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Generative Models

The Generative Approach: try to learn the distribution D over the
data

If we know D we can predict using the Bayes optimal classifier

Usually, it is much harder to learn D than to simply learn a predictor

However, in some situations, it is reasonable to adopt the generative
learning approach:

Computational reasons
We sometimes don’t have a specific task at hand
Interpretability of the data

.
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Outline

1 Maximum Likelihood

2 Naive Bayes

3 Linear Discriminant Analysis

4 Latent Variables and EM

5 Bayesian Reasoning
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Maximum Likelihood Estimator

We assume as prior knowledge that the underlying distribution is
parameterized by some θ

Learning the distribution corresponds to finding θ

Example: let X = {0, 1} then the set of distributions over X are
parameterized by a single number θ ∈ [0, 1] corresponding to
Px∼Dθ [x = 1] = Dθ({1}) = θ

The goal is to learn θ from a sequence of i.i.d. examples
S = (x1, . . . , xm) ∼ Dmθ
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Maximum Likelihood Estimator

Likelihood: The likelihood of S, assuming the distribution is Dθ, is
defined to be

Dmθ ({S}) =

m∏
i=1

Dθ({xi}) =

m∏
i=1

P
X∼Dθ

[X = xi]

Log-Likelihood: it is convenient to denote

L(S; θ) = log (Dmθ ({S})) =

m∑
i=1

log

(
P

X∼Dθ
[X = xi]

)
Maximum Likelihood Estimator (MLE): estimate θ based on S
according to

θ̂(S) = argmax
θ

L(S; θ) .
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Maximum Likelihood Estimator for Bernoulli variables

Suppose X = {0, 1}, Dθ is the distribution s.t. Px∼Dθ [x = 1] = θ

The log-likelihood function:

L(S; θ) = log(θ) · |{i : xi = 1}|+ log(1− θ) · |{i : xi = 0}|

Maximizing w.r.t. θ gives the ML estimator. Taking derivative w.r.t.
θ and comparing to zero gives:

|{i : xi = 1}|
θ̂

− |{i : xi = 0}|
1− θ̂

= 0 ⇒ θ̂ =
|{i : xi = 1}|

m

That is, θ̂ is the average number of ones in S
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Maximum Likelihood for Continuous Variables

Example: X = [0, 1] and Dθ is the uniform distribution. Then,
Dθ({x}) = 0 for all x so L(S; θ) = −∞ ...

To overcome the problem, we define L using the density distribution:

L(S; θ) =

m∑
i=1

log (Px∼Dθ [x = xi])

E.g., for Gaussian distribution, with θ = (µ, σ),

Px∼Dθ(xi) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
and

L(S; θ) = − 1

2σ2

m∑
i=1

(xi − µ)2 −m log(σ
√

2π) .

MLE becomes: µ̂ = 1
m

∑m
i=1 xi and σ̂ =

√
1
m

∑m
i=1(xi − µ̂)2
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Outline

1 Maximum Likelihood

2 Naive Bayes

3 Linear Discriminant Analysis

4 Latent Variables and EM

5 Bayesian Reasoning
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Naive Bayes

A classical demonstration of how generative assumptions and
parameter estimations simplify the learning process

Goal: learn function h : {0, 1}d → {0, 1}
Bayes optimal classifier:

hBayes(x) = argmax
y∈{0,1}

P[Y = y|X = x] .

Need 2d parameters for describing P[Y = y|X = x] for every
x ∈ {0, 1}d

Naive generative assumption: features are independent given the
label:

P[X = x|Y = y] =

d∏
i=1

P[Xi = xi|Y = y]
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Naive Bayes

With this (rather naive) assumption and using Bayes rule, the Bayes
optimal classifier can be further simplified:

hBayes(x) = argmax
y∈{0,1}

P[Y = y|X = x]

= argmax
y∈{0,1}

P[Y = y]P[X = x|Y = y]

= argmax
y∈{0,1}

P[Y = y]

d∏
i=1

P[Xi = xi|Y = y] .

Now, number of parameters to estimate is 2d+ 1

Reduces both runtime and sample complexity
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Outline

1 Maximum Likelihood

2 Naive Bayes

3 Linear Discriminant Analysis

4 Latent Variables and EM

5 Bayesian Reasoning
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Linear Discriminant Analysis

Another demonstration of how generative assumptions simplify the
learning process

Goal: learn h : Rd → {0, 1}
The generative assumption: y is generated based on
P[Y = 1] = P[Y = 0] = 1/2 and given y, x ∼ N(µy,Σ):

P[X = x|Y = y] =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µy)

TΣ−1(x− µy)

)
Bayes rule:

hBayes(x) = argmax
y∈{0,1}

P[Y = y]P[X = x|Y = y]

This means we will predict hBayes(x) = 1 iff

1

2
(x− µ0)

TΣ−1(x− µ0)−
1

2
(x− µ1)

TΣ−1(x− µ1) > 0
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Linear Discriminant Analysis

Equivalent to 〈w,x〉+ b > 0 where

w = (µ1 − µ0)
TΣ−1 and b =

1

2

(
µT0 Σ−1µ0 − µT1 Σ−1µ1

)

That is, Bayes optimal is a halfspace in this case

But, instead of learning the halfspace directly, we’ll learn µ0,µ1,Σ
using maximum likelihood.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 13 / 26



Linear Discriminant Analysis

Equivalent to 〈w,x〉+ b > 0 where

w = (µ1 − µ0)
TΣ−1 and b =

1

2

(
µT0 Σ−1µ0 − µT1 Σ−1µ1

)
That is, Bayes optimal is a halfspace in this case

But, instead of learning the halfspace directly, we’ll learn µ0,µ1,Σ
using maximum likelihood.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 13 / 26



Linear Discriminant Analysis

Equivalent to 〈w,x〉+ b > 0 where

w = (µ1 − µ0)
TΣ−1 and b =

1

2

(
µT0 Σ−1µ0 − µT1 Σ−1µ1

)
That is, Bayes optimal is a halfspace in this case

But, instead of learning the halfspace directly, we’ll learn µ0,µ1,Σ
using maximum likelihood.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 14 Generative Models 13 / 26



Outline

1 Maximum Likelihood

2 Naive Bayes

3 Linear Discriminant Analysis

4 Latent Variables and EM

5 Bayesian Reasoning
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Latent Variables

Sometimes, it is convenient to express the distribution over X using
latent random variables

Mixture of Gaussians: Each x ∈ Rd is generated by first selecting a
random y from [k], then choose x according to N(µy,Σy)
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Mixture of Gaussians

Each x ∈ Rd is generated by first selecting a random y from [k], then
choose x according to N(µy,Σy)

The density can be written as:

P[X = x] =

k∑
y=1

P[Y = y]P[X = x|Y = y]

=

k∑
y=1

cy
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(x− µy)

TΣ−1y (x− µy)

)
.

Note: Y is a hidden variable that we do not observe in the data. It is
just used to simplify the parametric description of the distribution
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Latent Variables

More generally,

log (Pθ[X = x]) = log

 k∑
y=1

Pθ[X = x, Y = y]

 .

Maximum Likelihood:

argmax
θ

m∑
i=1

log

 k∑
y=1

Pθ[X = xi, Y = y]

 .

In many cases, the summation inside the log makes the above
optimization problem computationally hard

A popular heuristic: Expectation-Maximization (EM), due to
Dempster, Laird and Rubin
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Expectation-Maximization (EM)

Designed for cases in which, had we known the values of the latent
variables Y , then the maximum likelihood optimization problem
would have been tractable.

Precisely, define the following function over m× k matrices and the
set of parameters θ:

F (Q,θ) =
m∑
i=1

k∑
y=1

Qi,y log (Pθ[X = xi, Y = y])

Interpret F (Q,θ) as the expected log-likelihood of
(x1, y1), . . . , (xm, ym)

Assumption: For any matrix Q ∈ [0, 1]m,k, such that each row of Q
sums to 1, the optimization problem argmaxθ F (Q,θ) is tractable.
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Expectation-Maximization (EM)

“chicken and egg” problem: Had we known Q, easy to find θ. Had
we known θ, we can set Qi,y = Pθ[Y = y|X = xi]

Expectation step: set

Q
(t+1)
i,y = Pθ(t) [Y = y|X = xi] .

Maximization step: set

θ(t+1) = argmax
θ

F (Q(t+1),θ) .
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EM as an alternate maximization algorithm

EM can be viewed as alternate maximization on the objective

G(Q,θ) = F (Q,θ)−
m∑
i=1

k∑
y=1

Qi,y log(Qi,y) .

Lemma: The EM procedure can be rewritten as:

Q(t+1) = argmax
Q∈[0,1]m,k:∀i,

∑
y Qi,j=1

G(Q,θ(t))

θ(t+1) = argmax
θ

G(Q(t+1),θ) .

Furthermore, G(Q(t+1),θ(t)) = L(S;θ(t)).

Corollary: L(S;θt+1) ≥ L(S;θ(t))
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EM for Mixture of Gaussians (soft k-means)

Mixture of k Gaussians in which θ = (c, {µ1, . . . ,µk})

Expectation step:

Q
(t)
i,y ∝ c(t)y exp

(
−1

2
‖xi − µ(t)

y ‖2
)

Maximization step:

µ(t+1)
y ∝

m∑
i=1

Q
(t)
i,y xi and c(t+1)

y ∝
m∑
i=1

Q
(t)
i,y
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Outline

1 Maximum Likelihood

2 Naive Bayes

3 Linear Discriminant Analysis

4 Latent Variables and EM

5 Bayesian Reasoning
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Bayesian Reasoning

So far, we treated θ as an unknown parameter

Bayesians treat uncertainty as randomness

Formally, think on θ as a random variable with prior probability P [θ]

The probability of X given S is

P[X = x|S] =
∑
θ

P[X = x|θ, S]P[θ|S] =
∑
θ

P[X = x|θ]P[θ|S]

Using Bayes rule we obtain a posterior distribution

P[θ|S] =
P[S|θ]P[θ]

P[S]

Therefore,

P[X = x|S] =
1

P[S]

∑
θ

P[X = x|θ]
m∏
i=1

P[X = xi|θ]P[θ] .
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Bayesian Reasoning

Example: suppose X = {0, 1} and the prior on θ is uniform over [0, 1]

Then:

P[X = x|S] ∝
∫
θx+

∑
i xi(1− θ)1−x+

∑
i(1−xi) dθ .

Solving (using integration by parts) we obtain

P[X = 1|S] =
(
∑

i xi) + 1

m+ 2
.

Recall that Maximum Likelihood in this case is P[X = 1|θ̂] =
∑
i xi
m

Therefore, uniform prior is similar to maximum likelihood, except it
adds “pseudoexamples” to the training set
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Maximum A-Posteriori

In many situations, it is difficult to find a closed form solution to the
integral in the definition of P[X = x|S]

A popular approximation is to find a single θ which maximizes P[θ|S]

This value is called the Maximum A-Posteriori estimator

Once this value is found, we can calculate the probability that X = x
given the maximum a-posteriori estimator and independently on S.
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Summary

Generative approach: model the distribution over the data

Parametric density estimation: estimate the parameters characterizing
the distribution

Rules: Maximum Likelihood, Bayesian estimation, maximum a
posteriori.

Algorithms: Naive Bayes, LDA, EM
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