] P[0] 5]
6

@ Using Bayes rule we obtain a posterior distribution
P[S|0] Plo]
g|s§] = 2L
P6Is] P[S]
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Bayesian Reasoning

So far, we treated 6 as an unknown parameter

Bayesians treat uncertainty as randomness

Formally, think on 6 as a random variable with prior probability P[6]
The probability of X given S is

PIX =2/ =D P[X = 2[0, S| P[0]S] = ZP = 2|0] P[0] 5]
6

@ Using Bayes rule we obtain a posterior distribution
PLS|6] PO]
0S| = ——
o Therefore,
1 m
PIX =x|5] = 5] Z = z/0] [[ PIX = =:|0] P[o] -
0 =1
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Bayesian Reasoning

e Example: suppose X = {0,1} and the prior on 6 is uniform over [0, 1]
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Bayesian Reasoning

e Example: suppose X = {0,1} and the prior on 6 is uniform over [0, 1]
@ Then:

P[X = 2[9] /ez-i-zixi(l _ 9)1—z+2i(1—xi) do
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Bayesian Reasoning

e Example: suppose X = {0,1} and the prior on 6 is uniform over [0, 1]
@ Then:

P[X = 2[9] /ez-i-zixi(l _ 9)1—z+2i(1—xi) do
@ Solving (using integration by parts) we obtain

PIX = 1/9] :% |
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Bayesian Reasoning

e Example: suppose X = {0,1} and the prior on 6 is uniform over [0, 1]
@ Then:

P[X = 2[9] /ez-i-zixi(l _ 9)1—z+2i(1—xi) do

@ Solving (using integration by parts) we obtain

PIX = 1/9] :% |

Zi T

m

o Recall that Maximum Likelihood in this case is P[X = 1|0] =
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Bayesian Reasoning

e Example: suppose X = {0,1} and the prior on 6 is uniform over [0, 1]
@ Then:

P[X = 2[9] /01"‘1‘21-171'(1 _ 9)1—z+2i(1—xi) do

Solving (using integration by parts) we obtain

PIX = 1/9] :% |

Recall that Maximum Likelihood in this case is P[X = 1|0] = it

m

Therefore, uniform prior is similar to maximum likelihood, except it
adds “pseudoexamples” to the training set
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Maximum A-Posteriori

@ In many situations, it is difficult to find a closed form solution to the
integral in the definition of P[X = z|S]

@ A popular approximation is to find a single # which maximizes P[60|5]

@ This value is called the Maximum A-Posteriori estimator

@ Once this value is found, we can calculate the probability that X =z
given the maximum a-posteriori estimator and independently on S.
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@ Generative approach: model the distribution over the data

@ Parametric density estimation: estimate the parameters characterizing
the distribution

@ Rules: Maximum Likelihood, Bayesian estimation, maximum a
posteriori.

@ Algorithms: Naive Bayes, LDA, EM
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